Reconciling the Earth's stratigraphic record with the structure of our galaxy

Michael Gillman, Hilary Erenler

Research output: Contribution to JournalArticlepeer-review

Abstract

The passage of our Solar System through the spiral arms has been implicated as a contributor to global environmental perturbations. The suggestion of a consistent structure within the arms, informed by density wave theory, raises the possibility of repeating patterns of events at each arm crossing. Here we test the hypothesis that the structure of the arms of our galaxy influences the stratigraphic record on Earth. We construct independent structural and temporal models and combine these to compare the timings of arm tracers, materials from the earliest Solar System and events on Earth, including the largest extinctions. We find that a recurring sequence of events across the four arms emerges with an average arm-passing time of 188 million years. We suggest that the multiple temporal overlaps of events across arms, and their alignment with arm tracers and the earliest Solar System, presents an opportunity for a greater understanding of both Earth-based phenomena and galactic structure.
Original languageEnglish
Pages (from-to)2147-2151
Number of pages5
JournalGeoscience Frontiers
Volume10
Issue number6
Early online date7 Jun 2019
DOIs
Publication statusPublished - 1 Nov 2019
Externally publishedYes

Keywords

  • Earliest Solar System
  • Extinctions
  • Glaciations
  • Spiral arms
  • Stratigraphy
  • Superchron

Fingerprint

Dive into the research topics of 'Reconciling the Earth's stratigraphic record with the structure of our galaxy'. Together they form a unique fingerprint.

Cite this