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Abstract. Sleep apnea (SA) is a common sleep disorder that is not easy to detect among several 

patients. Recent studies have highlighted ECG analysis as a method of diagnosing SA. Because 

the changes caused by SA on the ECG are so subtle, the need for new methods in diagnosing 

the disease is required more than ever. Machine Learning (ML) techniques are recognized as 

one of the most successful methods of computer aided diagnosis. ML uses new methods to 

diagnose diseases using past clinical results. The purpose of this study is to evaluate studies 

using ML algorithms and based on ECG characteristics to evaluate people with SA patients. In 

this study, English articles written in English and indexed in PubMed, Scopus, Web of Science, 

and IEEE databases, were searched with no lower time limit and until October 2020, and were 

systematically reviewed. Finally, 48 articles were approved for review in this study. In Within 

the selected articles, different ML methods were used adopted for classification. All of these 

studies were binary, and SA was detected from the normal state based on a full ECG stripe (per 

record), or based on one-minute segments (per segment). Our studies analyses showed show 

that the most common features used in the studies were frequency, time series and statistical 

features. Support-Vector Machine (SVM) and deep learning-based neural network (i.e. CNN, 

DNN) performed best in full record data detection. The highest accuracy, sensitivity and 

specificity reported between the selected studies were 100%, which was obtained by an SVM. 

In another casestudy, the classification was conducted based on ECG segments, and 

accordingly, the highest classification accuracy was observed in the residual neural network 

algorithm (RNN). The accuracy, sensitivity and specificity of this algorithm were reported to 

be 99%. In general, it can be stated that ML techniques based on ECG characteristics have a 

high capability in diagnosing SA. This can increase the diagnosis of patients with SA or the 

detection of SA episodes on ECG record, and can potentially prevent complications of the 

disease at later stages. 

Keywords: Sleep Apnea, Machine Learning, Polysomnography, Electrocardiogram, 

Accuracy, Systematic Review 

1- Introduction 

1.1- Sleep apnea definition  

Sleep Apnea (SA1) refers to the periodic cessation or reduction of airflow during sleep (Peppard 

et al., 2013). SA occurs due to complete or partial obstruction of the upper airways (i.e. 

Obstructive Sleep Apnea (OSA2)), reduction or cessation of brainstem respiratory motor output 

(i.e. Central Apnea), or both (Dempsey, Veasey, Morgan, & O'Donnell, 2010). Complete 

cessation of respiration (i.e. apnea) or decreased airflow (i.e. hypopnea) are two respiratory 

events observed in SA. These events reduce oxygen levels, i.e. hypercapnia, and increase 

sympathetic nerve activity, and fluctuations in blood pressure, and heart rate. Such 

physiological changes also affect patients’ sleep cycle. It causes brain arousal, disruption of 

various stages of sleep, and sleep fragmentation (Young, Skatrud, & Peppard, 2004; Parati, 

Lombardi, & Narkiewicz, 2007; Veasey & Rosen, 2019; Young, Skatrud, & Peppard, 2004). 

It is estimated that about 10% of middle-aged people are affected by SA (Peppard et al., 2013). 

Despite the high prevalence of this disorder, most patients are unaware of the effect of SA on 

their respiratory pattern. And because of this, many patients do not seek professional treatment 

(Veasey & Rosen, 2019). Many Several studies have examined morbidity of SA. The results 
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of these studies show that failure to diagnose and treat SA in a timely manner can cause daily 

drowsiness (Kainulainen et al., 2019), cognitive dysfunction (Ferini-Strambi et al., 2003), 

cardiovascular diseases such as hypertension (Torres, Sánchez-de-la-Torre, & Barbé, 2015), 

coronary artery disease (Torres-Alba et al., 2013), heart failure (H. Wang et al., 2007), stroke 

(Dyken & Im, 2009), and metabolic diseases such as diabetes (Kendzerska, Gershon, Hawker, 

Tomlinson, & Leung, 2014). Therefore, the early detection of SA is a crucial task, and can 

prevent subsequent complciationscomplications. 

 

1.2- Sleep apnea detection 

Polysomnography (PSG3) is known as the standard SA diagnostic test. Accordingly, PSG 

examines sleep and respiration parameters using electroencephalogram, electrocardiogram 

(ECG 4), electroechogram, electromyogram, pulse oximetry, airflow measurement. and 

respiratory effort (Rundo & Downey, 2019; Gottlieb & Punjabi, 2020; Rundo & Downey, 

2019). PSG has a high diagnostic accuracy (Ali, Khalid, & Belhaouari, 2019), however, factors 

such as high cost, patient inconvenience, cumbersome data recording, and difficult 

interpretation of data are some of the disadvantages of this method. Moreover, the long waiting 

list for evaluating patients with a PSG device increases the possibility of not diagnosing and 

treating SA in time (Portier et al., 2000). Therefore, it is necessary to provide an alternative 

method to enhance patients’ convenience, and reduce costs to diagnose SA at an early stage 

(Pombo, Silva, Pinho, & Garcia, 2020). 

Different strategies have been proposed and adopted to diagnose SA without the use of PSG 

(Bozkurt, Bostanci, & Turhan, 2017; Wang, Lu, & Shen, 2019). Nonetheless, the use of ECG 

signals has received much attention (Wang, Lu, Shen, & Hong, 2019). ECG is not stressful for 

the patients compared to PSG, and the related ECG equipment are less technical. It has also 

been observed that the ECG with a signal strength of 1-2 mV has the best signal-to-noise ratio 

among all physiological signals (Kesper, Canisius, Penzel, Ploch, & Cassel, 2012). On the other 

hand, the parameters extracted from the ECG signal curve allow the extraction of the 

respiratory effort curve (ECG-induced respiration or EDR) (Janbakhshi & Shamsollahi, 2018). 

SA also causes cyclical changes in heart rate (HR) (Hayano et al., 2011). In other words, apnea 

or hypopnea reduces the patient’s oxygen level, and accordingly, less oxygen reaches the heart 

cells. This reduces the heart rate, and increases the distance between the R peaks. As a result 

of this event, the brain increases the respiration rate by using immediate pulses to the 

respiratory system, and subsequently, the heart rate will increase again. Thus, such respiratory 

arrests affect the ECG waves, and episodes of apnea are recorded during an ECG record (Ali 

& Hossen, 2020). HR changes are determined by the analysis of heart rate variability (HRV). 

Considering this, many studies distinguish apnea episodes from ECG record by extracting 

features such as LF (low frequency) and VF (high frequency) band power distributions from 

HRV (Babaeizadeh, White, Pittman, & Zhou, 2010; Kesper et al., 2012). With these 

interpretations, since the changes caused by SA in the ECG are very varied and subtle, the 

diagnosis of SA based on ECG data is a very complex task. One of the methods that has been 
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considered to solve this problem is the use of computer algorithms (Faust, Acharya, NG, & 

Fijita, 2016). 

1.3- Machine learning to for SA ddetection SA 

Machine Learning (ML5) techniques have been considered as one of the successful methods of 

computer-aided diagnosis (M. Li & Zhou, 2007). According to the pattern inConsidering 

Figure 1, ML is an evolving branch of the computational science designed to simulate human 

intelligence by learning from the environment (El Naqa & Murphy, 2015). ML is used when it 

is not possible to interpret a particular pattern or extract relevant information (A. Dey, 2016). 

When using ML algorithms, SA automatic detection is based on a large number of pre-detected 

samples. In other words, ML uses data from previous examinations in which the physician has 

diagnosed the presence or absence of thea disease (M. Li & Zhou, 2007). 

Various ML techniques have been used in the diagnosis of SA. In a study by Bozkurt et al. (F. 

Bozkurt, Ucar, Bozkurt, & Bilgin, 2020), the authors used electrocardiography of 10 patients 

with OSA against 10 healthy controls. This study first extracted HRV from ECG, and then 

extracted the QRS component at different frequencies using a digital filter, and then selected 

the feature using Principal Component Analysis (PCA6). Classification was performed by k-

Nnearest Nneighbourss (k-NN7) algorithm. The results of this study showed that when using 3 

features, the classification accuracy was 82.11%, and when using 13 features, this value was 

85.12%. In another study (Erdenebayar, Kim, Park, Joo, & Lee, 2019), data collected from 86 

patients were used, of which 69 were used in training and 17 in test. The Residual Neural 

Network (RNN8) algorithm was reported to offer the highest accuracy of 99%. Moreover, the 

study highlighted that deep learning techniques are very useful for automatic detection of SA. 

In another study (Nguyen, Wilkins, Cheng, & Benjamin, 2014), HRV data were used to 

automatically detect SA. Then a feature selection algorithm was used adopted to select the best 

features. In this study, classification was performed using support vector machine (SVM9), 

artificial neural network (ANN10) and a combination of these two algorithms. The results of 

this study indicated that the proposed methods have a high capability in detecting SA from the 

healthy state. As mentioned, different ML algorithms have been used in detecting SA. 

Therefore, this systematic review was designed to evaluate the ability of ML algorithms to 

detect SA. Furthermore, as part of our work, the methods used within selected studies were 

compared with each other. 

(Figure1 here) 

2- Methodology 

2.1-    Search strategy and inclusion criteria 

The protocol and reporting used in this systematic review were performed in accordance with 

the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA11) 
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guidelines (Moher, Liberati, Tetzlaff, & Altman, & Group, 2009). The select relevant studies, 

the four databases of PubMed, Web of Science (WoS), Scopus and IEEE Xplore were searched. 

All searches were performed on 24th September 2020, and were subsequently updated on 24th 

October 2020. Searches were performed using keywords related to sleep apnea, machine 

learning and electrocardiogram, and in accordance with the search strategy for each of the 

databases; Table 1 outlines the keywords and search strategies used for each of the databases 

(Table1). Articles selected for this systematic review entails studies that distinguish SA from 

healthy states, in a binary form. A number of diagnostic studies for apnea, hypopnea, and 

healthy states that followed a multiclass approach were excluded from this systematic review. 

Within all the included studies, various ML algorithms were used, and all classifications were 

based on electrocardiogram data. Exclusion criteria of this systematic review were: lack of 

access to the full text of articles, conference proceedings, and articles written in a language 

other than English. Furthermore, research works that used a method other than 

electrocardiogram were excluded from this work. 

 (Table 1 here) 

2.2-     Study selection and data extraction 

After removing duplicate articles using within the EndNote bibliography reference 

management software, one of the authors (HGH) reviewed the title and abstract of collected 

the remaining articles. Accordingly, the studies that did not meet the inclusion criteria were 

omitted. Two authors (HGH, MM) then reviewed the full text of the remaining articles based 

on the inclusion and exclusion criteria. These assessment activities were performed 

independently, and using blind copies. After completing the reviews at this stage, both 

reviewers reviewed the comments made regarding the approval or rejection of the articles. In 

case of a disagreement, another author (NS), as a senior reviewer, made the inclusion or 

exclusion judgement. In cases where the full text of an article was not available, a request for 

the full text was sent to the corresponding author via email or through ResearchGate. Finally, 

if the full text was not available or could not be secured, the study had to be excluded. The 

following descriptive information were extracted from the remaining studies: a) year of study, 

b) country, c) dataset, d) pre-processing, e) feature extraction/selection, f) ML algorithm, and 

g) parameters reported in the study that represent the performance of the algorithms used. The 

collected studies and their data were reviewed systematically, yet conducting meta-analyses 

was not deemed appropriate in this work. 

 

3- Results 

3.1   Study selection 

After searching the databases, a total of 391 studies were collected. Subsequently, duplicates 

were omitted and only a copy was retained. Then, the remaining 318 articles were evaluated 

based on the inclusion and exclusion criteria, leaving 68 studies. These 68 articles were 

reviewed for eligibility, and finally 48 articles were included in the systematic review (Figure 

2). Within the final studies, Bby applying different methods, feature extraction was performed 

from ECG signals. These features were then used to construct training and test sets and to 

classify data. In these studies, SA was detected from healthy controls based on ‘per record’, 



 

 

‘per segment’, or both. The studies performed on the studiesOur assessment and analysis 

showshowed that in 23 studies the diagnosis was made based on per record, and in 33 studies 

the diagnosis was made based on per segment. In the record mode, a complete ECG strip was 

analyzed to distinguish SA from healthy states. In the other case (per segment), the ECG strip 

was first divided into smaller pieces and named by experts as apnea and or healthy parts. 

Classification was then performed based on the characteristics extracted from these 

components. 

(Figure 2 here) 

All included studies used single-lead ECG records for classification. Due to changes in the 

autonomic nerve activity, sleep apnea pathology is associated with rapid bradycardia and 

tachycardia on the ECG signal (Almazaydeh, Elleithy, & Faezipour, 2012). Therefore, these 

signals contain useful information about the cardiovascular activity, and other systems within 

the body. It is important to note that even if SA does not cause cardiovascular complications, 

its effects and episodes of apnea can be seen on the ECG record (Atri & Mohebbi, 2015). Most 

of the present studies used the ECG record obtained from polysomnography of patients referred 

to sleep clinics. A small number of studies were from ECG records obtained from portable 

devices (Baek, Kim, Kim, & Lee, 2014). 

 

3.2-    Dataset 

The datasets used in most studies overlapped. These studies used samples from the Physionet 

Apnea-ECG Database (Penzel, Moody, Mark, Goldberger, & Peter, 2000). Nonetheless, 

among the remaining studies, one study used data from Yildirim Beyazit (Akşahin, Erdamar, 

Firat, ArdIç, & Eroʇul, 2015) and another study used samples from Sleep laboratories at Chest 

Diseases Clinics in Sakarya, Turkey (Bozkurt et al., 2020). Referrals to Sultan Qaboos 

University Hospital in Oman, Samsung Medical Center in South Korea, and University of 

Heidelberg Hospital in Jordan were also examined in other studies. Two other research works 

used data from the Sleep Heart Health Study cohort (Al-Angari & Sahakian, 2012; Eiseman, 

Westover, Mietus, Thomas, & Bianchi, 2012). In 6 studies, data from more than one dataset 

were examined. In 4 studies, data from both Physionet Apnea-ECG Database, and St. Vincent’s 

University Hospital/University College Dublin were used (Travieso, Alonso, del Pozo, Ticay, 

& Castellanos-Dominguez, 2014; Hassan & Haque, 2017; Rekha, Kandaswamy, & 

Ramanathan, 2018; Travieso, Alonso, del Pozo, Ticay, & Castellanos-Dominguez, 2014; T. 

Wang, C. H. Lu, & G. H. Shen, 2019). One other research work examined data from Physionet 

and University Hospital Leuven (Varon, Caicedo, Testelmans, Buyse, & Van Huffel, 2015), 

and one study examined 3 different datasets (Khandoker, Palaniswami, & Karmakar, 2009). 

The remaining two studies (Baek, Kim, Kim, & Lee, 2014; Smruthy & Suchetha, 2017) had 

not provided clear information in relation to the use of specific databases (Supplementary 

appendix A). 

 

3.3-   Pre-processing 

In general, the feature extraction process was very different among the studies. In almost all 

studies, pre-processing was performed with the aim of breaking down the ECG waves into 



 

 

smaller chunks, and clearing them of junk data. R peaks are known as one of the common 

features in the diagnosis of apnea, which was detected by different algorithms. In two studies, 

the diagnosis was made based on expertsexperts’ opinions. One of the most common methods 

in studies for ECG signal analysis was the Pan Tompkins algorithm (PTA12) (Al-Angari & 

Sahakian, 2012; Ali & Hossen, 2020; Baek et al., 2014; Varon et al., 2015; Tripathy, 2018; 

Bali, Nandi, Hiremath, & Patil, 2018; K. Li, Pan, Li, Jiang, & Liu, 2018; H. Sharma & Sharma, 

2016, 2020; Ali & Hossen, 2020Tripathy, 2018; Varon et al., 2015). This algorithm uses the 

amplitude, slope, and the width of an integrated window to distinguish peaks of R from the 

QRS complex. Pan Tompkins is known as the QRS detection algorithm in real-time approaches 

(Fariha, Ikeura, Hayakawa, & Tsutsumi, 2020). Other studies (Mendez et al., 2007; Khandoker, 

Karmakar, & Palaniswami, 2009; Khandoker, Palaniswami, et al., 2009; Mendez, Bianchi, 

Matteucci, Cerutti, & Penzel, 2009; Mendez et al., 2007) have used real-time algorithms,. yYet 

the specific types of the algorithms used were were not reported. 

Due to the oscillating nature of the ECG signal, wavelet-based algorithms and analyzes were 

used in several works. Tunable-Q factor wavelet transform (TQWT13) is known as one of the 

wavelet analyzes that was adopted in four research works (Hassan, 2016; Hassan & Haque, 

2016b, 2017; Nishad, Pachori, & Acharya, 2018). This method breaks down the ECG signal 

into a number of sub-bands signals to extract features. Daubechies (Db) wavelet is another 

method that was adopted in some works. In this method, the ECG signal is decomposed into 

several segments. Moreover, some studies have used 4 Db (Bsoul, Minn, & Tamil, 2011; 

Rachim, Li, & Chung, 2014), 6 Db (Yildiz, Akin, & Poyraz, 2011; Atri & Mohebbi, 2015; 

Yildiz, Akin, & Poyraz, 2011) and 14 Db (Khandoker, Karmakar, et al., 2009; Khandoker, 

Palaniswami, et al., 2009) to analyze or extract features. In another research work (Travieso et 

al., 2014), the continuous wavelet transform method was applied to ECG signals to detect R 

Waves and peaks. In two other studies (M. Sharma, Agarwal, & Acharya, 2018; M. Sharma, 

Raval, & Acharya, 2019), the optimal biorthogonal antisymmetric wavelet filter bank was 

adopted to differentiate SA from healthy. These studies first decomposed the ECG signal into 

5 levels by conducting the wavelet decomposition to extract the features. 

Studies have used other algorithms to segment ECG signals. In two works (Akşahin et al., 

2015; Pinho, Pombo, Silva, Bousson, & Garcia, 2019), due to the non-linear nature and energy 

of ECG waves, the Teager Energy Operator (TEO14) method was adopted. Fourier 

decomposition was another method used in ECG analysis (Fatimah, Singh, Singhal, & Pachori, 

2020). A study (Hassan & Haque, 2016a) adopted Empirical Mode Decomposition (EMD15) 

to analyze signals. EMD is known as a data-adaptive signal processing method that performs 

highly localized time-frequency estimations. Another study (Rekha et al., 2018) identified the 

QRS complex using the Hilbert algorithm . Variational Mode Decomposition (Smruthy & 

Suchetha, 2017), dynamic autoregressive (AR) representation model (L. Wang, Lin, & Wang, 

2019) and Iterated Cumulative Sums of Squares (ICSS16) (Chen, Zhang, & Song, 2015) were 

other methods to detect the RR interval. In another study, the BIOSIG-toolbox was used to 

detect RRI and EDR (Song, Liu, Zhang, Chen, & Xian, 2016). In two studies, the diagnosis of 
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QRS complex (H. Sharma & Sharma, 2016) and EDR (H. Sharma & Sharma, 2020) were 

performed based on Hermite algorithm. 

The filters have been applied to ECG waves with the aim of clearing ECG from noise, ground 

drift and baseline drift, and detecting HRV and EDR. Moving average filter was applied with 

the aim of limiting and adjusting the lower and upper limits of waves and eliminating false and 

unexplained points (Ali & Hossen, 2020; Khandoker, Karmakar, et al., 2009; Khandoker, 

Palaniswami, et al., 2009; T. Wang, C. H. Lu, G. H. Shen, et al., 2019; Ali & Hossen, 2020). 

This filter was also used to detect EDR (Song et al., 2016), RR distance (Chen et al., 2015) and 

mean RR value (Mendez et al., 2007; Mendez et al., 2009; Mendez et al., 2007). One work 

(Tripathy, 2018) adopted a bandwidth filter to detect EDR. Low pass filter band was adopted 

in a number of other studies. This particular filter was used to remove noise from the ECG strip 

in another another study article (Atri & Mohebbi, 2015). In a research work (Baek et al., 2014) 

the low pass and high pass filters, and in another work (Bali et al., 2018) low pass, high pass 

and band pass filters were used to eliminate noise. Chebyshev bandpass filter types I and II (F. 

Bozkurt et al., 2020; Lweesy, Fraiwan, Khasawneh, & Dickhaus, 2011; Rekha et al., 2018; 

Bozkurt et al., 2020), Butterworth pass filter (Chang, Yeh, Lee, & Lin, 2020), FIR band pass 

(Erdenebayar et al., 2019; T. Wang, C. H. Lu, & G. H. Shen, 2019),  powerline filter (Varon et 

al., 2015) and Savitzky–Golay filter (Pinho et al., 2019) have been adopted to clean signals 

from junk data. In one article, the type of filter used to delete junk data was not reported 

(Eiseman et al., 2012) (Supplementary appendix A). 

 

 

 



 

 

3.4-    Feature Extraction/Selection 

In the selected studies, after ECG analysis, features were extracted from different sections such 

as RR Interval (RRI17), HRV, EDR, R wave, and P wave. Fourier transform has been one of 

the most common methods for feature extraction. This method was used in most studies to 

extract Power Spectral Density (PSD18) of signals, and the frequency feature. PSD shows 

energy changes as a function of frequency. In a number of works (Mendez et al., 2007; Bali et 

al., 2018; Bsoul et al., 2011; Song et al., 2016; Mendez et al., 2007; Bali et al., 2018; Rekha et 

al., 2018; Nakayama et al., 2019; Pinho et al., 2019;  Rekha et al., 2018; Song et al., 2016; T. 

Wang,  C. H. Lu, & G. H. Shen, 2019), in addition to the frequency feature, Fourier transform 

was adopted to extract the time domain feature. Another study (Ali & Hossen, 2020) extracted 

the frequency feature using wavelet packet decomposition. The Lomb algorithm was also used 

to obtain signals PSD (Babaeizadeh et al., 2010). In one article, the Hilbert algorithm was 

applied to extract the time and frequency features (Rekha et al., 2018). 

In 6 articles (Mendez et al., 2009; Bali et al., 2018; Bsoul et al., 2011; Song et al., 2016; Bali 

et al., 2018; Mendez et al., 2009; Nakayama et al., 2019; Song et al., 2016; T. Wang, C. H. Lu, 

& G. H. Shen, 2019), frequency and time domain features were extracted from ECG signals 

simultaneously. Eight other studies (Mendez et al., 2007; Babaeizadeh et al., 2010; Yildiz et 

al., 2011; Akşahin et al., 2015; Al-Angari & Sahakian, 2012; Babaeizadeh et al., 2010; Chen 

et al., 2015; Eiseman et al., 2012; Akşahin et al., 2015; Mendez et al., 2007; Varon et al., 2015; 

Yildiz et al., 2011) adopted the frequency feature only, for the classification of SA and healthy 

individualsstates. One research work also used only the time domain feature for classification. 

In another work (Atri & Mohebbi, 2015), PSD was extracted along with bispectral feature. 

Another article (Baek et al., 2014) that applied a portable accelerometer with 3 electrodes used 

the frequency along with the data accelerometer as a feature. Another work (Jafari, 2013) 

adopted the frequency feature along with the RPS based feature for classification. One piece 

of research (T. Wang, C. H. Lu, & G. H. Shen, 2019) also extracted frequency along with the 

amplitude feature. Frequency and statistical features were also extracted in one article (Hassan 

& Haque, 2016b). Moreover, 7 studies (Khandoker, Karmakar, et al., 2009; Khandoker, 

Palaniswami, et al., 2009; Nguyen et al., 2014; F. Bozkurt et al., 2020; Hassan & Haque, 2016a, 

2017; Khandoker, Karmakar, et al., 2009; Khandoker, Palaniswami, et al., 2009; Nguyen et al., 

2014; Rekha et al., 2018; Bozkurt et al., 2020) considered statistical features, 9 studies (Fatimah 

et al., 2020; Lweesy et al., 2011; Nishad et al., 2018; Rachim et al., 2014; Smruthy & Suchetha, 

2017; H. Sharma & Sharma, 2020; Nishad et al., 2018; M. Sharma et al., 2018; M. Sharma et 

al., 2019; Smruthy & Suchetha, 2017; Tripathy, 2018; Sharma & Sharma, 2020; Fatimah et al., 

2020) considered the characteristics related to wave energy and entropy, and a study (Lweesy 

et al., 2011) used the properties of P and T wave analyses. Four articles (Nguyen et al., 2014; 

Travieso et al., 2014; Varon et al., 2015; Tripathy, 2018; Varon et al., 2015) adopted various 

features for classification, yet the specific features used in these studies were not reported. 

Also, a number of other studies (Chang et al., 2020; D. Dey, Chaudhuri, & Munshi, 2018; Li 

et al., 2018; Erdenebayar et al., 2019; Farouk, Anwar, & Zakaria, 2019; K. Li et al., 2018; L. 

Wang et al., 2019; T. Wang, C. H. Lu, G. H. Shen, et al., 2019; Chang et al., 2020; X. W. Wang 
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et al., 2020) prepared data for classification by applying different layers within the Neural 

Network (NN19) (Supplementary appendix A). 

3.5-    Per record classification 

In 23 studies, data were classified as per record. The data used in the studies were between 20 

and 4647 ECG records. Classification was performed based on 15 different ML algorithms. 

The most commonly used algorithm was SVM, which was used in Restricted Boltzmann 

Machine (RBF20), and linear and polynomial forms; the accuracy of this algorithm in detecting 

SA from healthy individuals was reported to be between 65.4% and 100%. The sensitivity and 

specificity of this algorithm were also reported (43.4%-100%) and (36.4%-100%) respectively. 

Moreover, k-nearest neighbors (kNNk-NN21) algorithm was applied in 7 studies; the lowest 

accuracy of this algorithm was reported 77.3%, and the highest accuracy was 97.14%. In all of 

these studies, the classification sensitivity was equal to or greater than 80%. The specificity of 

the kNNk-NN algorithm also showed that, with the exception of one work (T. Wang, C. H. Lu, 

G. H. Shen, et al., 2019), in other studies, at least half of the healthy individuals were correctly 

classified, thus, the specificity was 50%. Logistic regression Regression (LR22) was another 

common algorithm for classifying data per record. The accuracy of this method in diagnosing 

SA was reported to be in the range of 74.3% to 97.14%. The classification sensitivity of this 

algorithm was reported to be 100% in all studies. However, the specificity of the LR algorithm 

was very scattered, and was reported in the range of 18.2% to 90.91%. 

Other methods used in the reviewed studies were neural network algorithms. These algorithms 

include Feed forward Forward neural Neural network Network (FFNN23) in two studies 

(Akşahin et al., 2015; Ali & Hossen, 2020), PNN in three studies (Khandoker, Karmakar, et 

al., 2009; Sharma & Sharma, 2016; Ali & Hossen, 2020; Khandoker, Karmakar, et al., 2009; 

H. Sharma & Sharma, 2016), Cconvolutional Nneural Nnetwork (CNN24) in 2 studies (Chang 

et al., 2020; T. Wang, C. H. Lu, G. H. Shen, et al., 2019), Deep Nneural Nnetwork (DNN25) 

(Kaguara, Nam, & Reddy, 2014), and Artificial Nneural Nnetwork (ANN26) (Bali et al., 2018) 

each in one a single study. The results showed that neural network algorithms perform 

classification with a very high accuracy. Classification accuracy was also reported in these 

studies (80%-99%). The sensitivity and specificity of these algorithms were investigated in 7 

research works. Sensitivity greater than 85% and specificity greater than or equal to 80% were 

reported in all, but one study (Khandoker, Karmakar, et al., 2009). Among the other techniques 

used, Naive Bayes, Lleast-Ssquare Ssupport Vvector Mmachine (LS-SVM27), Llinear 

Discriminant Analysis (LDA28), Bagged Decision Tree (BDT29), Qquadratic Cclassifier (QC30) 

could be mentioned. The minimum classification accuracy was obtained in the study of 
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28 linear Discriminant Analysis 
29 Bagged Decision Tree 
30 Quadratic Classifier 



 

 

Eiseman et al. (Eiseman et al., 2012) using Naive Bayes for which the value was reported to 

be 63.02%. Study of Song et al. (Song et al., 2016) also reported SA detection accuracy based 

on ANN algorithm as 68.6%. The results of other articles reported a high accuracy of 75% in 

the classification based on per record data (Table 3). 

3.6-    Per segment classification 

Classification was performed per segment in 33 articles. These studies used segments ranging 

from 1500 to 43522 for their classification. In 9 studies (Nguyen et al., 2014; Rachim et al., 

2014; Hassan, 2016; Hassan & Haque, 2016a, 2016b, 2017; Hassan, 2016; Nguyen et al., 2014; 

Nishad et al., 2018; Rachim et al., 2014; Rekha et al., 2018; T. Wang, C. H. Lu, G. H. Shen, et 

al., 2019), the number of examined segments was not reported. However, in all of these articles, 

it was stated that one-minute ECG components were labeled by experts, indicating a 

classification based on one-minute components in these studies. Furthermore, SVM was used 

as the most common algorithm. In total, among the selected studies, 31 different ML algorithms 

were adopted to classify SA and healthy individualsstate. 

SVM algorithm has been used in linear, polynomial, RBF, and nonlinear forms. The accuracy 

of this algorithm was reported in the range of 59.22% to 93.91%. The sensitivity of the 

algorithm was also reported in the range of 32.7% to 95.2%. Specificity studies analyses of 

SVM algorithm showed that the minimum specificity was 47.32%, with the maximum being 

95.42%. In 3 articles, Hidden Markov Model (HMM31) was applied to SVM algorithm, leading 

to the accuracy of the algorithm to be between 80% and 100%. Another LS-SVM algorithm 

was used in a number of research works. The lowest reported accuracy reported was in the 

study of Hassan et al. (Hassan & Haque, 2017), which was 31.88%. Other studies reported an 

accuracy of more than 70% for the LS-SVM algorithm. The highest accuracy was reported in 

the study of Atri et al. (Atri & Mohebbi, 2015) with 95.57%. The sensitivity and specificity of 

this algorithm in this study work were reported 98.64% and 92.51% , respectively. 

NN algorithms have also been used in several related research works. CNN, DNN, RNN, ANN 

and PNN were the specific algorithms used. Eight studies (Mendez et al., 2009; Lweesy et al., 

2011; Nguyen et al., 2014; Atri & Mohebbi, 2015; Hassan, 2016; Hassan & Haque, 2016a; K. 

Li et al., 2018; Lweesy et al., 2011; Mendez et al., 2009; Nguyen et al., 2014; Pinho et al., 

2019; H. Sharma & Sharma, 2020) adopted the ANN algorithm. The highest accuracy was 

reported at 92.3%, and the lowest at 68.52%. CNN was another algorithm that was examined 

in 6 articles (Chang et al., 2020; D. Dey et al., 2018; Erdenebayar et al., 2019; Farouk et al., 

2019; L. Wang et al., 2019; T. Wang, C. H. Lu, G. H. Shen, et al., 2019; Chang et al., 2020). 

The accuracy reported in these studies was 78.2% to 98.91%. Sensitivity and specificity were 

also calculated to be more than 80% in most research works. In only one article (T. Wang, C. 

H. Lu, G. H. Shen, et al., 2019), the reported classification sensitivity was 26.6%. This study 

had the lowest accuracy among all articles in terms of CNN algorithms. Specificity reported as 

86.9%. DNN and RNN algorithms were adopted in the study of Erdenebayar et al. 

(Erdenebayar et al., 2019). The results of this study research showed that the accuracy of the 

DNN algorithm in detecting and classifying SA’s and healthies was 93.1%. Moreover, in this 

research work, the accuracy of the RNN algorithm was 99%. The sensitivity and specificity of 

DNN and RNN algorithms were above 90%. PNN was also investigated in a study with an 
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accuracy of 60.95%. This work (Hassan & Haque, 2017) did not report sensitivity and 

specificity for the PNN algorithm. 

Random forest (RF32), LR, LDA and kNNk-NN were 4 other algorithms used to classify data. 

kNNk-NN was applied to selected datasets in 12 studies (Mendez et al., 2009; Hassan, 2016; 

Song et al., 2016; Hassan & Haque, 2016a, 2017; Sharma & Sharma, 2016, 2020; M. Sharma 

et al., 2018; M. Sharma et al., 2019; Wang, Lu, Shen, et al., 2019; F. Bozkurt et al., 2020; 

Fatimah et al., 2020; Hassan, 2016; Hassan & Haque, 2016a, 2017; Mendez et al., 2009; H. 

Sharma & Sharma, 2016, 2020; M. Sharma et al., 2018; M. Sharma et al., 2019; Song et al., 

2016; T. Wang, C. H. Lu, G. H. Shen, et al., 2019). Examination of the results in these research 

works showed that the accuracy of the kNNk-NN algorithm is in the range of 66.1% to 90.57%. 

In these works, with increasing accuracy, sensitivity and specificity also increased. The 

accuracy of RF, LR and LD algorithms were reported to be in the ranges of 79.26%-92.78%, 

66%-85.6% and 62.93%-83.72% respectively, which shows the better performance of RF 

algorithm in data classification. Information on other algorithms used are provided in Table 3. 

As highlighted earlier, the selected research works have used different methods to classify SA’s 

from healthy individualsstates. Therefore, despite the use of the same datasets in most studies, 

the main difference was observed between the performance of the selected algorithms. 

Applying the preprocessing step to data seems to increase the accuracy of the classification. In 

a number of research works, it has been observed that applying different filters eliminates 

noise, and improves the system’s performance (Ali & Hossen, 2020; Atri & Mohebbi, 2015; 

Bali et al., 2018; Chen et al., 2015; Erdenebayar et al., 2019; Khandoker, Karmakar, et al., 

2009; Khandoker, Palaniswami, et al., 2009; Lweesy et al., 2011; Song et al., 2016; Li et al., 

2018; Bali et al., 2018; Lweesy et al., 2011; Rekha et al., 2018; Sharma & Sharma, 2020; Song 

et al., 2016; Wang et al., 2019; Wang, Lu, & Shen, 2019; Sharma & Sharma, 2020; Ali & 

Hossen, 2020). Accordingly, the study of Bali et al. argues that the use of filters and wave 

purification improves the performance of the classification system by about 12% (Bali et al., 

2018). 

A different factor that improves systems’ performance is related to how data would be selected 

for training and testing. It has been observed that most existing systems use equal sized set of 

data (i.e. 50% training and 50% test). It has also been observed that with increasing severity 

and frequency of apnea, diagnosis, and classification were performed with much higher 

accuracy (Akşahin et al., 2015; Ali & Hossen, 2020; Khandoker, Karmakar, et al., 2009; 

Akşahin et al., 2015; Nakayama et al., 2019; Ali & Hossen, 2020). In the study of Ali et al. 

(2020), it was outlined that the accuracy of diagnosing severe apnea from healthy states is 95%. 

While the accuracy of patient and healthy classification in this study was 87.5%. Moreover, in 

a different work conducted by Khandoker, et al. (2009), the classification was based on healthy 

individuals and those who had experienced apnea for more than 100 minutes. In the study, 

people who experienced apnea between 5-100 minutes were known as borderline, and were 

excluded from the research. Therefore, it can be argued that in the researchis study, patients 

with moderate to severe SA only were examined. Classification in the sameis work was 

reported as 100%, using the SVM algorithm. Further, Eiseman et al. (2012) examined 4647 

participants in the Sleep Heart Health Study cohort; similar to many other studies, this work 

also used filters to remove noise. PSD features were also adopted in the work. However, the 
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accuracy of the system in this study was lower than other research works. This may be due to 

the fact that many of the patients in the research had mild apnea. 

According to the reported results of the selected studies, the use of wavelet-based methods is 

one of the successful methods for feature extraction (Khandoker, Palaniswami, et al., 2009; 

Yildiz et al., 2011; Bsoul et al., 2011; Rachim et al., 2014; Khandoker, Palaniswami, et al., 

2009; Nishad et al. , 2018; Rachim et al., 2014; Sharma et al., 2018; Sharma et al., 2019; Yildiz 

et al., 2011). These methods are very useful in oscillating waves. They break down waves into 

smaller parts at specific frequencies (Rachim et al., 2014). Another method that had a 

significant impact on feature selection was PCA, in a way that all studies using PCA for feature 

reduction and effective feature selection performed very well (Rachim et al., 2014; Varon et 

al., 2015; Bali et al., 2018; Rekha et al., 2018; Tripathy, 2018; Bozkurt et al. al., 2020; Rachim 

et al., 2014; Rekha et al., 2018; Tripathy, 2018; Varon et al., 2015). Another successful method 

that has performed very well in studies is the deep learning method; all research works the 

studies that used this method to train the system and select the feature, reported a high accuracy, 

sensitivity and specificity (in the range of 90-100%) in both parts per record and per segment. 

Among these, deep learning based neural networks such as DNN and CNN were the most 

adopted (Kaguara et al., 2014; Chang et al., 2020; Dey et al., 2018; Erdenebayar et al., 2019; 

Farouk et al., 2019; Kaguara et al., 2014; K. Li et al., 2018; Erdenebayar et al., 2019; Farouk 

et al., 2019; Wang et al., 2019; Wang, Lu, & Shen, 2019; Wang, Lu, Shen, et. al., 2019; Chang 

et al., 2020). Older NN methods such as FFNN, PNN and ANN also had acceptable 

performances (Mendez et al., 2009; Lweesy et al., 2011; Akşahin et al., 2015; Ali & Hossen, 

2020; Bali et al., 2018; Ali & Hossen, 2020; Lweesy et al., 2011; Mendez et al., 2009). System 

performance seems to improve with increasing neural layers in these works (Mendez et al., 

2009). Another common algorithm that performed very well in most studies was the SVM 

algorithm, and its derivative model (LS-SVM). It was also observed that all studies that apply 

HMM to their models perform classification with excellent accuracy and performance 

(Travieso et al., 2014; Song et al., 2016; Li et al., 2018; Song et al., 2016; Travieso et al., 2014). 

In the work of Song et al. (Song et al., 2016), it was observed that the application of HMM on 

various algorithms such as SVM, LR, and LDA greatly increases the accuracy of classification. 

This result was also observed in the studies of Travieso et al. (2014) and Li et al. (2018). 
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4- Discussion 

4. 1-  Comparison of studies 

In this study, different ML algorithms used in the diagnosis of SA were examined. Our analyses 

show that SA detection using both per record and per segment methods has high accuracy, 

sensitivity and specificity. Various features of the ECG were also extracted and used in the 

classification. The occurrence of autonomic nervous system dysregulation is common in 

patients with SA and is known as one of the most important mechanisms affecting the 

cardiovascular outcomes caused by SA. There are several methods for assessing these 

disorders, one of which is HRV analysis (Lombardi, Pengo, & Parati, 2019). In other words, 

HRV is a reflection of the state of autonomic nervous system activity, and is a measure of 

overall heart health (Ali & Hossen, 2020). Thus, the widespread use of HRV fluctuations in 

apnea episodes in an ECG record can be observed in various studies (Bušek, Vaňková, 

Opavský, Salinger, & Nevšímalová, 2005). 

EDR is another feature that was commonly monitored. This feature is important since the 

electrodes on the surface of the body move due to the sequential filling and emptying of lungs. 

This movement shifts the axis relative to the heart, and a continuous ECG-derived respiration 

is extracted for each normal QRS complex (Moody et al., 1986). As a result, many 

classification studies were performed based on EDR and HRV characteristics. 

The number and selection of appropriate attributes are crucial for the success of classification 

(Foster, Koprowski, & Skufca, 2014). PSD signal alone (or in combination with other features) 

was one of the most common features used in most research works. Time domain and statistical 

features were other features that were used for classification. In general, our review showed 

shows that all the features used in the selected studies were applicable to the diagnosis of SA. 

However, it was not possible to determine the best feature to diagnose SA. This is due to the 

high accuracy of classification in various studies. Moreover, the combined use of the features 

in some research works prevents a tailored and detailed examination. 

The highest classification accuracy (100%) when performing the analysis based on a complete 

ECG strip was reported in the study of Babaeizadeh et al. (2010). In , in which the authors used 

the QC algorithm to classify data. In their work, sensitivity and specificity were also reported 

to be 100%. Moreover, the study used a hybrid classification system. Additionally, PSD 

features extracted from HRV were used for classification. Other studies such as (Khandoker, 

et al., 2009a; Khandoker, et al., 2009b; Sharma & Sharma, 2020) also provide reported 

accuracy, sensitivity, and specificity and reportedas 100% specificity. In the first two studies, 

HRV and EDR were broken down into smaller sections using a wave decomposition method. 

Then, a number of features were selected and classified. In both studies, the SVM algorithm 

performed a more accurate classification than the other algorithms. The better performance of 

SVM than other algorithms has also been reported in some other studies (Sharma & Sharma, 

2016; Song et al., 2016). Although in the study of Sharma et al. (2020), the SVM algorithm 

was highly accurate, the highest classification accuracy was observed using the LDA 

algorithm. In this study, classification was performed based on energy, entropy and standard 

deviation characteristics in HRV and EDR. Overall, existing research works have shown that 

classifying data per record is a very suitable approach to diagnose and classify SA patients  

frompatients from healthy individuals. Classification using full ECG tape seems to provide 



 

 

more accurate diagnoses of SA than ECG components, which was confirmed in all studies that 

had comparing compared the two methods (Babaeizadeh et al., 2010; Al-Angari & Sahakian, 

2012; Rachim et al., 2014; Sharma & Sharma, 2016, 2020; Song et al., 2016; Babaeizadeh et 

al., 2010; Chang et al., 2020; Li et al., 2018; Rachim et al., 2014; Sharma & Sharma, 2016, 

2020; Song et al., 2016; Wang, Lu, & Shen, 2019; Wang, Lu, Shen, et al., 2019; Chang et al., 

2020). However, this does not suggest that segmentation is not performing well. 

Unlike per record data classification, none of the classifications based on ECG components 

had 100% accuracy, sensitivity and specificity. However, a review of all the presented results 

shows that more than 80% of the algorithms applied to the ECG components have a high 

accuracy that is in the range of 70% to 99%. This indicates that the use of small ECG 

components also performs very well in the diagnosis and classification of SA. Our review also 

highlighted that the best algorithms in segment classification were Neural Network, RF and 

SVM. Erdenebayar et al. (Erdenebayar et al., 2019) used neural network algorithms in their 

work. The results of their study showed that the best algorithm in segmentation is RNN. DNN 

and CNN algorithms were also highly accurate. Such high accuracies were also observed in a 

number of other studies research works (Lweesy et al., 2011; Chang et al., 2020; D. Dey et al., 

2018; Farouk et al., 2019; Lweesy et al., 2011; L. Wang et al., 2019; T. Wang, C. H. Lu, G. H. 

Shen, et al., 2019; Chang et al., 2020). 

In general, the results of selected studies indicate that ML techniques are useful in diagnosing 

SA. Unlike the present study, which only diagnoses SA from binary healthy individuals, some 

studies have classified SA patients, based on the severity of the disease, the results of which 

again showed the high accuracy of ML techniques. Another approach was to evaluate the 

ability of models to detect the exact value of Apnea Hypopnea Index (AHI), and the results of 

these research works were also of acceptable accuracy (Mencar et al., 2019). 

Overall, it can be reported that classification of SA patients of healthy individuals using 

physiological signals is very accurate. In fact, this study showed that in a simpler way than in 

the past, a portable and wearable system can be designed that hasoffering many applications in 

sleep medicine. Other features of these designed systems can be their non-invasiveness and 

low cost (Atri & Mohebbi, 2015). In factAdditionally, home screening of patients with these 

methods is straightforward, allowing for the diagnose of SA in time, to prevent more serious 

medical complications (Ali & Hossen, 2020). Moreover, the capability of the methods in 

accurate clinical diagnoses has also been considered (Akşahin et al., 2015). Therefore, the 

results of ML techniques in diagnosing the disease can assist physicians with the selection of 

the best diagnosis methods. The results analysis of the reported results in collected studies 

showsed that the use of morphological changes in ECG waves and the features that can be 

extracted from it, especially PSD waves, can distinguish patients from the healthy individuals. 

Other characteristics based on time, energy and entropy were the other effective characteristics 

in classifying patients from healthy. Another important point is that the use of techniques based 

on deep learning can be very effective in training the system. The selection of features in these 

methods is also performed with a high accuracy. It is recommended to use deep learning neural 

networks or SVM and its derivatives (LS-SVM, SVM-HMM) to design new systems. The Our 

results also demonstrated that increasing the layers of the neural network can have a positive 

effect on the performance of the classification system. 



 

 

Among the challenges for the designed classification systems is the accuracy of the systems 

distinguishing mild apnea of healthy. Another issue to consider is that almost all existing 

systems are based on OSA, thus, it seems that their performance still requires further 

investigation to identify and classify other types of SA. Another issue to consider is that ML 

faces challenges that may affect the results obtained. One of the issues with ML algorithms is 

that they use random models to train their data. This means that if the same model is retrained 

with the same data, different values of the parameters may be reported. In other words, the 

reproducibility of the models is one of the issues that should be considered (Beam, Manrai, & 

Ghassemi, 2020). 

4.2-   Limitations 

One of the limitations of this work is that most of the selected studies had used the same dataset. 

This made it impossible to review data from the same area, so the impact of environmental and 

individual factors on the incidence of SA was not measured. The small samples used in these 

datasets is another factor that can affect the generalizability of the results. Another limitation 

observed was the lack of reporting true positives, true negatives, false positives and false 

negatives in most studies. Accordingly, it was not possible to perform meta-analysis on the 

data. 

4.3- Conclusion 

A comprehensive review of selected existing studies have has confirmed the effectiveness of 

ML techniques in diagnosing SA. Since neurological, hormonal, and respiratory changes are 

quite effective on the ECG, HRV and EDR were the most common ECG features extracted for 

classification. The features of PSD waves obtained from ECG analysis appear to be very useful 

in the diagnosis of SA. It was also observed that SVM and Neural Network algorithms are 

highly accurate in detecting SA. Additionally, other ML techniques such as KNNk-NN, RF, 

and LR performed well in classifying SA-related data. There was no significant difference 

between the parameters related to the classification based on the complete ECG record and 

ECG components. However, the ML performance seems to have been better in the full record 

classification. In future studies, more up-to-date datasets can be used to classify SA. 

Furthermore, datasets with higher number of records, and the use of samples in various 

geographical areas are other research areas that can be explored as part of the future of work. 
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Table legend: 

Table1: Search strategies, and keywords 

Table2: Classification result based on per record or per segment data 

 

Figures legend:  

Figure1: An overview of the implementation of machine learning techniques 

Figure2: PRISMA flow diagram for study selection 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Search strategies, and keywords 

Database Search strategy Date number 

PubMed (Artificial Intelligence(Jaiswal et al.) OR "machine learning"[tiab]s OR "neural networks"[tiab] OR "Bayesian 

models"[tiab] OR "deep learning"[tiab] OR "dimensionality reduction"[tiab] OR "decision trees"[tiab] OR 

"ensemble learning"[tiab] OR "instance based models"[tiab] OR "support vector machines"[tiab]) AND ( Sleep 

Apnea[tiab] OR "Sleep-Disordered Breathing"[tiab] OR Sleep Apnea, Central[tiab] OR Sleep Apnea 

Syndrome(Jaiswal et al.) OR Sleep Apnea, Obstructive(Jaiswal et al.) OR "Sleep Apnea Hypopnea 

Syndrome"[tiab] OR OSA[TIAB] OR OSAHS[TIAB] OR "Sleep Apnea Syndromes"[tiab]) AND ( 

Electrocardiography(Jaiswal et al.) OR ECG[tiab] OR EKG[tiab] OR Electrocardiogram[TIAB] OR 

"electrocardiogram derived respiration"[TIAB]) 

24/10/2020 59 

Scopus  TITLE-ABS-KEY("Artificial Intelligence" OR "machine learning" OR "neural networks" OR "Bayesian models" 

OR "deep learning" OR "dimensionality reduction" OR "decision trees" OR "ensemble learning" OR "instance 

based models" OR "support vector machines") AND TITLE-ABS-KEY("Sleep Apnea" OR "Sleep-Disordered 

Breathing" OR "Sleep Apnea, Central" OR "Sleep Apnea Syndrome" OR "Obstructive Sleep Apnea" OR "Sleep 

Apnea Hypopnea Syndrome" OR OSA OR OSAHS OR "Sleep Apnea Syndromes") AND TITLE-ABS-

KEY(Electrocardiography OR ECG OR EKG OR Electrocardiogram OR "electrocardiogram derived 

respiration")  

24/10/2020 210 

WOS TS=("Artificial Intelligence" OR "machine learning" OR "neural networks" OR "Bayesian models" OR "deep 

learning" OR "dimensionality reduction" OR "decision trees" OR "ensemble learning" OR "instance based models" 

OR "support vector machines") AND TS=("Sleep Apnea" OR "Sleep-Disordered Breathing" OR "Sleep Apnea, 

Central" OR "Sleep Apnea Syndrome" OR "Obstructive Sleep Apnea" OR "Sleep Apnea Hypopnea Syndrome" 

OR OSA OR OSAHS OR "Sleep Apnea Syndromes") AND TS=(Electrocardiography OR ECG OR EKG OR 

Electrocardiogram OR "electrocardiogram derived respiration")  

24/10/2020 103 

IEEE 

Explore 

("Artificial Intelligence" OR "machine learning" OR "neural networks" OR "Bayesian models" OR "deep learning" 

OR "dimensionality reduction" OR "decision trees" OR "ensemble learning" OR "instance based models" OR 

"support vector machines") AND ("Sleep Apnea" OR "Sleep-Disordered Breathing" OR "Sleep Apnea, Central" 

OR "Sleep Apnea Syndrome" OR "Obstructive Sleep Apnea" OR "Sleep Apnea Hypopnea Syndrome" OR OSA 

OR OSAHS OR "Sleep Apnea Syndromes") AND (Electrocardiography OR ECG OR EKG OR Electrocardiogram 

OR "electrocardiogram derived respiration") 

24/10/2020 29 

 

 

 

 



 

 

 

 

 

 

 



 

 

Table 2: Classification result based on per record or per segment data 

 Per segment  

First author, Year, NO, of segments classification ACC% Other parameters 

Al-Angari, H. M. 2012, Total segments: 39575 (22908 normal, 16607 apnea) SVM (linear) C= 10 68.8 Sen:  51.6, spec: 81.4 

SVM (polynomial) C= 10 69.5 Sen:  54.8, spec: 80.1 

Atri, R. 2015 Total segments: 16479 

Use 13,000 segments in 10 fold cross validation 

LS-SVM 95.57 Sen: 98.64, Spec: 92.51 

Babaeizadeh, S. 2010, Total segments: 34313 17010 training. 17268 test sesments  QC 84.7 Sen: 76.7, Spec: 89.6, PPV: 81.8, NPV:86.3 

Bozkurt, F. 2020, Total segments: 2460 (1242 Apnea, 1218 Normal), 1230 training segments, 

1230 test segments 

DT (113 feature) 79.11 Sen: 76, sp:82 

kNNk-NN (90 feature) 82.2 Sen: 78, sp:75 

SVM (113 feature) 84.15 Sen: 76, sp:82 

Ensamble (113 feature) 85.12 Sen: 76, sp:82 

Bsoul, M. 2011, Total segments: 14700 segments in 5,10 and 35 fold cross validation SVM (linear) C=32  91.16 Sen:89.12, Spec: 92.35, F: 90.70 

SVM (poly, d=2) C=0.5, γ= 0.5 89.85 Sen:88.25, Spec: 88.25, F: 90.82 

SVM (RBF) C=2, γ= 0.5 90.86 Sen: 89.02, Spec: 91.94, F: 90.46 

SVM (MLP) C=0.5, γ= 0.5 80.45 Sen:74.66, Spec: 83.96, F: 79.04 

Chang, H. Y. 2020, Total segments: 34230,  17234 test segments, 16979 training set CNN 87.9 Sen:81.1, Spec:92 

Dey, D. 2017, 10787 training segments, 10787 test segments (4987Apnea, 5800 Normal) CNN 98.1 Sen:97.82, Spec: 99.2, PPV: 99.06, NPV: 98.14 

Erdenebayar, U.  2019 

 

Total segments: 43522 , 37338 training segments, 6184 test segments 
(1623Apnea, 4561 Normal) 

DNN 93.1 Sen: 93 Spec:94 

1DCNN 98.5 Sen: 99 Spec:99 

2DCNN 95.9 Sen: 96 Spec:96 

RNN 85.4 Sen: 97 Spec:87 

RNN(LSTM) 98 Sen: 98 Spec:98 

GRU 99 Sen: 99 Spec:99 

Farouk, F. N. B. M. 2019, 10787 training segments, 10787 test segments CNN 98.91 Sen:97.82, Spec:99.20 PPV:99.06, NPV:98.14 

Fatimah, B.2020, Total segments: 17010  (6514Apnea, 10496 Normal) in 10 fold cross 

validation  

Bagging 91.44 Sen:91.61 Spec:  92.52 Pre: 88.20 

KNNK-NN 90.57 Sen: 89.13 Spec: 91.56 Pre: 86.90 

SVM 92.59 Sen: 89.70 Spec: 94.67 Pre: 91.27 

LogitBoost 85.84 Sen: 79.17 Spec: 89.97 Pre: 83.04 

Hassan, A. R.1 2016, _ RBM 38.79 AdaBoost: 

Sen: 81.99, Spec: 90.72 SVM 59.22 

Naïve Bays  62.15 

ANN 81.37 

RF 82.70 

KNNK-NN 83.32 

Bagging 83.33 

LDA 83.72 

AdaBoost 87.33 

Hassan, A. R. 2, 2016, - ANN  68.52  ELM: 

Sen: 85.20, Spec: 82.79 

 
NBC 39.47 

RBM 61.20 

KNNK-NN 69.72 



 

 

AdaBoost 80.07 

Bagging 79.82 

RF 79.26 

DA 64.60 

ELM 83.77 

Hassan, A. R. 3, 2016, - Bagging 85.97 Sen:84.14, Spec: 86.83 

Hassan, A. R. 4, 2017, - LS-SVM 31.88 Rusboost 
Sen: 87.58, Spec: 91.49 ELM 53.02 

PRAZEN-PNN 60.95 

SVM 72.4 

KNNK-NN 79.77 

Bagging 84.29 

RF 84.49 

Adaboost 86.94 

Rusboost 88.88 

Jafari, A. 2013, Total segments: 16711  segments, 10000 training, 6711 test segments SVM 94.80 Sen:94.16, Spec:95.42 

Li, K. 2018, Total segments: 33979 16857 training set, 17122 test segments (6517A, 

10605N) 

ANN 78.3 Sen:66.6 Spec:85.4 

ANN-HMM 83 Sen:91.5 Spec:77.7 

SVM 78.6 Sen:66.5 Spec:86.1 

SVM-HMM 84.7 Sen:68.8 Spec:94.5 

Decision fusion 84.7 Sen: 88.9 Spec:82.1 

Lweesy, K. 2011, Total segments: 1500 ,  1052 training set, 224 test segments ANN 92.3 Sen:90.1, Spec:94.4, 

Mendez, M. O. 2009. Total segments: 24432 , 12077 training segments, 12355 test segments KNNK-NN Feature=10 88 Sen:86, Spec: 87 

ANN Feature=10 88 Sen: 89, Spec:86 

Nguyen, H. D. 2014, - ANN 83.23 Sen:85.57, Spec:79.09 

SVM 84.14 Sen:93.72, Spec:65.88 

Decision fusion 85.26 Sen:86.37, Spec:83.47 

Nishad, A. 2018. - RF 92.78 Sen: 90.95, Spec:93.91 

Pinho, A. 2019, 17401 segments in 10 fold cross validation  ANN Features: 20 82.12 Sen:88.41, Spec:72.29 

SVM Features: 70 75.18 Sen:86.79, Spec:56.45 

LDA Features: 20 62.93 Sen:83.98, Spec:28.40 

PLS Features: 20 64.49 Sen:57.78, Spec:66.05 

REG Features: 20 65.13 Sen:62.23, Spec:65.65 

WienerHopf Features: 20 64.05 Sen:58.14, Spec:65.07 

aNBC Features: 44 62.12 Sen:0, Spec:62.12 

PLA Features: 6 61.36 Sen:36.84, Spec:61.70 

LMS Features: 84 61.72 Sen:28.70, Spec:62.35 

Rachim, V. P. 2014 - SVM (RBF), C=10, Ϭ=0.5, PCA=5 93.91 Sen: 95.20, Spec: 92.65 

Rekha, B. B. 2018. - 

 
 

SVM (without feature reduction) 91 Sen: 90.38, Spec: 91.54 

RF (with feature reduction) 94.32 Sen:92.98, spec: 94.77 

Sharma, H. 2016, Total segments: 32727 segments, 16845 training segments, 15873 test 

segments 

KNNK-NN 73.3 Sen:72.5, Spec:73.8 AUC:73.8 

MLPNN 81.2 Sen:77.5, Spec:83.4 AUC:80.7 

LS-SVM 82.6 Sen:76.7, Spec:88.2 AUC:82 

SVM 83.8 Sen:79.5, Spec:88.4 AUC:83.4 



 

 

Sharma, H. 2020, 

 

Total segments: 34313, 17045 training, 17268 test segments LR 85.6 Sen:82.1, SP:90.2 AUC: 0.93 

LDA 82.5 Sen: 73, Spec: 88.5 AUC: 0.89 

BDT 84.7 SEN:79.5, Spec: 87.5 AUC: 0.92 

ADT  81.6 Sen: 74, Spec: 86.3 AUC: 0.88 

KNNK-NN 87.5 Sen: 84.9, Spec: 88.2 AUC: 0.93 

ANN 86.1 Sen: 84, Spec: 86.9, AUC: 0.82 

LS-SVM 86.2 Sen: 81.3, Spec: 87.7 AUC: 0.91 

SVM 85.3 Sen: 82.5, Spec: 88 AUC: 0.91 

Sharma, M. 2018, Total segments: 16993 in 35 fold cross validation  Weighted KNNK-NN  89.1 Sen: 91.8, Spec: 84.9, PPV: 90.36, NPV:87 

CT 83.5 Sen: 86.3, Spec:78.9, PPV: 87.1, NPV:77.8 

LD 66.1 Sen:70.9, Spec: 56.7, PPV: 76.6, NPV: 49.8 

LR 66.5 Sen: 70, Spec: 58.1 PPV:80, NPV: 44.8 

LS-SVM(kernel)  90.11 Sen: 90.9, Spec:88.9 PPV: 93, NPV: 85.8 

Sharma, M. 2019, Total segments: 16993 in 35 fold cross validation  KNNK-NN  90.3 Sen: 91.5, Spec: 88.5, PPV: 92.8, NPV:86.6 

CT 82.9 Sen: 91, Spec:76.8, PPV: 85.8, NPV:78.1 

LD 68.9 Sen:86.9, Spec: 40, PPV:70, NPV: 65.4 

LR 71.1 Sen: 86, Spec: 47.2 PPV:72.4, NPV: 67.7 

Gaussian SVM 90.87 Sen: 92.43, Spec:88.33 PPV: 92.8, NPV: 88.3 

Song, C. 2016, 17268 test segments (6550Apnea, 10718Normal) SVM 81.2 Sen: 75.7, Spec: 84.7 

SVM-HMM  86.2 Sen: 82.6, Spec: 88.4  

LR 81.2 Sen: 74.4, Spec: 85.4 

LR+HMM 86.2 Sen: 80, Spec: 89.9 

LDA 80.5 Sen: 83.1, Spec:78.9 

LDA+HMM 85.3 Sen: 77.5, Spec: 90.1 

KNNK-NN 80.7 Sen:75.3, Spec: 83.9 

KNNK-NN+HMM 84.5 Sen: 74, Spec: 90.8 

Travieso, C. M. 2014 Total segments: 21865, 10599 training, 11266 test segments (4375A, 

6891N) 

SVM-HMM 99.2 Sen: 98.8, Spec: 99.5, PPV: 99.2, NPV:99.3 

Varon, C. 2015. Total segments: 32 477 , 6000 training segments, 26477 test segments LDA 71.43 Sen: 71.74, Spec:71.2  

SVM(LIN) 71.16 Sen: 74.63, Spec: 68.51 

SVM(POLY) 72.6 Sen: 78.36, Spec: 68.22 

SVM(RBF) 73.86 Sen: 78.2, Spec: 70.55 

LS-SVM(LIN) 71.78 Sen: 71.48, Spec: 76.26 

LS-SVM(POLY) 73.43 Sen: 73.4, Spec:73.43 

LS-SVM(RBF) 84.74 Sen: 84.71, Spec: 84.69 

Varon, C.2 2015. Total segments; 5205, 3000 training segments, 2205 test segments LDA  79.86 Sen: 81.22, Spec: 79.71 

SVM(LIN) 75.83 Sen: 86.46, Spec: 74.6 

SVM(POLY) 77.78 Sen: 88.21, Spec: 76.57 

SVM(RBF) 81.9 Sen: 82.97, Spec: 81.78 

LS-SVM(LIN) 80.05 Sen: 80.35, Spec: 80.01 

LS-SVM(POLY) 81.68 Sen: 81.66, Spec: 81.7 

 
LS-SVM(RBF) 

83.95 Sen: 78.81, Spec: 84.56 

Wang, L. 2019. Total segments; 16 988 (6496Apnea , 10492 Normal ) in 10 fold cross 

validation 

CNN 90.97 Sen: 83.43, Spec: 85.5 

residual network 94.39 Sen: 93.04, Spec: 94.95 

Wang, T. 2019. Total segments 34,313,  LR 81.5 Sen: 72, Spec: 87.4 



 

 

17045 training segments, 17268 test segments. LDA 81.8 Sen: 70.9, Spec: 88.4  

SVM 80.6 Sen: 72.1, Spec: 85.6 

MLP 81.4 Sen: 74.3, Spec: 85.7 

TW-MLP 87.3 Sen: 85.1, Spec: 88.7 

Wang, T.2 2019. - 

 

SVM 81.4 Sen: 76.9, Spec: 84.3 

LR 80.8 Sen: 75.7, Spec: 84 

KNNK-NN 77.5 Sen: 68.1, Spec: 83.4 

MLP 81.1 Sen: 71.3, Spec: 87.2 

LET-NET5 CNN 87.6 Sen: 83.1, Spec: 90.3 

Wang, T.3 2019. - SVM 70.6 Sen: 32.7, Spec: 83.3 

LR 69.6 Sen: 34.7, Spec: 81.3 

KNNK-NN 66.1 Sen: 38.1, Spec: 75.4 

MLP 67.2 Sen: 38.5, Spec: 76.8 

 CNN 71.2 Sen: 26.6, Spec: 86.9 

Per record 

 

First author, Year, No, of records ML algorithm ACC% Other parameters 

Akşahin, M. 2015, Total records: 20 record in 3 and 5 cross validation  
(10 Apnea, 10 Normal) 

FFNN 99 _ 

Al -Angari, H. M. 2012, Total records: 100 records, 50 training, 50 test SVM(linear) C=5 79 Sen: 79.6, spec: 78.4 

SVM(polynomial) C=5, 10 78 Sen: 67.3, spec: 88.2 

Ali, S. Q. 2020, Total record: 80, 40 training, 40 test  FFNN 87.5 Sen:86.67, spec: 90 

PNN 85 Sen:86.67, spec: 80 

Babaeizadeh, S. 2010, Total records : 60 records, 30 training,  30 test record (20 Apnea , 10 

Normal) 

QC 100 Sen: 100, Spec: 100, PPV: 100, NPV: 100 

Baek, J. W. 2014, Total records : 20 records in 10 fold cross validation  (10Apnea, 10Normal), ML 85 Sen: 90, spec: 80 

Bali, J. 2018, Total record: 70 , 35 training , 35 test record  

 

ANN-LM 91 Sen:91, spec: 92, PR:95 

ANN-SCG 95 Sen:94, spec: 91, PR: 96 

Chang, H. Y. 2020, Total record:70 , 35 training , 35 test record  CNN 97.1 Sen:95.7, spec:100 

Chen, L. 2015 Total record: 90 subjects, 59 training, 31 test record (23 Apnea, 8 Normal ) SVM (RBF kernel), C=3 97.41 Sen:98.99, Spec: 92.87 

SVM(polynomial) C=5, Order=1 97.03 Sen:99.16, Spec: 90.91 

Kaguara, A. 2014, Total records: 35 records in 5 fold cross validation  DNN (fold 4) 91 _ 

Eiseman, N. A. 2012, Total record: 4647 records, (2090 Apnea, 2557 Normal) in 20 fold cross 

validation 

SVM 65.4 Sen: 43.4, Spec: 83.5 PPV: 68.3, NPV: 64.4 

Naive Bayes 63.02 Sen: 39, Spec: 82.7 PPV: 64.8 NPV: 62.4 

Khandoker, A. H. 2009, Total record: 60 records, 30 training , 30 test (20Apnea, 10Normal ) SVM(Poly) Feature:5,6,7or8, C=0.1,1,1 100 Sen: 100, Spec: 100 

SVM(Linear) Feature: 6 or7, C=10 100 Sen: 100, Spec: 100 

LD 90 Sen: 100, Spec: 93 

KNNK-NN (K =1) 80 Sen: 90, Spec: 83 

PNN (Ϭ =0.5) 80 Sen: 50, Spec:70 

Khandoker, A. H.2. 2009, Total record: 125 records, 83 training, 42 test SVM(Polynomial) D= 3, C =0.8 100 Sen: 100, Spec: 100  

SVM(Linear) C =10 98.8 Sen: 100, Spec: 94.44 

SVM(RBF)Ϭ =0.5, C= 10 96.39 Sen: 98.46, Spec: 88.89 



 

 

Li, K. 2018, Total record: 70 records,  35 training, 35 test DNN 100 Sen: 100, Spec: 100 

Mendez, M. O. 2007. Total record: 50 record, 25 training , 25 test  KNNK-NN 85 Sen: 83.90, Spec:88.50 

Nakayama, C. 2019 Total record: 61 record (25Apnea, 36Normal) RF 85 Sen: 76, Spec: 92 

Rachim, V. P. 2014 Total record : 35 record (22Apnea,13Normal) in 10 fold cross validation SVM 94.3 Sen: 100, Spec: 81.3 

Sharma, H. 2016, Total records: 70 records,  35 training, 35 test  KNNK-NN 77.3 Sen:100, Spec:63.6, AUC:77.3 

MLPNN 93.4 Sen:95.8, Spec:90.9, AUC:93.4 

LS-SVM(RBF) 97.8 Sen:95.8, Spec:100 AUC:97.8 

SVM(RBF) 97.8 Sen:95.8, Spec:100 AUC:97.8 

Sharma, H. 2020, Total records: 70 records,  35 training , 35 test LR 97.14 Sen:100, Spec:90.91AUC:97.8 

LDA 100 Sen:100, Spec:100 AUC:0.95 

BDT 97.14 Sen:100, Spec:90.91 AUC:1 

ADT 94.28 Sen:91.67, Spec:100 AUC: 0.95 

KNNK-NN 97.14 Sen:100, Spec: 90.91 AUC: 0.95 

ANN 97.14 Sen:100, Spec: 90.91 AUC: 0.95 

LS-SVM 94.28 Sen:100, Spec: 90.91 AUC: 0.95 

SVM 97.14 Sen:95.8, Spec: 90.91 AUC: 0.93 

Smruthy,A. 2017 Total record: 40 record (all healthy participant) in 10 fold cross validation  SVM 97.5 Sen:95.45, spec: 100, PPV: 100, NPV: 94.7 

Total record: 25 record in 10 fold cross validation  SVM 95 Sen: 100, Spec: 80, PPV: 94.12, NPV:1 

Song, C. 2016, Total record: 30 record , 20 training and 10 test SVM  80 Sen: 100, Spec: 36.4 

SVM-HMM 97.1 Sen: 95.8, Spec:100 

LR  74.3 Sen: 100, Spec: 18.2 

LR+HMM  97.1 Sen:95.8, Spec: 100 

LDA 68.6 Sen:100, Spec: 0 

LDA+HMM 97.1 Sen: 95.8, spec: 100 

KNNK-NN 91.4 Sen: 100, Spec: 72.7 

KNNK-NN+HMM 91.4 Sen: 87.5, Spec: 100 

Tripathy, R. K. 2018, Total records: 31 records in 10 fold cross validation  KELM (RBF) K=5 78.71 Sen:83.45, Spec:73.27 

KELM (LINEAR) K=10 75 Sen:91.26, Spec:58.19 

KELM (POLY) K=10 83.46 Sen: 85.6, Spec: 81.30 

KELM (CWK) K=6 78.71 Sen: 79.06, Spec: 78.33 

Wang, T. 2019. Total record: 70 records  in 7 fold cross validation  
 

 

 
 

LR  91.4 Sen: 100, Spec: 75 

LDA 88.6 Sen: 100, Spec: 66.7 

SVM 82.9 Sen: 100, Spec: 50 

MLP 82.9 Sen: 100, Spec: 50 

TW-MLP 97.1 Sen: 100, Spec: 91.7 

Wang, T.2 2019. Total record: 70 records  in 10 fold cross validation  SVM 88.6 Sen: 100, Spec: 66.7 

LR 88.6 Sen: 100, Spec: 66.7 

KNNK-NN 82.9 Sen: 100, Spec: 50 

MLP 85.7 Sen: 95.7, Spec: 66.7 

LET-NET5 CNN 97.1 Sen: 100, Spec: 91.7 

Wang, T.3 2019. Total record: 25 record in 10 fold cross validation  SVM 92.3 Sen: 100, Spec: 50 

LR 84.6 Sen: 100, Spec: 50 

KNNK-NN 84.6 Sen: 90.9, Spec: 0 

MLP 92.3 Sen: 100, Spec: 50 

LET-NET5 CNN 92.3 Sen: 90.9, Spec: 100 

Wang, X. W. Total record: 30 record LET-NET5 CNN 97.8  



 

 

2020. 20 training and 10 test  

Yildiz, A. 2011. Total record: 30 record in 10 fold cross validation   LS-SVM(RBF) 100 Sen: 100, Spec: 100 

LS-SVM(POLY) 96.7 Sen: 100, Spec:95 

LS-SVM(LIN) 96.7 Sen: 100, Spec: 95 

FFNN: Feed Forward Neural Network, SVM: Support Vector Machine, LS-SVM: least-square support vector machine, QC: quadratic classifier, ANN: Artificial Neural Network, ANN-SCG: Artificial 

Neural Network- Scaled Conjugate Gradient, ANN-LM: Artificial Neural Network- Levenberg-Marquardt algorithm, CNN:  Convolutional neural network,  DNN: Deep Neural Network, RNN: 

Recurrent Neural Networks DT: Decision tree, kNNk-NN:  k-nearest neighbors algorithm, GRU: Gated Recurrent Unit, RBF: Restricted Boltzmann Machine, LDA: linear Discriminant Analysis, 

Bagging: Bootstrap Aggregating, Adaboost: Adaptive boosting, HMM: Hidden Markov Model, PLS: Partial Least Squares Regression, REG: Regression Analysis, aNBC: Augmented Naive Bayesian 

Classier, PLA: Perceptron Learning Algorithm, LMS: Least Mean Square, WienerHopf:  Wiener–Hopf equation, BDT: Bagged Decision Tree, CT: Complex Tree, LR: Logistic R



 

 

Figure 1: 

 

 

Figure 1: An overview of the implementation of machine learning techniques within the context 

 

 

 

 

 

 

 

 

 

 

 



 

 

Figure 2: 

 

 

Figure 2: PRISMA flow diagram for study selection 

 

 


