Testing post-IR IRSL luminescence dating methods in the southwest Mojave Desert, California, USA

Andrew S. Carr, Alex S. Hay, Mark Powell, Ian Livingstone

    Research output: Contribution to journalArticleResearchpeer-review

    Abstract

    The Mojave Desert presents an array of Pleistocene lacustrine deposits and aeolian landforms to which, at times, it has proved challenging to apply luminescence methods. We tested the suitability of K-feldspar post-IR IRSL methods using two sites with independent radiocarbon dating – shorelines at Harper Lake and Silver Lake – considering: 1) overall performance of the post-IR IRSL 225 °C (pIRIR225) protocol; 2) effect of test dose size on pIRIR225 De; 3) anomalous fading correction of pIRIR225 ages; 4) preliminary single grain pIRIR225 results.
    We observe consistently good performance of the single aliquot pIRIR225 protocol, with good dose recovery, acceptable recycling ratios, low recuperation and low inter-aliquot scatter. The pIRIR225 ages for Silver Lake (8.8 ± 0.4 and 11.3 ± 0.5 ka) and Harper Lake (both 25.4 ± 1.4 ka) are in substantially better agreement with the independent dating than low temperature (50 °C) IRSL and quartz OSL ages. pIRIR225 fading rates are reduced to ∼2.0–2.5% per decade, but there remains a tendency for under-estimation when using uncorrected ages. A need for fading correction is further implied at Harper Lake via comparison with multi-elevated temperature (MET)-PIR age plateaus and pIRIR290 measurements, although at the younger Silver lake site these methods produce ages nearly identical to the uncorrected pIRIR225 ages. Preliminary single grain pIRIR225 measurements suggest a ∼25–30% usable grain yield. At Silver Lake the single grain and single aliquot ages agree well despite over-dispersion of the single grain equivalent dose distribution. At Harper Lake the single grain and single aliquot pIRIR225 ages also agree well, although a population of insensitive, lower De grains is observed. These grains are not associated with significantly higher fading rates.
    Original languageEnglish
    Pages (from-to)85-91
    Number of pages7
    JournalQuaternary Geochronology
    Volume49
    Early online date10 May 2018
    DOIs
    Publication statusPublished - 1 Feb 2019

    Fingerprint

    luminescence dating
    dating method
    desert
    lake
    silver
    radiocarbon dating
    luminescence
    landform
    lacustrine deposit
    feldspar
    shoreline
    plateau
    Pleistocene
    quartz

    Cite this

    @article{ff6ac2d1ad5e4091b396ed12395e2ca4,
    title = "Testing post-IR IRSL luminescence dating methods in the southwest Mojave Desert, California, USA",
    abstract = "The Mojave Desert presents an array of Pleistocene lacustrine deposits and aeolian landforms to which, at times, it has proved challenging to apply luminescence methods. We tested the suitability of K-feldspar post-IR IRSL methods using two sites with independent radiocarbon dating – shorelines at Harper Lake and Silver Lake – considering: 1) overall performance of the post-IR IRSL 225 °C (pIRIR225) protocol; 2) effect of test dose size on pIRIR225 De; 3) anomalous fading correction of pIRIR225 ages; 4) preliminary single grain pIRIR225 results.We observe consistently good performance of the single aliquot pIRIR225 protocol, with good dose recovery, acceptable recycling ratios, low recuperation and low inter-aliquot scatter. The pIRIR225 ages for Silver Lake (8.8 ± 0.4 and 11.3 ± 0.5 ka) and Harper Lake (both 25.4 ± 1.4 ka) are in substantially better agreement with the independent dating than low temperature (50 °C) IRSL and quartz OSL ages. pIRIR225 fading rates are reduced to ∼2.0–2.5{\%} per decade, but there remains a tendency for under-estimation when using uncorrected ages. A need for fading correction is further implied at Harper Lake via comparison with multi-elevated temperature (MET)-PIR age plateaus and pIRIR290 measurements, although at the younger Silver lake site these methods produce ages nearly identical to the uncorrected pIRIR225 ages. Preliminary single grain pIRIR225 measurements suggest a ∼25–30{\%} usable grain yield. At Silver Lake the single grain and single aliquot ages agree well despite over-dispersion of the single grain equivalent dose distribution. At Harper Lake the single grain and single aliquot pIRIR225 ages also agree well, although a population of insensitive, lower De grains is observed. These grains are not associated with significantly higher fading rates.",
    author = "Carr, {Andrew S.} and Hay, {Alex S.} and Mark Powell and Ian Livingstone",
    year = "2019",
    month = "2",
    day = "1",
    doi = "10.1016/j.quageo.2018.05.006",
    language = "English",
    volume = "49",
    pages = "85--91",
    journal = "Quaternary Geochronology",
    publisher = "Elsevier",

    }

    Testing post-IR IRSL luminescence dating methods in the southwest Mojave Desert, California, USA. / Carr, Andrew S.; Hay, Alex S.; Powell, Mark; Livingstone, Ian.

    In: Quaternary Geochronology, Vol. 49, 01.02.2019, p. 85-91.

    Research output: Contribution to journalArticleResearchpeer-review

    TY - JOUR

    T1 - Testing post-IR IRSL luminescence dating methods in the southwest Mojave Desert, California, USA

    AU - Carr, Andrew S.

    AU - Hay, Alex S.

    AU - Powell, Mark

    AU - Livingstone, Ian

    PY - 2019/2/1

    Y1 - 2019/2/1

    N2 - The Mojave Desert presents an array of Pleistocene lacustrine deposits and aeolian landforms to which, at times, it has proved challenging to apply luminescence methods. We tested the suitability of K-feldspar post-IR IRSL methods using two sites with independent radiocarbon dating – shorelines at Harper Lake and Silver Lake – considering: 1) overall performance of the post-IR IRSL 225 °C (pIRIR225) protocol; 2) effect of test dose size on pIRIR225 De; 3) anomalous fading correction of pIRIR225 ages; 4) preliminary single grain pIRIR225 results.We observe consistently good performance of the single aliquot pIRIR225 protocol, with good dose recovery, acceptable recycling ratios, low recuperation and low inter-aliquot scatter. The pIRIR225 ages for Silver Lake (8.8 ± 0.4 and 11.3 ± 0.5 ka) and Harper Lake (both 25.4 ± 1.4 ka) are in substantially better agreement with the independent dating than low temperature (50 °C) IRSL and quartz OSL ages. pIRIR225 fading rates are reduced to ∼2.0–2.5% per decade, but there remains a tendency for under-estimation when using uncorrected ages. A need for fading correction is further implied at Harper Lake via comparison with multi-elevated temperature (MET)-PIR age plateaus and pIRIR290 measurements, although at the younger Silver lake site these methods produce ages nearly identical to the uncorrected pIRIR225 ages. Preliminary single grain pIRIR225 measurements suggest a ∼25–30% usable grain yield. At Silver Lake the single grain and single aliquot ages agree well despite over-dispersion of the single grain equivalent dose distribution. At Harper Lake the single grain and single aliquot pIRIR225 ages also agree well, although a population of insensitive, lower De grains is observed. These grains are not associated with significantly higher fading rates.

    AB - The Mojave Desert presents an array of Pleistocene lacustrine deposits and aeolian landforms to which, at times, it has proved challenging to apply luminescence methods. We tested the suitability of K-feldspar post-IR IRSL methods using two sites with independent radiocarbon dating – shorelines at Harper Lake and Silver Lake – considering: 1) overall performance of the post-IR IRSL 225 °C (pIRIR225) protocol; 2) effect of test dose size on pIRIR225 De; 3) anomalous fading correction of pIRIR225 ages; 4) preliminary single grain pIRIR225 results.We observe consistently good performance of the single aliquot pIRIR225 protocol, with good dose recovery, acceptable recycling ratios, low recuperation and low inter-aliquot scatter. The pIRIR225 ages for Silver Lake (8.8 ± 0.4 and 11.3 ± 0.5 ka) and Harper Lake (both 25.4 ± 1.4 ka) are in substantially better agreement with the independent dating than low temperature (50 °C) IRSL and quartz OSL ages. pIRIR225 fading rates are reduced to ∼2.0–2.5% per decade, but there remains a tendency for under-estimation when using uncorrected ages. A need for fading correction is further implied at Harper Lake via comparison with multi-elevated temperature (MET)-PIR age plateaus and pIRIR290 measurements, although at the younger Silver lake site these methods produce ages nearly identical to the uncorrected pIRIR225 ages. Preliminary single grain pIRIR225 measurements suggest a ∼25–30% usable grain yield. At Silver Lake the single grain and single aliquot ages agree well despite over-dispersion of the single grain equivalent dose distribution. At Harper Lake the single grain and single aliquot pIRIR225 ages also agree well, although a population of insensitive, lower De grains is observed. These grains are not associated with significantly higher fading rates.

    UR - http://www.mendeley.com/research/testing-postir-irsl-luminescence-dating-methods-southwest-mojave-desert-california-usa

    U2 - 10.1016/j.quageo.2018.05.006

    DO - 10.1016/j.quageo.2018.05.006

    M3 - Article

    VL - 49

    SP - 85

    EP - 91

    JO - Quaternary Geochronology

    JF - Quaternary Geochronology

    ER -