Control of actuators for cabin vibration damping of a rope-free passenger transportation system

Jonas Missler, Thomas Ehrl, Benedikt Meier, Stefan Kaczmarczyk, Oliver Sawodny

Research output: Contribution to journalArticle

Abstract

The design of the novel rope-free passenger transportation system (PTS) differs from that of conventional traction lifts. The new propulsion, realized through a linear motor, requires lightweight constructions and thus shapes the design of the PTS. Additionally the possibility of horizontal travel has great influence on the difference between the design of conventional traction lifts and the PTS. Despite the different design, the aim for the rope-free PTS is to achieve at least the same ride quality as modern traction lifts. One important point in achieving the required ride quality is to reduce the vibrations felt by the passengers inside the cabin. In general, the damping concepts of conventional lifts cannot be readily applied to the new design of the PTS. Therefore, a damping concept for the rope-free PTS has to be developed. This paper will present the possibilities of active vibration damping for the PTS and a possible actuator position. The paper will focus on the modelling of the active damping components and the control of actuators deployed in the system. The performance of the damping actuators will be evaluated using a simulation with a Multi-Body System (MBS) of the PTS. The primary disturbance of the PTS for this paper will be the vibrations induced by the guidance.
Original languageEnglish
JournalLift and Escalator Symposium
Volume7
Publication statusPublished - 5 Sep 2017

Fingerprint

Vibrations (mechanical)
Actuators
Damping
Linear motors
Propulsion

Keywords

  • Vibration damping
  • control engineering
  • dynamic modelling
  • disturbance estimation

Cite this

@article{4e7229c02ffb4c9d82a678dc4d96acaa,
title = "Control of actuators for cabin vibration damping of a rope-free passenger transportation system",
abstract = "The design of the novel rope-free passenger transportation system (PTS) differs from that of conventional traction lifts. The new propulsion, realized through a linear motor, requires lightweight constructions and thus shapes the design of the PTS. Additionally the possibility of horizontal travel has great influence on the difference between the design of conventional traction lifts and the PTS. Despite the different design, the aim for the rope-free PTS is to achieve at least the same ride quality as modern traction lifts. One important point in achieving the required ride quality is to reduce the vibrations felt by the passengers inside the cabin. In general, the damping concepts of conventional lifts cannot be readily applied to the new design of the PTS. Therefore, a damping concept for the rope-free PTS has to be developed. This paper will present the possibilities of active vibration damping for the PTS and a possible actuator position. The paper will focus on the modelling of the active damping components and the control of actuators deployed in the system. The performance of the damping actuators will be evaluated using a simulation with a Multi-Body System (MBS) of the PTS. The primary disturbance of the PTS for this paper will be the vibrations induced by the guidance.",
keywords = "Vibration damping, control engineering, dynamic modelling, disturbance estimation",
author = "Jonas Missler and Thomas Ehrl and Benedikt Meier and Stefan Kaczmarczyk and Oliver Sawodny",
year = "2017",
month = "9",
day = "5",
language = "English",
volume = "7",
journal = "Lift and Escalator Symposium",
issn = "2052-7225",

}

Control of actuators for cabin vibration damping of a rope-free passenger transportation system. / Missler, Jonas; Ehrl, Thomas; Meier, Benedikt; Kaczmarczyk, Stefan; Sawodny, Oliver.

In: Lift and Escalator Symposium, Vol. 7, 05.09.2017.

Research output: Contribution to journalArticle

TY - JOUR

T1 - Control of actuators for cabin vibration damping of a rope-free passenger transportation system

AU - Missler, Jonas

AU - Ehrl, Thomas

AU - Meier, Benedikt

AU - Kaczmarczyk, Stefan

AU - Sawodny, Oliver

PY - 2017/9/5

Y1 - 2017/9/5

N2 - The design of the novel rope-free passenger transportation system (PTS) differs from that of conventional traction lifts. The new propulsion, realized through a linear motor, requires lightweight constructions and thus shapes the design of the PTS. Additionally the possibility of horizontal travel has great influence on the difference between the design of conventional traction lifts and the PTS. Despite the different design, the aim for the rope-free PTS is to achieve at least the same ride quality as modern traction lifts. One important point in achieving the required ride quality is to reduce the vibrations felt by the passengers inside the cabin. In general, the damping concepts of conventional lifts cannot be readily applied to the new design of the PTS. Therefore, a damping concept for the rope-free PTS has to be developed. This paper will present the possibilities of active vibration damping for the PTS and a possible actuator position. The paper will focus on the modelling of the active damping components and the control of actuators deployed in the system. The performance of the damping actuators will be evaluated using a simulation with a Multi-Body System (MBS) of the PTS. The primary disturbance of the PTS for this paper will be the vibrations induced by the guidance.

AB - The design of the novel rope-free passenger transportation system (PTS) differs from that of conventional traction lifts. The new propulsion, realized through a linear motor, requires lightweight constructions and thus shapes the design of the PTS. Additionally the possibility of horizontal travel has great influence on the difference between the design of conventional traction lifts and the PTS. Despite the different design, the aim for the rope-free PTS is to achieve at least the same ride quality as modern traction lifts. One important point in achieving the required ride quality is to reduce the vibrations felt by the passengers inside the cabin. In general, the damping concepts of conventional lifts cannot be readily applied to the new design of the PTS. Therefore, a damping concept for the rope-free PTS has to be developed. This paper will present the possibilities of active vibration damping for the PTS and a possible actuator position. The paper will focus on the modelling of the active damping components and the control of actuators deployed in the system. The performance of the damping actuators will be evaluated using a simulation with a Multi-Body System (MBS) of the PTS. The primary disturbance of the PTS for this paper will be the vibrations induced by the guidance.

KW - Vibration damping

KW - control engineering

KW - dynamic modelling

KW - disturbance estimation

UR - https://liftsymposium.org

M3 - Article

VL - 7

JO - Lift and Escalator Symposium

JF - Lift and Escalator Symposium

SN - 2052-7225

ER -