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Abstract. The Internet of Things (IoT) is shaping the concept of the modern in-

telligent built environment. The latest developments in IoT have led to secure, 

energy efficient systems enabling low-cost real-time analytics. In the Vertical 

Transportation (VT) technologies developed by the lift industry real-time ana-

lytics are facilitating predictive maintenance which in turn decreases operation-

al and downtime costs. Data driven predictive maintenance does not always 

reach an optimal performance because the quality and quantity of the data mat-

ters. Fault classification and the estimation of the remaining useful life (RUL) 

requires a deep understanding of failure modes and component degradation. In 

lift systems, most of the malfunctions are due to faults developed by the auto-

matic power operated door systems. The most widespread Structural Health 

Monitoring (SHM) sensor technology used in monitoring the door mechanisms 

are acoustic and vibration sensors.  In this paper, an automatic fault detection 

system using Artificial Neural Networks (ANN) is implemented using vibration 

signal features. Obtained results reveal that the fault classification performance 

is high (>70%) under low noise environmental conditions. 

Keywords: Internet of Things, Iintelligent Built Environment, Predictive 

Maintenance, Remaining Useful Life, Vibration Signal Features, Artificial Neu-

ral Networks. 

1. Introduction 

Engineering systems are designed using relevant failure criteria so that they can oper-

ate under specific loads and conditions. However, the actual behaviour of a system is 

not fully known until it is in service [1]. Due to unpredicted loads, the system may fail 

and will no longer operate satisfactorily. 

The more real-time information a manufacturer has about the status of customers' 

equipment, the better the equipment could be maintained. Ideally, real time analytics 

allow the maintenance service team the detection of potential problems early enough 

to prevent them from even happening. Real time predictive maintenance in lift sys-

tems utilises a wealth of sensor data and advanced analytical methods to predict fail-

ures well before immediate action is taken. This maintenance approach is usually 
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taken when high costs are incurred due to downtimes or maintenance.  Real time ana-

lytics enable the estimation of the RUL of assets with increasing accuracy.  Most 

relevant lift manufacturers such as ThyssenKrupp AG are implementing Industry 4.0 

solutions enabling predictive maintenance solutions such as MAX [2].  
Most of the service calls of elevators are related to the door mechanism [3]. On av-

erage, the number of opening and closing cycles of a door elevator per year is esti-

mated to be above 100000.  All these operating cycles produce a lot of wear and tear 

on the equipment that opens and closes the doors, especially if it is not properly main-

tained. A detailed study of call-back data over a three-year period in four different 

cities in the US has also confirmed that the door operator is the most frequent fault in 

lift systems [4].  

Fault classification applies a data mining technique [5] for the prediction of differ-

ent fault classes. It is an example of supervised learning and it requires categorical 

labels. Fault classification involves two steps. The first step is the learning/training 

step in which a classifier is built to describe a predetermined set of faults using la-

belled data. The second step evaluates the model for classification of unknown data 

such as test data for estimating the classifier accuracy. There are many classification 

algorithms like decision trees, K nearest neighbour, naive Bayesian classifier, support 

vector machines (SVM) and artificial neural networks (ANN) [6]. In this study the 

fault classifier is based on ANN [7]. 

An artificial neural network (ANN) is a computational model based on the struc-

ture and functions of biological neural networks. An ANN consists of nodes in differ-

ent layers; input layer, intermediate hidden layer(s) and the output layer. The connec-

tions between nodes of adjacent layers have “weights” associated with them. Learning 

of neural network is performed by adjusting the weight of connection.  ANN can be 

classified in two types: feed-forward network and recurrent networks depending on 

the way they channel information. The feed-forward neural network is the network in 

which connections between units do not form cycle whereas in recurrent neural net-

work connection form cycles [7]. The main advantages associated with neural net-

work are the ability to identify highly complex non-linear relationships between input 

and output variables without the need to understand the nature of the physical process, 

inferring unseen relationships on unseen data and their tolerance to noisy data [8]. 

ANN parallelism increases the speed of the network. However, there are drawbacks: 

ANN training is costly, time consuming, it plays an important role in classification 

accuracy and it is difficult for humans to interpret the symbolic meaning behind the 

learned weights and of “hidden units” in the network. There are many algorithms used 

for training of neural network [9,10].  

 

2. Door mechanism 

The lift (elevator) door system comprises landing (hoistway) doors and car doors. 

Most elevators intended for passengers have fully automated power-operated doors. 

The standard arrangement for automatic power operation involves a ‘master’ operator, 
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a self-contained electric motor driven unit mounted on the car top. There are several 

different types of door configurations depending on the number of panels, typically 

doors range from a single panel to four panels. A review of door classification and 

door components is discussed in [3]. The study involves automated power-operated 

doors, with an electronically controlled door operator as shown in Fig.1. 

 

Fig. 1. Automated power-operated elevator door with an electronically controlled door operator 

 

 

Most relevant faults in these mechanisms are: 

• Motors with defective bearings (shaft bearings defective).  

• Incorrect belt tensions.  

• Worn-out door sill.  

• Worn-out door rollers (door rollers defective). 

• Sluggishness of door guide (door panel guide dirty).  

• Door lock out of alignment (door interlock error).  

• Worn-out door cam. 

• Worn-out door ropes (door rope frayed). 

 

3. Defects classification using vibration measurements 

The complexity and cost of the automatic fault classifier was the main constraint in 

this research.  In terms of cost, only one high specification vibration sensor could be 

placed in the door mechanism. 

The best location to place the vibration sensor was the top centre of the door opera-

tor case. This location was identified after conducting modal analysis tests with im-
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pact hammer excitation. The structure was excited with the hammer near the locations 

were the defective components are fitted in. The vibration signals were recorded with 

an acquisition platform of 24bits and a sampling rate of 96ksamples/s. The piezoelec-

tric accelerometer was a B&K 4382 connected to a (0-40dB) gain charge amplifier.  

After placing the vibration sensor in the door mechanism, several tests were sys-

tematically conducted using door operational cycles. A door operational cycle con-

sists of the following phases: silence (doors closed), doors transient open (variable 

speed), doors opening (constant speed), reverse motor direction, doors closing (con-

stant speed), doors transient close (variable speed), silence (doors closed). The differ-

ent phases after pre-processing the raw vibration signal are shown in Fig. 2. The tim-

ing of these phases could be estimated, or obtained directly from the lift controller 

records.  

Various door operation cycles were conducted with and without different types of 

defects. After these tests, it was concluded from the vibration spectrogram that not all 

defective parts could be easily detected with a monitoring system mounted on the 

carrier of the cabin door. Table 1 summarises the defects that could be detected with 

this vibration sensor. 
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Fig. 2. Phase separation of the door vibration signal. Motor fault. 
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Table 1. Fault detection using the spectrogram 

Defect (Fault) Detection 
Frequency band in 

the spectrum 

Motors with defective bear-

ings 
good 1-2kHz 

Incorrect belt tensions poor 1-1.2kHz 

Worn-out door cam good 1-6kHz 

Worn-out door rollers good 630Hz-10kHz 

Rough-running door guide satisfactory 2-10kHz 

Door interlock bent poor -- 

Defective shaft door spring good 1-10kHz 

Worn-out door parts good 1-1.2 kHz 

4. ANN training process 

The vibration sensor recording of each door operational cycle was stored in order to 

build an ANN training dataset. The number of vibration recordings for each class of 

defect are shown in Table 2. It should be noted that there are defect classes that have 

not taken into consideration in this research. 

Table 2. Vibration recordings (Dataset) 

CLASS Defect (Fault) Door Operation cycles  ID 

1 No defect 40 NOE 

2 Worn-out door cam 0 CAM 

3 Door interlock bent 10 LCK 

4 Worn-out door rollers 56 ROL 

5 Motors with defective bearings 10 MOT 

6 Different belt tensions  

Door rope torn 
15 RPE 

7 Rough-running door guide 

Door panel guide dirty 
0 GDE 

8 Loosened motor chain 0 MOC 

 

Each vibration record was divided according to the door operational phases and it 

was labelled with a type of defect or target class. The raw vibration signals that were 

obtained with 24bit resolution and a sampling frequency of 44.1KHz were pre-

processed by removing the average value and then they were normalised by dividing 

by the standard deviation. The spectra of the ‘silence’ frames of the signals were also 

subtracted from the whole signal in order to remove the stationary noise. After pre-

processing, spectrograms and cepstrograms of the input signal were chosen as the 

extracted signal features, respectively. The spectrogram was obtained using a Han-

ning window of 256 samples and applying an overlap of 25%. The cepstrogram was 

later obtained from the spectrogram and both signal features were stored in files form-
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ing a training dataset. Only the first 64 coefficients were used in the cepstrogram. A 

block diagram of the feature extraction process is shown in Fig. 3. 

 

 

Fig. 3. Training dataset and ANN training process 

A pattern recognition network was trained using the following operational phases 

of the door mechanism: doors transient open (variable speed, TOPEN), doors opening 

(constant speed, OPEN), doors closing (constant speed, CLOSE), doors transient 

close (variable speed, TCLOSE). The network used was is a feedforward ANN that 

has been trained to classify inputs according to the target classes. The input size di-

mension of the network has been fixed. This network was trained by framing the 

cepstrogram of the signals. The chosen input size dimension corresponds to approxi-

mately 1.6 s of the audio or vibration signals which was assumed long enough to de-

tect the fault. The input size dimension of each ANN training sample corresponds to 

200 time samples by 64 cepstrum coefficients (200x64 = 12800 points). The signal 

shown in Fig. 4 graphically demonstrates this concept. The records contained in red or 

green rectangles in Fig. 4 are approximately 1.6 s long each and they have a matrix 

dimension of 200x64 points in the cepstrograms, respectively. The overlap between 

these rectangular frames is 10% or 160ms. The spectrogram and the cepstrogram of 

each vibration file were framed and then stored depending on each operational phase 

leading to the total number of frames shown in Table 3. 

The ANN was chosen according to the diagram presented in Fig. 5. The input size 

dimension is 12800 points and the output size dimension is 8 (the number of fault 

classes). The total number of neurons in the hidden layer was selected following a 

rule of thumb which is by selecting this number as about half of the input size dimen-

sion (or 6500 neurons). The larger this number is, the longer the training process will 

last.  

The ANN was trained, tested and validated using the MATLAB Neural Pattern 

Recognition tool (or nprtool). 
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Fig. 4. Framing the spectrogram and the cepstrogram of the door vibration signal for training 

the ANN. Class 1 - No fault. 

Table 3. Spectrogram and Cepstrogram frames on each phase in the Training Dataset 

  

Number of Frames per operation phase 

Spectrogram (size 200x129) and  

cepstrogram (size 200x64)  

CLASS Defect (Fault) TOPEN OPEN CLOSE TCLOSE 

1 No defect 99 261 306 186 

2 Worn-out door cam 0 0 0 0 

3 Door interlock bent 19 59 78 66 

4 Worn-out door rollers 171 392 472 276 

5 Motors with defective bearings 27 70 82 42 

6 
Different belt tensions 

Door rope torn 
37 118 77 79 

7 
Rough-running door guide 

Door panel guide dirty 
0 0 0 0 

8 Loosened motor chain 0 0 0 0 
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Fig. 5. ANN architecture. 

5. Results 

For training, testing and validation of the ANN, the original training dataset was split 

into 70% of the samples for training the ANN, 15% of the samples for validation and 

the remaining 15% for testing. The training results are shown in the training confu-

sion matrix. These results reflect the classification percentage of the ANN when all 

the inputs belong to the training dataset. A good classifier should show a very high 

overall accuracy in the training confusion matrix. The test and validation datasets 

contain samples that do not belong to the training dataset. These two datasets are use-

ful for giving an estimate of the real fault classification performance. 

The classification results for each door operational phase are presented in the test 

confusion matrices shown in Fig. 6.  

In the confusion matrix plot, the rows correspond to the predicted class (Output 

Class) and the columns correspond to the true class (Target Class). 

The diagonal cells correspond to observations that are correctly classified. The off-

diagonal cells correspond to incorrectly classified observations. Both the number of 

observations and the percentage of the total number of observations are shown in each 

cell. 

The column on the far right of the plot shows the percentages of all the examples 

predicted to belong to each class that are correctly and incorrectly classified. These 

metrics are often referred to as the precision (or positive predictive value) and false 

discovery rate, respectively. The row at the bottom of the plot shows the percentages 

of all the examples belonging to each class that are correctly and incorrectly classi-

fied. These metrics are often called the recall (or true positive rate) and false negative 

rate, respectively. The cell in the bottom right of the plot shows the overall accuracy. 

The test confusion matrix is a real indicator of the ANN real classification perfor-

mance. For example, in the TOPEN test confusion matrix in Fig. 6, the bottom row 

shows the percentages of all the samples that are correctly classified. For target class 

1 (no error) the correctly classified percentage is 58.3% and incorrectly is 41.7%. This 

percentages are easily calculated considering that for target class 1, the output classes 

of the test confusion matrix where 7 for class 1, 2 for class 2 and 3 for class 5. The 

correctly classified percentage is 7/(7+2+3)= 58.3%.  
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Fig. 6. Fault classification results using the vibration signal over the phases 
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6. Conclusions 

From the test confusion matrix results shown in Fig. 6, it could be concluded that 

training an ANN with the information in the OPEN and CLOSE phases has led to an 

overall classification accuracy in the test confusion matrix above 70% (77.8% and 

70.4% respectively). The classification accuracy of the ANN using the information in 

the phases TOPEN and TCLOSE was poor (<60%). However, the results in these 

phases should be carefully examined because some faults could be well classified in 

TOPEN and TCLOSE phases. For example, it can be seen in the transient close phase 

(TCLOSE) that CLASS 6 is perfectly (100%) detected. After analyzing these results, 

it can be concluded that a voting scheme of two ANN trained with the OPEN and 

CLOSE phases is the best strategy to achieve better fault classification performance.  

With this voting scheme an overall classification accuracy higher than 70% could be 

achieved for all faults. 

 

Data Availability 

 

The vibration signal datasets used in this research were provided by the project 

sponsor (Thyssenkrupp Elevator AG). Restrictions apply to the availability of these 

datasets, which were used under license, hence are not publicly available. The da-

tasets can be made available from the authors upon reasonable request and with per-

mission of Thyssenkrupp Elevator AG. 
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