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Abstract—Adaptive single user receivers are demonstrated in
this paper for a Cooperative Virtual MIMO network apply-
ing Spread Spectrum Sequences. In asynchronous decentralized
cooperative systems, it is expected that, for typical wireless
environments, user transmissions from adjacent relaying nodes
(and other cells) will create interference. Large scale MIMO
antenna arrays can mitigate interference with sufficient degrees
of freedom but they can be underdetermined in decentralized
non orthogonal multiple access (NOMA). In this paper we use
Spread Spectrum CDMA sequences when user cooperation and
relaying is necessitated and correspondingly apply decentralized
single user algorithms utilizing an adaptive multiuser detection
approach. The approach does not require Channel State Infor-
mation (CSI) and operates in a decentralized manner without
requiring knowledge of the transmissions from other users (i.e.
power, channel gain and phase, and multiuser chips). This yields
a low interference cooperative MIMO communication network
that is useful for communication in areas with poor coverage
or to temporarily increase spectral efficiency to enable a high
throughput uplink or downlink channel. The adaptive algorithm
utilized in this paper is investigated for both chip-level and
symbol-level optimization where it noted that when applying
chip-level optimization, a more interference robust receiver can
be built when utilizing processing gain (rather than receiver
dimensionality) as a metric to combat interference when the
number of transmitter antennas used are fixed.

Index Terms—Adaptive Multiuser Detection, Cooperative
MIMO, Relaying.

I. INTRODUCTION

EMERGING mm-wave technology enables large scale
MIMO systems [1] be built into pocket sized devices.

While multiple access interference could be circumvented in
a centralized cooperative system (i.e. orthogonal transmission
schemes), in a decentralized system we cannot expect all user
transmissions to be orthogonal, particularly if arising from
adjacent cells or user clusters. Interference management is one
aspect of the challenge involved in practical wireless cooper-
ative system design. There exist numerous challenges ranging
from physical obstructions to line of site, multiple shadowing
zones, and issues of interference due to non orthogonal mul-
tiple access (NOMA). Cooperative Virtual multiple antenna
systems [2] [3] are an extension to the relaying theme - able to
assist the wireless network combat some aspects of path loss,
shadowing and outages. A Virtual Cooperative MIMO system
can increase the spatial diversity and multiplexing gain [4]
[5], but also offer significant capacity when shadowing (where
antenna’s on a small device instantly fade) occurs and roaming
causes a user terminal near the cell edge to be more susceptible
to interference and the near far effect. Naturally, implementing
a cooperative network, particularly one that is decentralized,
yields a potential interference problem arising from other
nodes and adjacent cells. The work in this paper follows up the
research we conducted in [7] [8] to broaden the topic to SHF
Spread Spectrum CDMA environments and consider adaptive
receivers [11] that, with beamforming assistance, can mitigate
interference from other decentralized terminals. We consider
interference in a cellular environment with frequency reuse of
one. In context of an asynchronous and decentralized MIMO
cooperative relay with unknown and uncontrollable sources of
interference, receivers built with adaptive multiuser detection
filters are investigated for two cases - namely where chip
matched filtering is applied prior to array optimization (which
yields a computationally efficient receiver but one which is
bound by the array dimensionality), and when joint array
and multiuser detection filter optimization is applied (yielding
higher complexity but more degrees of freedom to mitigate
interference). For the second receiver, if the multiplexing gain
of the transmitting array is fixed, interference tolerance scales
with both receiver antenna dimensionality and processing gain,
while the former is more reliant on array dimensionality. The
paper is organized as follows: In section II, the System Model
is developed. Section III offers the analysis and development
of the algorithm employed in this paper. Sections IV and
V yield the Simulation Model and Results, and section VI
Concludes this study.

They potentially offer enormous spatial computation power 
including the ability to concurrently multiplex a large number 
of channels in the same temporal and frequency space while 
also being capable of suppressing a number of interfering 
transmissions arising from other terminals. High spatial di-
mensionality is advantageous to assisting a wireless network 
combat interference while offering diversity and multiplexing 
gains. However in Nonorthogonal Decentralized Multiple Ac-
cess, for instance such as in a frequency division system like 
OFDMA (where multiple transmissions could reuse some of 
the frequency space occupied by another channel), an interfer-
ence floor develops that could overwhelm even a large array.
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II. SYSTEM MODEL

For the Cooperative MIMO channel we will form a base-
band equivalent time invariant model. We assume Nyquist
pulse shapes P (t) are sent and overlapped by a time variable,
τ with single sided Bandwidth W = 1

τ . We assume a complex
symbol alphabet is transmitted, the baseband signal at the nth

transmit antenna is

xn(t) =

∞∑
m=0

θn[m]P (t−mτ) (1)

with θn[m] the mth transmitted single/multichannel chips on
the nth transmit antenna. θ[n] = Sϕ[n] which is a scaled com-
bination (via the chip sequence matrix S) of the modulation
symbols over the layers. S =

[
sT0 , sT1 , · · · , sTK−1

]
∈ CG×K

is the matrix of chips with sk ∈ C1×G the chips applied
for MIMO layer k and G the number of chips multiplexed
per symbol. We denote N as being the number of Transmit
Antennas and K the number of spatially multiplexed single
user channels. A beamforming matrix transform will be de-
noted as D ∈ CN×K . The number of receiver antenna is
denoted as the variable U , where we assume U ≥ K. We
can equate θn[m] = δTnDϕ[m] with δn the Kronecker Delta
Vector with a 1 in the nth position and 0′s elsewhere while
ϕ ∈ CK is denoted by ϕ[m] = [θ0[m], θ1[m], · · · , θK−1[m]]T

with C the set of complex numbers. To account for trans-
mitter power control (i.e. waterfilling), if we let b[m] ∈ ΨK

be the transmitted spatially multiplexed modulation symbols
(with Ψ representing the modulation symbol set(s)), then
ϕ[m] = Σb[m] with Σ = diag[α0, α1, ..., αK−1] ∈ IRK×K a
diagonal matrix of real scalars subject to the power constraint
tr(ΣTΣ) ≤ PT with PT the available power at transmitter
and tr(•) the trace of the matrix. The baseband signal at the
uth receiver antenna after matched filtering is given by

ru(t) =

N−1∑
n=0

M−1∑
m=0

hn,uθn[m]P (t−mτ) ∗P (−t) + vu(t) (2)

with vu(t) the filtered white noise after receiver matched filter.
We therefore note the following baseband Linear Algebraic
System Model

r[m] = HDθ[m] + v[m] (3)

In this paper we will further assume D = I with I the Identity
Matrix and thus N = K. The transmitted chips θk[n] with
E[|θk[n]|2] = σ2

k are perturbed by the channel containing
two uncertainties, namely the additive white Gaussian noise
(AWGN) ν ∈ CU (with two sided PSD N0

2 = σ2
ν and

covariance σ2
νI), and the multipath propagation channel matrix

H ∈ CU×N taking the common MIMO form which is shown
in (4).

H =


h0,0 h1,0 h2,0 · · ·hN−1,0

h0,1 h1,1 h2,1 · · · hN−1,1

h0,2 h1,2 h2,2 · · · hN−1,2

. . .
h0,U−1 h1,U−1 h2,U−1 · · · hN−1,U−1

 (4)

Fig. 1. General system model of Cooperative MIMO

In Fig.(1) the Cooperative terminals are sorted in Mean
Square Error (MSE) by the algorithm in [12], with contention
and optimization for relaying resources greedy, and relays
transmitting in a SHF/ISM band applying CDMA [9] to assist
with interference management. For a Cooperative MIMO Re-
lay channel model, since user terminals are relaying each layer,
where we assume number of terminals equals the number of
layers K, the model must incorporate two propagation channel
components and power correspondingly normalized by the
number of hops employed [10]. As such, for the transmission
cluster the following model is applied (assumed dimensionality
U ) for each relay node, with the number of nodes assumed
to be K and the number of transmitted antennas employed
by the relay also assumed to be K. Hence for the kth relay
node, adopting the channel form in (4), the received signal is
rk[n] = HkDkθ[n] + νk[n] with Hk and Hk±m statistically
independent and modelled according to (4). The relay terminal
will utilize decode and forward, thus the decoded information
symbols b̂ will be used to form the chip sequences θ̂[n]. To
represent the full cluster, the matrices Hk are stacked for all
K relay terminals into one tall Matrix H̃ such that rk[n] =
H̃θ[n] + v[n] with v a vector with stacked noise from all the
antenna elements νk=0:K−1. We adopt an identical approach
regarding the receiver cluster relay to user terminal albeit with
recovered information symbols (from the relay) forming the
chip sequences, i.e. θ̂[n] instead of θ[n]. The Relay itself will
adopt a similar model where Hr = [H,HI ] ∈ CU×(K+I) and
θ =

[
θ̃
T
,θI

]
∈ C(K+I)×1 represent the channel matrix of

interest concatenated with the interference channel matrix and
the transmitted chips of interest stacked with the interference
signal. There are N · K relay transmitters (including spatial
multiplexing) and U · K total receiver channels, albeit each
can only optimize U channels independently. The information
capacity is, for decode and forwarding, C ≤ min [Cs, Cr, Cd]
with Cr the information capacity for the Relay Part of the
communication channel typically operating as the lower bound
(the other Capacity variables being that at the source to relay
and relay to destination).



III. ADAPTIVE MULTIUSER DETECTION

A. MMSE Multiuser Detector

The classic MMSE Multiuser Detector [13] is achieved with
the conditional mean estimator b̂(r) = E[b|r] when given a
cost function of E[|b−b̂(r)|2]. Utilizing a linear constraint, the
problem is minimizing the functional E∥b−Mr∥2 with M an
affine transform that minimizes the mean square error (MSE).
If M is a K×K Matrix M = [mT

0 ,mT
1 , · · · ,mT

K−1] ∈ CK×K ,
with the assumption it is full rank, it is straightforward to show
that

argmin
M ∈ CK×K E

[
∥b − Mr∥2

]
=

argmin
M ∈ CK×K trace

[
(I + σ−2ΣRΣ)

]−1

Furthermore, if Σ is diagonal (usually the case for IID
sequences), then

M = Σ−1
[
R + σ2Σ−2

]−1
(5)

We usually interpret σ2Σ−2 as the inverse SNR metric per
sublayer. The estimated variable b̂ is formed when M is
applied after a bank of Matched Filters H, i.e., b̂ = MHHr.
This form of the MMSE estimator requires full channel state
information and the sequel proposes an alternative solution.

B. MMSE Based Single User Detection: Explicit Training

Instead of using Matrix level estimation, we can take
a vector approach by utilizing training sequences for each
MIMO layer. The MMSE receiver for the kth layer for the
observed received spatial sequence r[m] with m a discrete time

index with coefficients wk =
argmin

wk

{
E
{∣∣wH

k r − bk
∣∣2}}

equate to the following filter wk = R−1E{rbk}. In the
context of the linear model (3) the autocovariance matrix
R = E{rrH} is written as (6) assuming training symbols b and
noise samples vk are independent. This can be written as R =
HΣHH + Σv , yielding the MMSE coefficients w (6) where
E{rb} = σ2

kHδk and δk is the vector [0, 0, · · · , 1, 0, · · · , 0]T
where the position of the ”1” denotes the layer of interest.

wk = σ2
k

(
HΣHH +Σv

)−1
Hδk (6)

The Autocovariance Matrix R =
(
HΣHH + σ2

vI
)

and the
Crosscorrelation vector is pk = σ2

kHδk, hence the error
functional, J(wk) at the receiver terminal for the kth layer
is defined as

J(wk) = E

{∣∣∣bk − b̂k(wk)
∣∣∣2} (7)

Expanding yields

J(wk) = E
{
θ∗k(bk − b̂k(wk))

}
−E

{
b̂∗k(wk)(bk − b̂k(wk))

}

Lemma 1 : For MMSE E
{
b̂∗k(wk)(bk − b̂k(wk))

}
= 0,

the estimate b̂k(wk) is orthogonal to the error (on aver-
age). Proof : E

{(
wH

k r
)∗ (

bk − rHwk

)}
= E

{
wH

k rb∗k
}
−

E
{
wH

k rrHwk

}
. Hence, with wk is constant, then

E
{(

wH
k r

)∗ (
bk − rHwk

)}
= wH

k pk −wH
k Rwk

Corollary 1 : The MMSE solution is wk = R−1pk.
Using the substitution wH

k pk − wH
k Rwk = 0 the MMSE

E
{
b̂∗k(wk)(bk − b̂k(wk))

}
= 0. When wk = R−1pk, it is

easy to show that J(wk) = E
{
b∗k

(
bk − b̂k(wk)

)}
. Notinh

J(wk) = σ2
k −wH

k pk, therefore,

J(wk) = σ2
e [k] = σ2

k − pH
k R−1pk (8)

where σ2
e [k] is the variance of error for the kth estimator.

J(wk) is the error function, where if wk = R−1pk the
minimum mean square error estimator is obtained.

Although the form in (8) differs from (5) it is easy to show
that the same estimate b̂[n] and thus MSE is achieved - i.e.
that splitting the problem into a bank of individually optimized
filters wk is the same as using the Matrix Transform in (5).
Since the Matrix

∑
is diagonal in (6), we can rewrite the

weight vector as

wk = Σ−1
(
HHH + σ2

vΣ
−1

)−1
Hδk

with Σ = diag[σ2
0 , σ

2
1 , · · · , σ2

K−1] with a 1 in the kth position.
If we define R = HHH and apply the Matrix Inversion
Lemma, we obtain

wk =
σ2
k

σ2
ν

hk − σ−2
ν

[
H
(
R + σ2

vΣ
−1

)−1 HH
]

hk

The scalar estimate b̂k = wH
k r can be packed as a vector

b̂ = [b̂0, b̂1, · · · , b̂K−1]
T , hence with

b̂k =
σ2
k

σ2
ν

hH
k r − σ−2

ν hH
k H

(
R + σ2

vΣ
−1

)−1 HHr

we can note the vector estimate b̂ us given as

b̂ = σ−2
ν

[
Σ
(
R + σ2

vΣ
−1

)
− R

] (
R + σ2

vΣ
−1

)−1 HHr

If Σ = I, then

b̂ =
(
R + σ2

vΣ
)−1 HHr

which is the same as in (5). The regressor r[n], operated on
by the filter w yields decision variable b̂[n] = wHr and steady
state error given in (8), will be rewritten as

σ2
e = 1− δTk HH

(
HHH + γ−1

snrI
)−1

Hδk (9)

assuming that symbol sequences are unit power σ2
k = 1,

noise autocorrelation matrix Σν = σ2
νI, and γsnr =

σ2
θ

σ2
ν

the
SNR for an AWGN equivalent channel. Using the Singular
Value Decomposition on the matrix H = AΘBT , with A the
eigenvectors of HHH , B the eigenvectors of HHH, and Θ
the singular values with number of non-zero entries equal



to rank(H). Substituting into (9), noting that AHA = I,

BHB = I, ΘΘT = Λ and
(

AΘAH
)−1

=
(

AΘ−1AH
)

,

and ΘΘT = Ψ, then

σ2
e = 1− δTk B

[
Θ

(
Ψ2 + γ−1

snrI
)−1

Θ
]−1

BHδk

Let Λ = Θ
(
Ψ2 + γ−1

snrI
)−1

Θ represent the diagonal matrix
and ρk = BT δk, then

σ2
e = 1− ρH

k Λρk

The Signal to Interference and Noise Ratio for the estimator
is

SINR =
ρH
k Λρk

σ2
e

=
ρH
k Λρk

1− ρH
k Λρk

=
1− σ2

e

σ2
e

The SINR per layer is related to the channel capacity for
MMSE estimators.

Lemma 2 : The capacity of a MIMO system with random
signatures utilizing a bank of MMSE filters was derived in [15]
and given by C = Imax(bk; b̂k(wk)) = log

(
1

σ2
e [k]

)
. Proof :

If a vector of coefficients wk is chosen to minimize mean
error, the error signal is orthogonal to the symbol estimate(
E
{
b̂∗k(w)(bk − b̂k(w))

}
= 0

)
. When modulation symbols

per layer, b1, b2, ..., bk are Gaussian distributed random vari-
ables with zero mean, then

1) b̂k(wk) is also Gaussian
2)

(
b̂k(wk)− bk

)
is also zero mean Gaussian

Lemma 3 : p(b) is a single variate distribution with
standard deviation σb, the maximum entropy [14] H(b) =
σblog

(√
2πe

)
.

Lemma 4 : Given two independent variables α and β. The
entropy of α given β is given by [16] H(α|β) = H(α)
Lemma 5 : For any two random variables α and β [16],

H(α, β|β) = H(α|β)
The mutual information is given by:

I(bk; b̂k(w)) = H (bk)−H
(
bk|b̂k(w)

)
Hence,

I(bk; b̂k(w)) = H (bk)−H
(
bk − b̂k(w)|b̂k(w)

)
Imax(bk; b̂k(w)) = log(σ2

b )− log(E(n2
e))

with the modulation alphabet normalized to unit rms σb = 1,
then

Imax(bk; b̂k(wk)) = Ck = log

(
1

σ2
e [k]

)
(10)

where substituting (8) into (10) yields

Ck = log

(
1

1− pH
k R−1pk

)
(11)

where 0 ≤ pH
k R−1pk < 1. In this paper we will be

calculating the sum rate capacity for the spatially multiplexed
system, i.e.

C =

K−1∑
k=0

log

(
1

1− pH
k R−1pk

)
(12)

C. AMUD Via Least Mean Squares

The Least Mean Square (LMS) algorithm [11] can be used
instead. In it’s standard form it is given as:

wk+1 = wk + αe∗ky (13)

where e∗k is the conjugate of the instantaneous error and α is
the step size parameter which is [11] bounded by:

0 < α <
2

λmax
, and,

2M+1∑
i=1

αλi

2− αλi
< 1

where λi is the ith eigenvalue of the autocorrelation matrix
R, λmax is the maximum eigenvalue with U = 2M + 1 the
number of estimator coefficients. The steady state MSE for
the LMS algorithm is given by:

e(∞) =
J(wk)

1−
∑2M+1

i=1
αλi

2−αλi

(14)

Provided that α is small, the steady state error is approximately
(8) J(wk). Typically a larger value of α is used to speed up
convergence until it reaches steady state and then a small value
of α is used to drive the steady state MSE closer to J(wk).

IV. SIMULATION PARAMETERS

For simulations where the Bit Error Probability was es-
timated, we used 64 − QAM modulation. For the capacity
analysis, unit power Gaussian sequences were utilized. The
fading channel statistics were assumed to be Rayleigh dis-
tributed. For propagation purposes we assumed the distance
between cooperative user terminals in transmitter to coop-
erative relay and cooperative relay to cooperative receiver
cluster terminals were the same. For both Capacity and Bit
Error Probability Analysis, power scaling was applied by the
number of antenna terminals utilized in both directions, as
well as scaling noise floor considering the Relay to Relay
communication utilizing CDMA sequences. The Sum Rate
Capacity for the single user (Spectral Efficiency) was left
unscaled by the ratio of bandwidths (symbol rate divided by
chipping rates) since the Relay to Relay channel is assumed
multiple access. In each cluster, we assumed that the number
of user terminals was 32 and that they were statistically
uncorrelated fading channel wise. We modelled the transmitter
and receiver clusters optimization wise when selecting the best
4 terminals out of 32. Our transmitter user terminal of interest
used K = 4 antennas for spatial multiplexing. We assumed
the receiver system was equipped with U = 8 antennas and
assume that the same resources are employed by the relay
terminals. We consider the application for our approach to
be mm-wave channels within each cluster but SHF channels
on the relaying side to account for obstacles and shadowing
inevitable for longer haul mm wave communication with no
line of sight. The local cluster could be designed for the
28GHz band while the relaying stage could employ an ISM
band like 5.8GHz. The number of interferer’s are treated as
a simulation variable. The results were averaged over 1000
multipath channel realizations while Monte Carlo Simulation



Fig. 2. Receiver 1 Employed in this Paper

was employed to estimate the Bit Error Probability (BEP).
The estimator wk = [wk,0, wk,1, · · · , wk,U−1]

T ∈ CU are the
coefficients for one DOF, producing a symbol estimate b̂k[m]
= wH

k r[m] where k = 1, 2, ...,K the index for the Spatially
Multiplexed Symbols and number of estimators. We design
the estimators to recover the modulation symbols b̂k[m] but we
choose to estimate symbol sampled or chip sampled sequences.
The receiver algorithms are referred to as Receiver 1 Fig. (2)
and Receiver 2 Fig. (3) respectively. The modelling parameters
are given herewith for Receiver 1. Given Hr ∈ CU×(K+I), let
ΣHn = diag [Hr(n)] ∈ C(K+I)×(K+I) with Hr(n) indicating
the nth row of the matrix Hr. The bank of matched filters ST

yields soft information RΣHn
b + νn. Letting An = RΣHn

with R = ST S a K × (K + I) matrix and n = 1, 2, . . . , U an
index referencing the A matrix on each receiver antenna, defin-
ing Bk =

[
A1(k)

T ,A2(k)
T , · · · ,AU (k)

T
]T ∈ CU×(K+I)

with Au(k) the kth row for the uth antenna matrix Au enables
a model to be build for each of the K layers transmitted
/ relayed. For the kth layer, an adaptive multiuser detector
can be utilized to estimate the transmitted symbols given
γk = Bkb+νk ∈ CU×1 with the estimator for bk utilizing the
error metric bk − wT

k γk. For Receiver 2, the following model
applies: Defining An = SΣHn

∈ CG×(K+I), stack An∀n
into a tall matrix Bk =

[
A1(k)

T ,A2(k)
T , · · · ,AU (k)

T
]T ∈

CGU×(K+I) with the linear model banks of chips rather
than symbols. For the kth layer, the symbol estimate from
γk = Bkb+νk ∈ CGU×1 is obtained with adaptive multiuser
detection with the estimator for bk utilizing the error metric
bk − wT

k γk.

V. DISCUSSION

The Bit Error Probability results shown in Fig. (5) yield
a comparison between the two different receiver approaches,
and the information Capacity results are shown in Fig. (6).
It was expected that under a no interference scenario the
two receivers would yield near identical performance. The
advantage with receiver 1 in low interference environments
is that it could be simplified to just a bank of matched filters
and a maximum ratio combiner if there was minimal multipath
and orthogonal spreading sequence applied. The caveat to
receiver 1 is that it can be quickly rendered underdetermined,

Fig. 3. Receiver 2 Employed in this Paper

in this example, with number of interferers > 5 unless one
increases the receiver dimensionality(under the assumption of
independent fading on each antenna to maximize the number
of degrees of freedom). Altering the processing gain increases
the performance saturation limit but will still yield link budgets
as interference limited. The converse is true when examin-
ing receiver 2 which yields significantly higher interference
tolerance due to both processing gain and receiver antenna
dimensionality yielding greater degrees of freedom. The caveat
to chip based optimization is the ”SNR” will be quite low thus
will be far more affected by phase noise and receiver noise
margin / sensitivity issues - particularly regarding quantization.
Without modelling or accounting for physical device limits,
Fig. (4) indicates that the LMS algorithm utilized in this paper
converges as well as it does in the case for receiver 1. The
measure of information spectral efficiency was information
bit rate normalized to single sided Nyquist Bandwidth. The
difference between both receiver approaches, at least based
on the simulation parameters presented in the paper, is ap-
proximately 10 bits/s/Hz (at a SNR of 30dB) subject to an
interference constraint of 16 users. Bit Error Probability (BEP)
wise, Receiver 2 achieves close to the interference free AWGN
bound. Conversely, strong saturation in performance is evident
for Receiver 1.

VI. CONCLUSION

Two Receiver based optimization schemes are investigated
applying Adaptive Single User Receiver Algorithms. They are
demonstrated in this paper in context of Cooperative MIMO
SHF broadcasting with applications envisaged in cases where
the local MIMO channels are under a poor reception power
constraint, i.e. such as being obstructed between receiver and
base-station. The cooperative relaying is employed so that
the terminal need not radically adjust the information rate
due to loss of spatial degrees of freedom or fidelity. The
Adaptive Receivers investigated do not require Channel State
Information (CSI) to perform estimation and this is advanta-
geous in communication environments where interference will
practically be unavoidable. The same algorithm that drives
interference rejection at the receiver is utilized in forming
a Mean Square Error Metric for initializing the Cooperative
Communication Channels, which is an advantage of adopting



Fig. 4. LMS MSE vs Iterations for Receiver 1 and Receiver 2.

Fig. 5. Information Spectral Efficiency for Receiver 1 and Receiver 2 for #
Receiver antennas U = 8, # Relay Transmit antennas K = 4 per Relay, #
Interferers I = 4, 8, 16, and spreading factor G = 32, 64.

an adaptive MMSE approach. The adaptive algorithm utilized
in this paper is investigated for both chip-level and symbol-
level optimization where it noted that when applying chip-level
optimization, the system is more robust against interference
utilizing processing gain (rather than receiver dimensionality)
as a metric and variable to combat interference given the
number of transmitter antennas used are fixed.

Fig. 6. BER Comparison for Receiver 1 and Receiver 2 for # Receiver
antennas U = 8, # Relay Transmit antennas K = 4 per Relay, # Interferers
I = 4, 8, 16, and spreading factor G = 32, 64.
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