Ethanol/Gasoline Droplet Heating and Evaporation

Effects of Fuel Blends and Ambient Conditions

Research output: Contribution to journalArticleResearchpeer-review

5 Downloads (Pure)

Abstract

This paper focuses on the modeling of blended ethanol/gasoline fuel droplet heating and evaporation in conditions representative of internal combustion engines. The effects of ambient conditions (ambient pressure, ambient temperature, and radiative temperature) and ethanol/gasoline fuel blend ratios on multicomponent fuel droplet heating and evaporation are investigated using the analytical solutions to the heat-transfer and species diffusion equations. The ambient pressures, gas and radiative temperatures, and ethanol/gasoline fuel ratios are considered in the ranges of 3–30 bar, 400–650 K, 1000–2000 K, and 0% (pure gasoline)–100% (pure ethanol), respectively. Transient diffusion of 21 hydrocarbons, temperature gradient, and recirculation inside droplets are accounted for using the discrete component model. The droplet lifetimes of all mixtures decrease when ambient temperatures increase, under all ambient pressures (3–30 bar). The combination of ethanol and gasoline fuels has a noticeable impact on droplet heating and evaporation; for pure ethanol, the predicted droplet surface temperature is 24.3% lower, and lifetime 33.9% higher, than that for gasoline fuel under the same conditions. Finally, taking into account radiation decreases the gasoline fuel droplet evaporation times by up to 28.6%, and those of ethanol fuel droplets by up to 21.8%, compared to the cases where radiation is ignored.
Original languageEnglish
Pages (from-to)6498–6506
Number of pages8
JournalEnergy Fuels
Volume32
Issue number6
Early online date30 Apr 2018
DOIs
Publication statusPublished - 21 Jun 2018

Fingerprint

Gasoline
Evaporation
Ethanol
Heating
Temperature
Ethanol fuels
Radiation
Internal combustion engines
Thermal gradients
Hydrocarbons
Heat transfer
Gases

Bibliographical note

(1) Járvás, G.; Kontos, J.; Hancsók, J.; Dallos, A. Modeling Ethanol–blended Gasoline Droplet Evaporation Using COSMO-RS Theory and Computation Fluid Dynamics. Int. J. Heat Mass Transf. 2015, 84, 1019–1029.
(2) Bader, A.; Keller, P.; Hasse, C. The Influence of Non-Ideal Vapor–liquid Equilibrium on the Evaporation of Ethanol/Iso-Octane Droplets. Int. J. Heat Mass Transf. 2013, 64, 547–558.
(3) Corsetti, S.; Miles, R. E. H.; McDonald, C.; Belotti, Y.; Reid, J. P.; Kiefer, J.; McGloin, D. Probing the Evaporation Dynamics of Ethanol/Gasoline Biofuel Blends Using Single Droplet Manipulation Techniques. J. Phys. Chem. A 2015, 119 (51), 12797–12804.
(4) EPA, U. US Environmental Protection Agency http://www.epa.gov/ (accessed Jun 23, 2017).
(5) Masum, B. M.; Masjuki, H. H.; Kalam, M. A.; Rizwanul Fattah, I. M.; Palash, S. M.; Abedin, M. J. Effect of Ethanol–gasoline Blend on NOx Emission in SI Engine. Renew. Sustain. Energy Rev. 2013, 24, 209–222.
(6) US Department of Energy: Energy Efficiency and Renewable Energy. Alternative Fuels Data Centre http://www.afdc.energy.gov (accessed Jun 23, 2017).
(7) Banerjee, R. Numerical Investigation of Evaporation of a Single Ethanol/Iso-Octane Droplet. Fuel 2013, 107, 724–739.
(8) Su, M.; Chen, C. P. Heating and Evaporation of a New Gasoline Surrogate Fuel: A Discrete Multicomponent Modeling Study. Fuel 2015, 161, 215–221.
(9) Ma, X.; Jiang, C.; Xu, H.; Ding, H.; Shuai, S. Laminar Burning Characteristics of 2-Methylfuran and Isooctane Blend Fuels. Fuel 2014, 116, 281–291.
(10) Paxson, F. L. The Last American Frontier; Simon Publications LLC, 2001.
(11) Sazhin, S. S.; Kristyadi, T.; Abdelghaffar, W. A.; Begg, S.; Heikal, M. R.; Mikhalovsky, S. V.; Meikle, S. T.; Al-Hanbali, O. Approximate Analysis of Thermal Radiation Absorption in Fuel Droplets. J. Heat Transf. 2007, 129 (9), 1246.
(12) Pitz, W. J.; Cernansky, N. P.; Dryer, F. L.; Egolfopoulos, F. N.; Farrell, J. T.; Friend, D. G.; Pitsch, H. Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels; SAE Technical Paper 2007-1–175; SAE International: Warrendale, PA, 2007.
(13) Sazhin, S. S. Advanced Models of Fuel Droplet Heating and Evaporation. Prog. Energy Combust. Sci. 2006, 32 (2), 162–214.
(14) Sazhin, S. S.; Elwardany, A.; Krutitskii, P. A.; Castanet, G.; Lemoine, F.; Sazhina, E. M.; Heikal, M. R. A Simplified Model for Bi-Component Droplet Heating and Evaporation. Int. J. Heat Mass Transf. 2010, 53 (21–22), 4495–4505.
(15) Sazhin, S. S. Droplets and Sprays; Springer: London, 2014.
(16) Sazhin, S. S. Modelling of Fuel Droplet Heating and Evaporation: Recent Results and Unsolved Problems. Fuel 2017, 196, 69–101.
(17) Elwardany, A. E.; Gusev, I. G.; Castanet, G.; Lemoine, F.; Sazhin, S. S. Mono- and Multi-Component Droplet Cooling/Heating and Evaporation: Comparative Analysis of Numerical Models. At. Sprays 2011, 21 (11), 907–931.
(18) Sazhin, S. S.; Al Qubeissi, M.; Kolodnytska, R.; Elwardany, A. E.; Nasiri, R.; Heikal, M. R. Modelling of Biodiesel Fuel Droplet Heating and Evaporation. Fuel 2014, 115, 559–572.
(19) Sazhin, S. S.; Al Qubeissi, M.; Nasiri, R.; Gun’ko, V. M.; Elwardany, A. E.; Lemoine, F.; Grisch, F.; Heikal, M. R. A Multi-Dimensional Quasi-Discrete Model for the Analysis of Diesel Fuel Droplet Heating and Evaporation. Fuel 2014, 129, 238–266.
(20) Zhu, G.-S.; Reitz, R. D. A Model for High-Pressure Vaporization of Droplets of Complex Liquid Mixtures Using Continuous Thermodynamics. Int. J. Heat Mass Transf. 2002, 45 (3), 495–507.
(21) Laurent, C.; Lavergne, G.; Villedieu, P. Continuous Thermodynamics for Droplet Vaporization: Comparison between Gamma-PDF Model and QMoM. Comptes Rendus Mécanique 2009, 337 (6–7), 449–457.
(22) Grote, M.; Lucka, K.; Köhne, H. Multicomponent Droplet Evaporation of Heating Oil Using a Continuous Thermodynamics Model. In V ECCOMAS CFD; Lisbon, Portugal, 2010.
(23) Burger, M.; Schmehl, R.; Prommersberger, K.; Schäfer, O.; Koch, R.; Wittig, S. Droplet Evaporation Modeling by the Distillation Curve Model: Accounting for Kerosene Fuel and Elevated Pressures. Int. J. Heat Mass Transf. 2003, 46 (23), 4403–4412.
(24) Smith, B. L.; Bruno, T. J. Advanced Distillation Curve Measurement with a Model Predictive Temperature Controller. Int. J. Thermophys. 2006, 27 (5), 1419–1434.
(25) Qi, D. H.; Lee, C. F. Influence of Soybean Biodiesel Content on Basic Properties of Biodiesel-Diesel Blends. J. Taiwan Inst. Chem. Eng. 2014, 45 (2), 504–507.
(26) Al Qubeissi, M.; Sazhin, S. S.; Turner, J.; Begg, S.; Crua, C.; Heikal, M. R. Modelling of Gasoline Fuel Droplets Heating and Evaporation. Fuel 2015, 159, 373–384.
(27) Al Qubeissi, M. Predictions of Droplet Heating and Evaporation: An Application to Biodiesel, Diesel, Gasoline and Blended Fuels. Appl. Therm. Eng. 2018, 136 (C), 260–267.
(28) Rybdylova, O.; Poulton, L.; Al Qubeissi, M.; Elwardany, A. E.; Crua, C.; Khan, T.; Sazhin, S. S. A Model for Multi-Component Droplet Heating and Evaporation and Its Implementation into ANSYS Fluent. Int. Commun. Heat Mass Transf. 2018, 90, 29–33.
(29) Sazhin, S. S.; Al Qubeissi, M.; Xie, J.-F. Two Approaches to Modelling the Heating of Evaporating Droplets. Int. Commun. Heat Mass Transf. 2014, 57, 353–356.
(30) Poling, B. E.; Prausnitz, J. M.; O’Connell, J. P. The Properties of Gases and Liquids; McGraw-Hill: New York, 2001.
(31) Yaws, C. L. The Yaws Handbook of Vapor Pressure: Antoine Coefficients; Gulf Pub.: Houston, Tex., 2007.
(32) Tonini, S.; Cossali, G. E. A Multi-Component Drop Evaporation Model Based on Analytical Solution of Stefan–Maxwell Equations. Int. J. Heat Mass Transf. 2016, 92, 184–189.
(33) Yaws, C. L. Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Physical, Thermodynamic and Transport Properties for 5000 Organic Chemical Compounds; Knovel: Norwich, NY, 2003.
(34) Yaws, C. L. The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals, Physical Properties for More than 54,000 Organic and Inorganic Chemical Compounds, Coverage for C1 to C100 Organics and Ac to Zr Inorganics, Second edition; Elsevier: Oxford, UK, 2015.
(35) Al Qubeissi, M.; Sazhin, S. S.; Elwardany, A. E. Modelling of Blended Diesel and Biodiesel Fuel Droplet Heating and Evaporation. Fuel 2017, 187, 349–355.
(36) Dooley, S.; Uddi, M.; Won, S. H.; Dryer, F. L.; Ju, Y. Methyl Butanoate Inhibition of N-Heptane Diffusion Flames through an Evaluation of Transport and Chemical Kinetics. Combust. Flame 2012, 159 (4), 1371–1384.
(37) Elwardany, A. E. Modelling of Multi-Component Fuel Droplets Heating and Evaporation. PhD thesis, University of Brighton: UK, 2012.
(38) Deprédurand, V. Approche Expérimentale de l’évaporation de Sprays de Combustibles Multicomposant; Vandoeuvre-les-Nancy, INPL, 2009.
(39) Rybdylova, O.; Qubeissi, M. A.; Braun, M.; Crua, C.; Manin, J.; Pickett, L. M.; Sercey, G. de; Sazhina, E. M.; Sazhin, S. S.; Heikal, M. A Model for Droplet Heating and Its Implementation into ANSYS Fluent. Int. Commun. Heat Mass Transf. 2016.
(40) Sazhin, S. S.; Krutitskii, P. A.; Abdelghaffar, W. A.; Sazhina, E. M.; Mikhalovsky, S. V.; Meikle, S. T.; Heikal, M. R. Transient Heating of Diesel Fuel Droplets. Int. J. Heat Mass Transf. 2004, 47 (14–16), 3327–3340.
(41) Abramzon, B.; Sazhin, S. S. Convective Vaporization of a Fuel Droplet with Thermal Radiation Absorption. Fuel 2006, 85 (1), 32–46.
(42) Komkoua Mbienda, A. J.; Tchawoua, C.; Vondou, D. A.; Mkankam Kamga, F. Evaluation of Vapor Pressure Estimation Methods for Use in Simulating the Dynamic of Atmospheric Organic Aerosols. Int. J. Geophys. 2013, 2013, e612375.
(43) Reid, R. C.; Prausnitz, J. M.; Sherwood, T. K. The Properties of Gases and Liquids, 3d ed.; McGraw-Hill chemical engineering series; McGraw-Hill: New York, 1977.
(44) García-Miaja, G.; Troncoso, J.; Romaní, L. Excess Properties for Binary Systems Ionic Liquid+ethanol: Experimental Results and Theoretical Description Using the ERAS Model. Fluid Phase Equilibria 2008, 274 (1–2), 59–67.
(45) Sinnott, R. K. Chemical Engineering Design, 4th ed.; Elsevier Butterworth-Heinemann: Oxford, 2005.
(46) Sih, R.; Armenti, M.; Mammucari, R.; Dehghani, F.; Foster, N. R. Viscosity Measurements on Saturated Gas-Expanded Liquid Systems—Ethanol and Carbon Dioxide. J. Supercrit. Fluids 2008, 43 (3), 460–468.
(47) Perry, R. H. Perry’s Chemical Engineers’ Handbook, 7th ed.; McGraw-Hill, 1997.
(48) Aucejo, A.; Loras, S.; Muñoz, R.; Ordoñez, L. M. Isobaric Vapor–liquid Equilibrium for Binary Mixtures of 2-Methylpentane+ethanol and +2-Methyl-2-Propanol. Fluid Phase Equilibria 1999, 156 (1–2), 173–183.
(49) NIST http://webbook.nist.gov/chemistry/fluid/ (accessed Jul 28, 2017).
(50) Petravic, J. Thermal Conductivity of Ethanol. J. Chem. Phys. 2005, 123 (17), 174503.

Cite this

@article{fa769d41a5194da5b37fa56987ffbb08,
title = "Ethanol/Gasoline Droplet Heating and Evaporation: Effects of Fuel Blends and Ambient Conditions",
abstract = "This paper focuses on the modeling of blended ethanol/gasoline fuel droplet heating and evaporation in conditions representative of internal combustion engines. The effects of ambient conditions (ambient pressure, ambient temperature, and radiative temperature) and ethanol/gasoline fuel blend ratios on multicomponent fuel droplet heating and evaporation are investigated using the analytical solutions to the heat-transfer and species diffusion equations. The ambient pressures, gas and radiative temperatures, and ethanol/gasoline fuel ratios are considered in the ranges of 3–30 bar, 400–650 K, 1000–2000 K, and 0{\%} (pure gasoline)–100{\%} (pure ethanol), respectively. Transient diffusion of 21 hydrocarbons, temperature gradient, and recirculation inside droplets are accounted for using the discrete component model. The droplet lifetimes of all mixtures decrease when ambient temperatures increase, under all ambient pressures (3–30 bar). The combination of ethanol and gasoline fuels has a noticeable impact on droplet heating and evaporation; for pure ethanol, the predicted droplet surface temperature is 24.3{\%} lower, and lifetime 33.9{\%} higher, than that for gasoline fuel under the same conditions. Finally, taking into account radiation decreases the gasoline fuel droplet evaporation times by up to 28.6{\%}, and those of ethanol fuel droplets by up to 21.8{\%}, compared to the cases where radiation is ignored.",
author = "Mohammad Ghaleeh",
note = "(1) J{\'a}rv{\'a}s, G.; Kontos, J.; Hancs{\'o}k, J.; Dallos, A. Modeling Ethanol–blended Gasoline Droplet Evaporation Using COSMO-RS Theory and Computation Fluid Dynamics. Int. J. Heat Mass Transf. 2015, 84, 1019–1029. (2) Bader, A.; Keller, P.; Hasse, C. The Influence of Non-Ideal Vapor–liquid Equilibrium on the Evaporation of Ethanol/Iso-Octane Droplets. Int. J. Heat Mass Transf. 2013, 64, 547–558. (3) Corsetti, S.; Miles, R. E. H.; McDonald, C.; Belotti, Y.; Reid, J. P.; Kiefer, J.; McGloin, D. Probing the Evaporation Dynamics of Ethanol/Gasoline Biofuel Blends Using Single Droplet Manipulation Techniques. J. Phys. Chem. A 2015, 119 (51), 12797–12804. (4) EPA, U. US Environmental Protection Agency http://www.epa.gov/ (accessed Jun 23, 2017). (5) Masum, B. M.; Masjuki, H. H.; Kalam, M. A.; Rizwanul Fattah, I. M.; Palash, S. M.; Abedin, M. J. Effect of Ethanol–gasoline Blend on NOx Emission in SI Engine. Renew. Sustain. Energy Rev. 2013, 24, 209–222. (6) US Department of Energy: Energy Efficiency and Renewable Energy. Alternative Fuels Data Centre http://www.afdc.energy.gov (accessed Jun 23, 2017). (7) Banerjee, R. Numerical Investigation of Evaporation of a Single Ethanol/Iso-Octane Droplet. Fuel 2013, 107, 724–739. (8) Su, M.; Chen, C. P. Heating and Evaporation of a New Gasoline Surrogate Fuel: A Discrete Multicomponent Modeling Study. Fuel 2015, 161, 215–221. (9) Ma, X.; Jiang, C.; Xu, H.; Ding, H.; Shuai, S. Laminar Burning Characteristics of 2-Methylfuran and Isooctane Blend Fuels. Fuel 2014, 116, 281–291. (10) Paxson, F. L. The Last American Frontier; Simon Publications LLC, 2001. (11) Sazhin, S. S.; Kristyadi, T.; Abdelghaffar, W. A.; Begg, S.; Heikal, M. R.; Mikhalovsky, S. V.; Meikle, S. T.; Al-Hanbali, O. Approximate Analysis of Thermal Radiation Absorption in Fuel Droplets. J. Heat Transf. 2007, 129 (9), 1246. (12) Pitz, W. J.; Cernansky, N. P.; Dryer, F. L.; Egolfopoulos, F. N.; Farrell, J. T.; Friend, D. G.; Pitsch, H. Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels; SAE Technical Paper 2007-1–175; SAE International: Warrendale, PA, 2007. (13) Sazhin, S. S. Advanced Models of Fuel Droplet Heating and Evaporation. Prog. Energy Combust. Sci. 2006, 32 (2), 162–214. (14) Sazhin, S. S.; Elwardany, A.; Krutitskii, P. A.; Castanet, G.; Lemoine, F.; Sazhina, E. M.; Heikal, M. R. A Simplified Model for Bi-Component Droplet Heating and Evaporation. Int. J. Heat Mass Transf. 2010, 53 (21–22), 4495–4505. (15) Sazhin, S. S. Droplets and Sprays; Springer: London, 2014. (16) Sazhin, S. S. Modelling of Fuel Droplet Heating and Evaporation: Recent Results and Unsolved Problems. Fuel 2017, 196, 69–101. (17) Elwardany, A. E.; Gusev, I. G.; Castanet, G.; Lemoine, F.; Sazhin, S. S. Mono- and Multi-Component Droplet Cooling/Heating and Evaporation: Comparative Analysis of Numerical Models. At. Sprays 2011, 21 (11), 907–931. (18) Sazhin, S. S.; Al Qubeissi, M.; Kolodnytska, R.; Elwardany, A. E.; Nasiri, R.; Heikal, M. R. Modelling of Biodiesel Fuel Droplet Heating and Evaporation. Fuel 2014, 115, 559–572. (19) Sazhin, S. S.; Al Qubeissi, M.; Nasiri, R.; Gun’ko, V. M.; Elwardany, A. E.; Lemoine, F.; Grisch, F.; Heikal, M. R. A Multi-Dimensional Quasi-Discrete Model for the Analysis of Diesel Fuel Droplet Heating and Evaporation. Fuel 2014, 129, 238–266. (20) Zhu, G.-S.; Reitz, R. D. A Model for High-Pressure Vaporization of Droplets of Complex Liquid Mixtures Using Continuous Thermodynamics. Int. J. Heat Mass Transf. 2002, 45 (3), 495–507. (21) Laurent, C.; Lavergne, G.; Villedieu, P. Continuous Thermodynamics for Droplet Vaporization: Comparison between Gamma-PDF Model and QMoM. Comptes Rendus M{\'e}canique 2009, 337 (6–7), 449–457. (22) Grote, M.; Lucka, K.; K{\"o}hne, H. Multicomponent Droplet Evaporation of Heating Oil Using a Continuous Thermodynamics Model. In V ECCOMAS CFD; Lisbon, Portugal, 2010. (23) Burger, M.; Schmehl, R.; Prommersberger, K.; Sch{\"a}fer, O.; Koch, R.; Wittig, S. Droplet Evaporation Modeling by the Distillation Curve Model: Accounting for Kerosene Fuel and Elevated Pressures. Int. J. Heat Mass Transf. 2003, 46 (23), 4403–4412. (24) Smith, B. L.; Bruno, T. J. Advanced Distillation Curve Measurement with a Model Predictive Temperature Controller. Int. J. Thermophys. 2006, 27 (5), 1419–1434. (25) Qi, D. H.; Lee, C. F. Influence of Soybean Biodiesel Content on Basic Properties of Biodiesel-Diesel Blends. J. Taiwan Inst. Chem. Eng. 2014, 45 (2), 504–507. (26) Al Qubeissi, M.; Sazhin, S. S.; Turner, J.; Begg, S.; Crua, C.; Heikal, M. R. Modelling of Gasoline Fuel Droplets Heating and Evaporation. Fuel 2015, 159, 373–384. (27) Al Qubeissi, M. Predictions of Droplet Heating and Evaporation: An Application to Biodiesel, Diesel, Gasoline and Blended Fuels. Appl. Therm. Eng. 2018, 136 (C), 260–267. (28) Rybdylova, O.; Poulton, L.; Al Qubeissi, M.; Elwardany, A. E.; Crua, C.; Khan, T.; Sazhin, S. S. A Model for Multi-Component Droplet Heating and Evaporation and Its Implementation into ANSYS Fluent. Int. Commun. Heat Mass Transf. 2018, 90, 29–33. (29) Sazhin, S. S.; Al Qubeissi, M.; Xie, J.-F. Two Approaches to Modelling the Heating of Evaporating Droplets. Int. Commun. Heat Mass Transf. 2014, 57, 353–356. (30) Poling, B. E.; Prausnitz, J. M.; O’Connell, J. P. The Properties of Gases and Liquids; McGraw-Hill: New York, 2001. (31) Yaws, C. L. The Yaws Handbook of Vapor Pressure: Antoine Coefficients; Gulf Pub.: Houston, Tex., 2007. (32) Tonini, S.; Cossali, G. E. A Multi-Component Drop Evaporation Model Based on Analytical Solution of Stefan–Maxwell Equations. Int. J. Heat Mass Transf. 2016, 92, 184–189. (33) Yaws, C. L. Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Physical, Thermodynamic and Transport Properties for 5000 Organic Chemical Compounds; Knovel: Norwich, NY, 2003. (34) Yaws, C. L. The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals, Physical Properties for More than 54,000 Organic and Inorganic Chemical Compounds, Coverage for C1 to C100 Organics and Ac to Zr Inorganics, Second edition; Elsevier: Oxford, UK, 2015. (35) Al Qubeissi, M.; Sazhin, S. S.; Elwardany, A. E. Modelling of Blended Diesel and Biodiesel Fuel Droplet Heating and Evaporation. Fuel 2017, 187, 349–355. (36) Dooley, S.; Uddi, M.; Won, S. H.; Dryer, F. L.; Ju, Y. Methyl Butanoate Inhibition of N-Heptane Diffusion Flames through an Evaluation of Transport and Chemical Kinetics. Combust. Flame 2012, 159 (4), 1371–1384. (37) Elwardany, A. E. Modelling of Multi-Component Fuel Droplets Heating and Evaporation. PhD thesis, University of Brighton: UK, 2012. (38) Depr{\'e}durand, V. Approche Exp{\'e}rimentale de l’{\'e}vaporation de Sprays de Combustibles Multicomposant; Vandoeuvre-les-Nancy, INPL, 2009. (39) Rybdylova, O.; Qubeissi, M. A.; Braun, M.; Crua, C.; Manin, J.; Pickett, L. M.; Sercey, G. de; Sazhina, E. M.; Sazhin, S. S.; Heikal, M. A Model for Droplet Heating and Its Implementation into ANSYS Fluent. Int. Commun. Heat Mass Transf. 2016. (40) Sazhin, S. S.; Krutitskii, P. A.; Abdelghaffar, W. A.; Sazhina, E. M.; Mikhalovsky, S. V.; Meikle, S. T.; Heikal, M. R. Transient Heating of Diesel Fuel Droplets. Int. J. Heat Mass Transf. 2004, 47 (14–16), 3327–3340. (41) Abramzon, B.; Sazhin, S. S. Convective Vaporization of a Fuel Droplet with Thermal Radiation Absorption. Fuel 2006, 85 (1), 32–46. (42) Komkoua Mbienda, A. J.; Tchawoua, C.; Vondou, D. A.; Mkankam Kamga, F. Evaluation of Vapor Pressure Estimation Methods for Use in Simulating the Dynamic of Atmospheric Organic Aerosols. Int. J. Geophys. 2013, 2013, e612375. (43) Reid, R. C.; Prausnitz, J. M.; Sherwood, T. K. The Properties of Gases and Liquids, 3d ed.; McGraw-Hill chemical engineering series; McGraw-Hill: New York, 1977. (44) Garc{\'i}a-Miaja, G.; Troncoso, J.; Roman{\'i}, L. Excess Properties for Binary Systems Ionic Liquid+ethanol: Experimental Results and Theoretical Description Using the ERAS Model. Fluid Phase Equilibria 2008, 274 (1–2), 59–67. (45) Sinnott, R. K. Chemical Engineering Design, 4th ed.; Elsevier Butterworth-Heinemann: Oxford, 2005. (46) Sih, R.; Armenti, M.; Mammucari, R.; Dehghani, F.; Foster, N. R. Viscosity Measurements on Saturated Gas-Expanded Liquid Systems—Ethanol and Carbon Dioxide. J. Supercrit. Fluids 2008, 43 (3), 460–468. (47) Perry, R. H. Perry’s Chemical Engineers’ Handbook, 7th ed.; McGraw-Hill, 1997. (48) Aucejo, A.; Loras, S.; Mu{\~n}oz, R.; Ordo{\~n}ez, L. M. Isobaric Vapor–liquid Equilibrium for Binary Mixtures of 2-Methylpentane+ethanol and +2-Methyl-2-Propanol. Fluid Phase Equilibria 1999, 156 (1–2), 173–183. (49) NIST http://webbook.nist.gov/chemistry/fluid/ (accessed Jul 28, 2017). (50) Petravic, J. Thermal Conductivity of Ethanol. J. Chem. Phys. 2005, 123 (17), 174503.",
year = "2018",
month = "6",
day = "21",
doi = "10.1021/acs.energyfuels.8b00366",
language = "English",
volume = "32",
pages = "6498–6506",
journal = "Energy Fuels",
issn = "0887-0624",
publisher = "American Chemical Society",
number = "6",

}

Ethanol/Gasoline Droplet Heating and Evaporation : Effects of Fuel Blends and Ambient Conditions. / Ghaleeh, Mohammad.

In: Energy Fuels, Vol. 32, No. 6, 21.06.2018, p. 6498–6506.

Research output: Contribution to journalArticleResearchpeer-review

TY - JOUR

T1 - Ethanol/Gasoline Droplet Heating and Evaporation

T2 - Effects of Fuel Blends and Ambient Conditions

AU - Ghaleeh, Mohammad

N1 - (1) Járvás, G.; Kontos, J.; Hancsók, J.; Dallos, A. Modeling Ethanol–blended Gasoline Droplet Evaporation Using COSMO-RS Theory and Computation Fluid Dynamics. Int. J. Heat Mass Transf. 2015, 84, 1019–1029. (2) Bader, A.; Keller, P.; Hasse, C. The Influence of Non-Ideal Vapor–liquid Equilibrium on the Evaporation of Ethanol/Iso-Octane Droplets. Int. J. Heat Mass Transf. 2013, 64, 547–558. (3) Corsetti, S.; Miles, R. E. H.; McDonald, C.; Belotti, Y.; Reid, J. P.; Kiefer, J.; McGloin, D. Probing the Evaporation Dynamics of Ethanol/Gasoline Biofuel Blends Using Single Droplet Manipulation Techniques. J. Phys. Chem. A 2015, 119 (51), 12797–12804. (4) EPA, U. US Environmental Protection Agency http://www.epa.gov/ (accessed Jun 23, 2017). (5) Masum, B. M.; Masjuki, H. H.; Kalam, M. A.; Rizwanul Fattah, I. M.; Palash, S. M.; Abedin, M. J. Effect of Ethanol–gasoline Blend on NOx Emission in SI Engine. Renew. Sustain. Energy Rev. 2013, 24, 209–222. (6) US Department of Energy: Energy Efficiency and Renewable Energy. Alternative Fuels Data Centre http://www.afdc.energy.gov (accessed Jun 23, 2017). (7) Banerjee, R. Numerical Investigation of Evaporation of a Single Ethanol/Iso-Octane Droplet. Fuel 2013, 107, 724–739. (8) Su, M.; Chen, C. P. Heating and Evaporation of a New Gasoline Surrogate Fuel: A Discrete Multicomponent Modeling Study. Fuel 2015, 161, 215–221. (9) Ma, X.; Jiang, C.; Xu, H.; Ding, H.; Shuai, S. Laminar Burning Characteristics of 2-Methylfuran and Isooctane Blend Fuels. Fuel 2014, 116, 281–291. (10) Paxson, F. L. The Last American Frontier; Simon Publications LLC, 2001. (11) Sazhin, S. S.; Kristyadi, T.; Abdelghaffar, W. A.; Begg, S.; Heikal, M. R.; Mikhalovsky, S. V.; Meikle, S. T.; Al-Hanbali, O. Approximate Analysis of Thermal Radiation Absorption in Fuel Droplets. J. Heat Transf. 2007, 129 (9), 1246. (12) Pitz, W. J.; Cernansky, N. P.; Dryer, F. L.; Egolfopoulos, F. N.; Farrell, J. T.; Friend, D. G.; Pitsch, H. Development of an Experimental Database and Chemical Kinetic Models for Surrogate Gasoline Fuels; SAE Technical Paper 2007-1–175; SAE International: Warrendale, PA, 2007. (13) Sazhin, S. S. Advanced Models of Fuel Droplet Heating and Evaporation. Prog. Energy Combust. Sci. 2006, 32 (2), 162–214. (14) Sazhin, S. S.; Elwardany, A.; Krutitskii, P. A.; Castanet, G.; Lemoine, F.; Sazhina, E. M.; Heikal, M. R. A Simplified Model for Bi-Component Droplet Heating and Evaporation. Int. J. Heat Mass Transf. 2010, 53 (21–22), 4495–4505. (15) Sazhin, S. S. Droplets and Sprays; Springer: London, 2014. (16) Sazhin, S. S. Modelling of Fuel Droplet Heating and Evaporation: Recent Results and Unsolved Problems. Fuel 2017, 196, 69–101. (17) Elwardany, A. E.; Gusev, I. G.; Castanet, G.; Lemoine, F.; Sazhin, S. S. Mono- and Multi-Component Droplet Cooling/Heating and Evaporation: Comparative Analysis of Numerical Models. At. Sprays 2011, 21 (11), 907–931. (18) Sazhin, S. S.; Al Qubeissi, M.; Kolodnytska, R.; Elwardany, A. E.; Nasiri, R.; Heikal, M. R. Modelling of Biodiesel Fuel Droplet Heating and Evaporation. Fuel 2014, 115, 559–572. (19) Sazhin, S. S.; Al Qubeissi, M.; Nasiri, R.; Gun’ko, V. M.; Elwardany, A. E.; Lemoine, F.; Grisch, F.; Heikal, M. R. A Multi-Dimensional Quasi-Discrete Model for the Analysis of Diesel Fuel Droplet Heating and Evaporation. Fuel 2014, 129, 238–266. (20) Zhu, G.-S.; Reitz, R. D. A Model for High-Pressure Vaporization of Droplets of Complex Liquid Mixtures Using Continuous Thermodynamics. Int. J. Heat Mass Transf. 2002, 45 (3), 495–507. (21) Laurent, C.; Lavergne, G.; Villedieu, P. Continuous Thermodynamics for Droplet Vaporization: Comparison between Gamma-PDF Model and QMoM. Comptes Rendus Mécanique 2009, 337 (6–7), 449–457. (22) Grote, M.; Lucka, K.; Köhne, H. Multicomponent Droplet Evaporation of Heating Oil Using a Continuous Thermodynamics Model. In V ECCOMAS CFD; Lisbon, Portugal, 2010. (23) Burger, M.; Schmehl, R.; Prommersberger, K.; Schäfer, O.; Koch, R.; Wittig, S. Droplet Evaporation Modeling by the Distillation Curve Model: Accounting for Kerosene Fuel and Elevated Pressures. Int. J. Heat Mass Transf. 2003, 46 (23), 4403–4412. (24) Smith, B. L.; Bruno, T. J. Advanced Distillation Curve Measurement with a Model Predictive Temperature Controller. Int. J. Thermophys. 2006, 27 (5), 1419–1434. (25) Qi, D. H.; Lee, C. F. Influence of Soybean Biodiesel Content on Basic Properties of Biodiesel-Diesel Blends. J. Taiwan Inst. Chem. Eng. 2014, 45 (2), 504–507. (26) Al Qubeissi, M.; Sazhin, S. S.; Turner, J.; Begg, S.; Crua, C.; Heikal, M. R. Modelling of Gasoline Fuel Droplets Heating and Evaporation. Fuel 2015, 159, 373–384. (27) Al Qubeissi, M. Predictions of Droplet Heating and Evaporation: An Application to Biodiesel, Diesel, Gasoline and Blended Fuels. Appl. Therm. Eng. 2018, 136 (C), 260–267. (28) Rybdylova, O.; Poulton, L.; Al Qubeissi, M.; Elwardany, A. E.; Crua, C.; Khan, T.; Sazhin, S. S. A Model for Multi-Component Droplet Heating and Evaporation and Its Implementation into ANSYS Fluent. Int. Commun. Heat Mass Transf. 2018, 90, 29–33. (29) Sazhin, S. S.; Al Qubeissi, M.; Xie, J.-F. Two Approaches to Modelling the Heating of Evaporating Droplets. Int. Commun. Heat Mass Transf. 2014, 57, 353–356. (30) Poling, B. E.; Prausnitz, J. M.; O’Connell, J. P. The Properties of Gases and Liquids; McGraw-Hill: New York, 2001. (31) Yaws, C. L. The Yaws Handbook of Vapor Pressure: Antoine Coefficients; Gulf Pub.: Houston, Tex., 2007. (32) Tonini, S.; Cossali, G. E. A Multi-Component Drop Evaporation Model Based on Analytical Solution of Stefan–Maxwell Equations. Int. J. Heat Mass Transf. 2016, 92, 184–189. (33) Yaws, C. L. Yaws’ Handbook of Thermodynamic and Physical Properties of Chemical Compounds, Physical, Thermodynamic and Transport Properties for 5000 Organic Chemical Compounds; Knovel: Norwich, NY, 2003. (34) Yaws, C. L. The Yaws Handbook of Physical Properties for Hydrocarbons and Chemicals, Physical Properties for More than 54,000 Organic and Inorganic Chemical Compounds, Coverage for C1 to C100 Organics and Ac to Zr Inorganics, Second edition; Elsevier: Oxford, UK, 2015. (35) Al Qubeissi, M.; Sazhin, S. S.; Elwardany, A. E. Modelling of Blended Diesel and Biodiesel Fuel Droplet Heating and Evaporation. Fuel 2017, 187, 349–355. (36) Dooley, S.; Uddi, M.; Won, S. H.; Dryer, F. L.; Ju, Y. Methyl Butanoate Inhibition of N-Heptane Diffusion Flames through an Evaluation of Transport and Chemical Kinetics. Combust. Flame 2012, 159 (4), 1371–1384. (37) Elwardany, A. E. Modelling of Multi-Component Fuel Droplets Heating and Evaporation. PhD thesis, University of Brighton: UK, 2012. (38) Deprédurand, V. Approche Expérimentale de l’évaporation de Sprays de Combustibles Multicomposant; Vandoeuvre-les-Nancy, INPL, 2009. (39) Rybdylova, O.; Qubeissi, M. A.; Braun, M.; Crua, C.; Manin, J.; Pickett, L. M.; Sercey, G. de; Sazhina, E. M.; Sazhin, S. S.; Heikal, M. A Model for Droplet Heating and Its Implementation into ANSYS Fluent. Int. Commun. Heat Mass Transf. 2016. (40) Sazhin, S. S.; Krutitskii, P. A.; Abdelghaffar, W. A.; Sazhina, E. M.; Mikhalovsky, S. V.; Meikle, S. T.; Heikal, M. R. Transient Heating of Diesel Fuel Droplets. Int. J. Heat Mass Transf. 2004, 47 (14–16), 3327–3340. (41) Abramzon, B.; Sazhin, S. S. Convective Vaporization of a Fuel Droplet with Thermal Radiation Absorption. Fuel 2006, 85 (1), 32–46. (42) Komkoua Mbienda, A. J.; Tchawoua, C.; Vondou, D. A.; Mkankam Kamga, F. Evaluation of Vapor Pressure Estimation Methods for Use in Simulating the Dynamic of Atmospheric Organic Aerosols. Int. J. Geophys. 2013, 2013, e612375. (43) Reid, R. C.; Prausnitz, J. M.; Sherwood, T. K. The Properties of Gases and Liquids, 3d ed.; McGraw-Hill chemical engineering series; McGraw-Hill: New York, 1977. (44) García-Miaja, G.; Troncoso, J.; Romaní, L. Excess Properties for Binary Systems Ionic Liquid+ethanol: Experimental Results and Theoretical Description Using the ERAS Model. Fluid Phase Equilibria 2008, 274 (1–2), 59–67. (45) Sinnott, R. K. Chemical Engineering Design, 4th ed.; Elsevier Butterworth-Heinemann: Oxford, 2005. (46) Sih, R.; Armenti, M.; Mammucari, R.; Dehghani, F.; Foster, N. R. Viscosity Measurements on Saturated Gas-Expanded Liquid Systems—Ethanol and Carbon Dioxide. J. Supercrit. Fluids 2008, 43 (3), 460–468. (47) Perry, R. H. Perry’s Chemical Engineers’ Handbook, 7th ed.; McGraw-Hill, 1997. (48) Aucejo, A.; Loras, S.; Muñoz, R.; Ordoñez, L. M. Isobaric Vapor–liquid Equilibrium for Binary Mixtures of 2-Methylpentane+ethanol and +2-Methyl-2-Propanol. Fluid Phase Equilibria 1999, 156 (1–2), 173–183. (49) NIST http://webbook.nist.gov/chemistry/fluid/ (accessed Jul 28, 2017). (50) Petravic, J. Thermal Conductivity of Ethanol. J. Chem. Phys. 2005, 123 (17), 174503.

PY - 2018/6/21

Y1 - 2018/6/21

N2 - This paper focuses on the modeling of blended ethanol/gasoline fuel droplet heating and evaporation in conditions representative of internal combustion engines. The effects of ambient conditions (ambient pressure, ambient temperature, and radiative temperature) and ethanol/gasoline fuel blend ratios on multicomponent fuel droplet heating and evaporation are investigated using the analytical solutions to the heat-transfer and species diffusion equations. The ambient pressures, gas and radiative temperatures, and ethanol/gasoline fuel ratios are considered in the ranges of 3–30 bar, 400–650 K, 1000–2000 K, and 0% (pure gasoline)–100% (pure ethanol), respectively. Transient diffusion of 21 hydrocarbons, temperature gradient, and recirculation inside droplets are accounted for using the discrete component model. The droplet lifetimes of all mixtures decrease when ambient temperatures increase, under all ambient pressures (3–30 bar). The combination of ethanol and gasoline fuels has a noticeable impact on droplet heating and evaporation; for pure ethanol, the predicted droplet surface temperature is 24.3% lower, and lifetime 33.9% higher, than that for gasoline fuel under the same conditions. Finally, taking into account radiation decreases the gasoline fuel droplet evaporation times by up to 28.6%, and those of ethanol fuel droplets by up to 21.8%, compared to the cases where radiation is ignored.

AB - This paper focuses on the modeling of blended ethanol/gasoline fuel droplet heating and evaporation in conditions representative of internal combustion engines. The effects of ambient conditions (ambient pressure, ambient temperature, and radiative temperature) and ethanol/gasoline fuel blend ratios on multicomponent fuel droplet heating and evaporation are investigated using the analytical solutions to the heat-transfer and species diffusion equations. The ambient pressures, gas and radiative temperatures, and ethanol/gasoline fuel ratios are considered in the ranges of 3–30 bar, 400–650 K, 1000–2000 K, and 0% (pure gasoline)–100% (pure ethanol), respectively. Transient diffusion of 21 hydrocarbons, temperature gradient, and recirculation inside droplets are accounted for using the discrete component model. The droplet lifetimes of all mixtures decrease when ambient temperatures increase, under all ambient pressures (3–30 bar). The combination of ethanol and gasoline fuels has a noticeable impact on droplet heating and evaporation; for pure ethanol, the predicted droplet surface temperature is 24.3% lower, and lifetime 33.9% higher, than that for gasoline fuel under the same conditions. Finally, taking into account radiation decreases the gasoline fuel droplet evaporation times by up to 28.6%, and those of ethanol fuel droplets by up to 21.8%, compared to the cases where radiation is ignored.

U2 - 10.1021/acs.energyfuels.8b00366

DO - 10.1021/acs.energyfuels.8b00366

M3 - Article

VL - 32

SP - 6498

EP - 6506

JO - Energy Fuels

JF - Energy Fuels

SN - 0887-0624

IS - 6

ER -