Exploring fine sediment dynamics and the uncertainties associated with sediment fingerprinting in the Nene river basin, UK

  • Simon Pulley

Student thesis: Doctoral Thesis


To comply with the European Union Water Framework Directive (2000), National Governments are required to achieve good chemical and ecological status of freshwater bodies. Fine sediment has been shown to be a major cause of the degradation of lakes and rivers, and as a result research in geomorphology has been directed towards the understanding of fine sediment dynamics. It was identified by a review of published literature that at present a paucity of information on sediment dynamics existed for the East Midlands, UK. The use of tracers within a sediment fingerprinting framework has recently become a heavily used technique to investigate the sources of fine sediment pressures. However, uncertainties associated with tracer behaviour have been cited as major potential limitations to sediment fingerprinting methodologies. At present few studies have quantified the uncertainties associated with tracer use, or the exact reasons why different tracers are producing different sediment provenance results. This thesis had two aims based on these gaps in published literature. First, to assess the impact of sediment sampling methodology, tracer selection, particle size corrections and organic enrichment corrections on a fine sediment fingerprinting study. Secondly, to develop a partial sediment budget for the Upper Nene river basin and its major tributaries. The results of this thesis were presented in two parts. The first part investigated Aim 1 when fingerprinting; historically deposited sediment, suspended sediment and recently deposited sediment. The second part investigated Aim 2 by constructing a fine sediment budget for the Nene river basin, consisting of; sediment yield, sediment provenance, floodplain sediment accumulation and channel bed sediment storage. A mean difference of 24.1% between the predicted contributions of sediment originating from channel banks was found when using nine different tracer groups to fingerprint the river sediment samples. When fingerprinting contributions from urban street dusts mean differences between tracer group predictions were lower, at between 8% and 11%. There was little indication that organic matter content and / or particle size caused differences between tracer group predictions. Within-source variability in tracer concentrations, and small contrasts between the tracer concentrations of the sediment source groups, were identified as probable causes of inherent uncertainty present in the fingerprinting analysis. It was determined that the ratio of the percentage difference between median tracer concentrations in the source groups and the average within-source tracer concentration coefficient of variation could indicate the likely uncertainty in model predictions prior to tracer use. When fingerprinting historically deposited sediment, a reservoir core was fingerprinted with the least uncertainty, with tracer group provenance predictions ~28% apart and with consistent down-core trends. When fingerprinting an on-line lake core and four floodplain cores, differences between tracer group predictions were as large as 100%; the down-core trends in changing sediment provenance were also different. The differences between tracer group predictions could be attributed to the organic matter content and particle size of the sediment. There was also evidence of the in-growth of bacterially derived magnetite and chemical dissolution affecting the preservation of tracer signatures. Despite the prior indications that organic matter and particle size were causing tracer non-conservatism in historical sediment cores, data corrections were found to often be ineffective at reducing the differences between tracer group predictions. The corrections were found to either have no effect on, or increase the mean differences between, tracer group predictions when fingerprinting river sediment. The sediment budget identified that the annual sediment yield of 13 - 19 t km-2 yr-1 for the Nene is low in comparison to other UK catchments. Channel banks were found to be the dominant sediment source in the Nene, typically contributing between 60% and 100% of the sediment. Rates of sediment accumulation on the Nene’s floodplain was found to be highly variable (920– 7,200 t km-2 yr-1); the presence of flood defences were likely to be a cause of this variability, and have caused a reduction in the accumulation rate since 1963. It was found that large quantities of sediment accumulated on channel beds during periods of low flows (~ 28% of the annual sediment yield), which was flushed from the bed by a series of flood events (leaving
Date of Award2014
Original languageEnglish
Awarding Institution
  • University of Northampton
SupervisorA Paula M Antunes (Supervisor) & Ian D L Foster (Supervisor)

Cite this