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Abstract. Digital Twins, as a suite of technologies is progressively developing 

significant momentum in several fields of study. Various research works have 

been conducted outlining the concept, the underlying technologies, general 

and context-specific architectures, and applications. This study has been 

undertaken to identify relevant research areas, key authors, publishers, and 

geographical distribution of publications on digital twins through a systematic 

review and bibliometric analysis, to inform the trajectories of future research in 

the field. A keyword-based search for journals was first conducted in Web of 

Science Core Collection to obtain documents relevant for this study, and a 

systematic review was performed in accordance with the PRISMA guidelines. 

A bibliometric analysis was then performed on the extracted data using the 

VOSviewer software.  The Tableau software and Microsoft Excel were also 

used to analyse and visualise some of insights derived from the analysis. 

Keywords: Digital Twin, DT, Architecture, Reference Model, Digital Twin 

Application 

1. Introduction 
 

David Gelernter, an American computer scientist from the Yale University predicted digital 

twins back in the 1990s; He referred to the notion as “Mirror World” and described it as a 

technological voodoo figurine which would allow the world to be seen more profoundly, 

through the use of massive open software masterpieces (Gelernter, 1991). The concept, 



 

according to Grieves & Vickers (2017), gained recognition in the year 2002 when the 

University of Michigan presented the development of a Product Lifecycle Management 

(PLM) centre to industry. The conceptual idea for PLM had all the features of a digital 

twin: the tangible asset, the virtual asset, link for data flow from tangible asset to virtual 

asset, and vice versa. Digital twin can be described as the virtual delineation of a physical 

asset using data and stimulators for optimisation, real-time predictions, observing, and 

management, for superior decision making (Rasheed, et al., 2020). According to Maria 

(2020), the key components of digital twins are the model of the physical asset, the 

timeseries data captured with sensors from the asset, the unique identifiers that connect 

the physical asset and the virtual model, and its monitoring capability using cameras, 

sensors, etc. The implementation of digital twin facilitates cost reductions, improved 

product design (Crawford, 2021), and predictive and preventive maintenance 

(Daneshkhah, et al., 2017). In the bid to implement digital twin, various architecture and 

reference models have been proposed. As per Talkhestani, et al. (2019) and Aheleroff, 

et al. (2021), there has not been a clear holistic reference architecture for digital twin 

implementation: Different digital twin architectures have been proposed in different 

situations. Currently, digital twin is being applied in numerous sectors: Manufacturing, 

Healthcare, Production, Education, City Management, and many others.  

There has been a number of bibliometric analyses in several aspects of digital twins: Ante 

(2021) performed a bibliometric analysis on digital twin technology in smart manufacturing 

and industry 4.0, Radanliev, et al. (2021) evaluated artificial intelligence and IoT cyber-

physical systems in industry 4.0, and a bibliometric review was completed for digital twin 

enabled smart industrial systems by Ciano, et al. (2020), among others. This study 

however sought to comprehensively assess and analyse trends in overall digital twin 

research in terms of publication volumes, geographical dissemination, key authors, major 

journals, prominent publishers, countries and organisations, and research areas to 

determine the current and future trajectories for digital twin research. This was achieved 

by identifying and reviewing existing literature in relation to digital twins, its architecture, 

and applications, selecting keywords and conducting a systematic review, and adopting, 

and applying appropriate analysis tools for conducting a thorough bibliometric analysis, 



 

and discussing the findings. This helped to provide better insight on the state of existing 

literature in digital twins, and to inform future directions of research within the field. 

2. Related Work 

2.1. DT Definitions 

Digital Twin (DT), which has been referred to as a fundamental enabler to digital 

transformation by Kritzinger, et al. (2018), has been defined by several researchers after 

its inception by Michael Grieves in 2002. In (Grieves & Vickers, 2017), digital twin was 

described as a holistic virtual view achieved by stripping information from a physical 

asset. Majumdar, et al. (2013) characterised digital twin as a fundamental paradigm that 

will include measurable data of material level attributes with high-level sensitivity. Wright 

& Davidson (2020) defined digital twin as a workable virtual model of a physical object. 

The concept was similarly described by Rosen, et al. (2015) as accurate models of the 

present state of a process and its conduct in collaborating with its ecosystem in the real 

world. Madni, et al. (2019) referred to the concept as a dynamic virtual model of a service, 

process, or system. Other researchers, including Barricelli, et al. (2019), Jones, et al. 

(2020) and Schleich, et al. (2017), in their definitions, related digital twin to computer-

based models that mirror a physical system. This explains how the virtual model 

stimulates, emulates, and mirrors the physical asset using information assessed from the 

physical asset. On the other hand, Alam & Saddik (2017) and Schroeder, et al. (2016) 

referred to digital twin as “Part of a Cyber-Physical System” which may be defined as a 

group of physical units which have virtual components as their digital version, that work 

together with a virtual reality via a communication medium.  

While one may be tempted to think that a digital twin is only a simulation or model, Grieves 

(2014), Kritzinger, et al. (2018) and Negri, et al. (2017) argue that it goes beyond that: A 

digital twin is an intelligent model which can evolve, and it follows the lifecycle of the 

physical asset. It allows predictions of future system failures and defects and facilitates 

simulation in order to test new configurations and facilitate predictive and preventive 

maintenance. The mirroring process is enabled by the harmonisation and continuous 

communication between the physical asset, its immediate environs, and its digital twin. 



 

2.2. DT Characteristics 

These authors in their definitions of digital twins had these characteristics in common: the 

physical object, the virtual model, and its interactions.  

2.2.1. The Physical Object 

This is the real-world artefact from which a digital replica is created. It may be an 

equipment, a component of an equipment, a process, or a living organism. Researchers 

often use specific terms such as ‘product’, ‘component’, ‘system’, etc to refer to these 

physical objects. As they are real-world objects, they are not usually characterised by the 

word ‘physical’. In order to generalise and encompass all forms of physical objects, 

literature presents the use of some terms, including ‘Physical Asset’ (Huynh, et al., 2019; 

Paripooranan, et al., 2020), ‘Physical Entity’ (Barricelli, et al., 2019; Tao, et al., 2019), and 

‘Physical System’ (Ketzler, et al., 2020). For the purpose of this study, all three terms will 

be used interchangeably. The physical entity has its own surrounding environment or real-

world space within which it exists which includes all the parameters that may have an 

impact on the physical entity. This real-world space in which the physical entity exists has 

been named in literature as ‘Physical Environment’ (Leng, et al., 2019; Jones, et al., 

2020). The physical environment includes the location, infrastructure, and technologies 

available, the time, and the status of the physical entity, among others. 

2.2.2. The Virtual Entity 

According to Bauer, et al. (2013), there are several kinds of virtual representations of 

physical assets: databases, 3D models, social media accounts, avatars, etc. However, 

the virtual entity is a controlled virtual representation of the physical asset that is precise 

on both a micro and macro level.  Just as with the physical asset, the virtual entity is 

referred to by a number of terms for specificity; ‘cyber’, ‘model’, etc. For generalisation 

purposes Jones, et al. (2020) proposed the use of ‘Virtual Entity’. Equally, the virtual entity 

has a surrounding environment which is a mirror the real-world environment. This has 

been popularly referred to as ‘Virtual Environment’ by researchers, including Grieves 

(2014) and Toivonen, et al. (2018). Lohtander, et al. (2018) described the virtual 

environment as parallel environment. This is because it precisely reflects the procedures 

and actions of the physical environment. 



 

2.2.3. The Interaction Between the Physical Entity and the Virtual Entity 

There is an endless connection between the physical entity and virtual entity in a digital 

twin. Barricelli, et al. (2019) explained that data is continually exchanged and revised as 

a result of real-time data uploads and big data analytics. Through this connection the 

state of the physical entity is conveyed to and mirrored by the virtual entity. Similarly, as 

explained by information flow and processes from the virtual entity is transmitted to and 

displayed by the physical entity. The physical entity and the virtual entity complement 

each other by facilitating data collection, storage and analysis from the entities and 

surrounding environment (Al-Ali, et al., 2020). The data, processes and information that 

flow between the physical entity and virtual entity are known as parameters and it is a 

two-way flow that can influence both entities. 

2.3. DIGITAL TWIN ENABLING TECHNOLOGIES 

There are new digital technologies springing up each day that support digital 

transformation. As part of this digital transformation, a technology that creates a virtual 

prototype of a physical entity has been introduced and is known as a digital twin 

technology (Lawton, 2021). Digital twins render unique visibility into physical systems and 

processes to be able to spot bottlenecks, be innovative and to restructure operations. As 

such, Aho (2020), termed digital twin as a facilitating technology for smart lifecycle 

management. According to Qi, et al. (2021), in the bid to create a digital twin of a physical 

entity, various digitalisation technologies have been employed. These digitalisation 

technologies include Internet of Things, Artificial Intelligence, Machine Learning, big data 

analytics, and cloud computing. The digitalisation technologies facilitate the converging 

of the physical and virtual entities of a digital twin. 

2.3.1. Internet of Things 

Internet of Things (IoT) is considered as one of the key enablers of digital twin. According 

to Nord, et al. (2019), IoT has no standard definition, although it has been defined by 

several researchers over the years. Lee & Lee (2015) defined it as a network of machines 

that can interact with each other. Correspondingly, Ornes (2016) characterised IoT as a 

connection of devices that keep growing and is able to capture and distribute data. Ben-

Daya, et al. (2019) gave a more detailed definition by including features of connectivity, 



 

its nature that facilitates storage and sharing of data, and the communication among 

devices. They defined IoT as a network of real-world objects that are connected digitally 

to sense, observe, and collaborate in order to enable information sharing. These 

definitions refer to devices that are connected together and interact. The two components 

that these connected devices have in common are sensors to collect data and a means 

to analyse and communicate the collected data in real-time. This real-time analysis is key 

to digital twins as the sensors attached to the connected devices collect data and feed it 

to the digital twin instantaneously (Dave, 2020). Using this data, new concepts and logic 

are developed and tested on the digital twin. 

2.3.2. Artificial Intelligence 

Artificial Intelligence (AI) has been described by Amisha, et al. (2019) as the ability of 

computers and other technologies to mimic intelligent actions and critical thinking 

equivalent to a human. Despite the importance of intelligent systems, Teng & Gong 

(2018) argue that, without a learning ability it cannot be truly referred to as an intelligent 

system. The method through which a system is able to acquire knowledge on its own is 

known as Machine Learning (ML). Artificial intelligence and machine learning have 

become leading problem-solving methods, as drastic improvements in the capability and 

use of advanced analytical tools have changed the extraction of useful insights from big 

data. According to Dilmegani (2021), digital twins benefit from artificial intelligence and 

machine learning, since artificial intelligence and machine learning algorithms enable the 

development of some digital twins as well as the processing of big data gathered from 

digital twins. Machine learning frameworks facilitate the development of systems that can 

make independent decisions and make accurate predictions about future conditions using 

real-time data (Dohrmann, et al., 2019). Through machine learning, the processes 

become more intelligent, leading to more accurate management and analysis of complex 

data for better predictions. 

2.3.3. Big Data Analytics 

The large amounts of data generated from several different sources at high speed has 

necessitated big data analytics (Esmaeilbeigi, et al., 2020). Vassakis, et al. (2018) defined 

big data analytics as the collection, storage, assessment, and visualisation of large data 



 

sets to ascertain valuable insights to promote innovation, and transform businesses, as 

well as economies. Arunachalam, et al. (2018) explained that big data analytics is 

multidisciplinary and is characterised by its capability of managing data with four qualities: 

Volume (the size of the data), Velocity (the speed at which the data is produced), Variety 

(the format in which the data comes), and Veracity (the consistency of the data). Other 

researchers also characterise big data by the 3Vs (Volume, Velocity & Variety) (Zerhari, 

et al., 2015; Esmaeilbeigi, et al., 2020) or the 5Vs (Volume, Velocity, Variety, Veracity & 

Value) (Chen, et al., 2015; Polat, et al., 2019). According to Frankenfield (2020), most of 

the methods and processes involved in big data analytics are automated to evaluate data 

in order to identify critical patterns and metrics for better understanding. Big data analytics 

adopts different aspects of numerous scientific disciplines such as artificial intelligence, 

machine learning, statistics, system theory, and many others. As argued by IEEE Big 

Data (2018), big data analytics acts as an enabler for digital twins such that it allows 

creators of the digital twins to swiftly identify new development opportunities, make a 

diagnosis and rectify complications before they get out of control. 

2.3.4. Cloud Computing 

Cloud computing is one of the fastest emerging technologies in computing. National 

Institute of Standards and Technology (NIST) defined cloud computing as a model for 

facilitating accessible, on-demand system access to shared configurable computing 

resources such as servers, storage, applications, and networks with little or no service 

management interference. As explained by Hosseinian-Far, et al. (2018), the emergence 

of cloud computing is to address the need for businesses to collect and store huge 

amounts of quality data from numerous sources. Creating and managing a digital twin 

requires intensive computing and storage of data. According to Kumar, et al. (2018), cloud 

computing model consists of cloud provider, one who provides cloud services; a cloud 

consumer, one who gets the cloud service from the cloud provider; a cloud carrier, one 

who provides connectivity between the cloud provider and the cloud consumer; a cloud 

broker, one who interacts between the cloud provider and the cloud consumer to facilitate 

the business transaction; and the cloud auditor, one who independently assesses the 

cloud services, information systems, and performance and security operations. They 

explained further that the formalised service models are Infrastructure-as-a-Service 



 

(IaaS), Platform-as-a-Service (PaaS) and Software-as-a-Service (SaaS). Dohrmann, et 

al. (2019) expounded that, through the use of software-as-a-service (SaaS) solutions, 

which is a cloud-based software provision method for users, the cost of processing and 

storing the large amounts of data involved in digital twins continuous to decrease. It 

enables the developers of digital twins to acquire their needed computing resources as 

and when required at affordable costs. The computing power and resources necessary 

for real-time running simulations and forecasting of big data has been made widely and 

readily available by cloud computing. 

2.4. DT Architecture 

Generally, a digital twin architecture consists of a physical entity, its virtual entity, and a 

communication mechanism between the physical and virtual entities. As per Khan, et al. 

(2020), there is no single openly accepted architecture for digital twins. As such, several 

digital twin architectures have been proposed for different settings. The proposed digital 

twin architectures include 5C architecture, COGNITWIN, Intelligent digital twin, Six-Layer 

architecture, among others (Steindl, et al., 2020). 

2.4.1. The 5-Layer Model of Cyber-Physical Systems 

As the affordability and availability of computer networks, data acquisition systems and 

sensors are continually increasing, the use of high-tech methods has become a major 

force in several industries. These high-tech methods have led to the generation and use 

of large amounts of data, known as big data, accessed through these sensors and 

networked systems. According to Greer, et al. (2019) the technologies used to manage 

the networked systems between a physical entity and its computational abilities is known 

as a Cyber-Physical System (CPS). Lee, et al. (2015) proposed a 5-layer Cyber-Physical 

System known as the 5C architecture which gives a procedural guideline for creating and 

implementing a Cyber-Physical System for manufacturing applications. The five levels of 

the 5C architecture includes ‘Connection’, where effective sensors are selected, and 

precise and consistent data is acquired from manufacturing systems. Due to the 

availability of different types of data, a unified and tether-free technique for acquiring and 

transferring the data to the main server is useful. Also, it is crucial to select the most 

appropriate sensors for this level; ‘Conversions’, where important information is inferred 



 

from the raw data acquired. At this level, the architecture draws awareness to the health 

value and estimated useful life left for the machines involved through health management 

applications and prognostics; ‘Cyber’, which is the vital information centre such that it 

receives information from every connected device to form a network. Due to the massive 

information received on this level, the previous, current, and future performance of each 

device in the connection can be assessed to facilitate self-comparison among devices; 

‘Cognition’, where infographics are used to transfer the vital information acquired to users. 

Here, decisions can be made on priority functions due to the availability of information on 

device statuses and comparative information; and ‘Configuration’, which is the response 

from the virtual space to the physical space and serves as an executive control to enable 

devices to self-configure and self-adapt. The corrective and preventive decisions 

undertaken in the Cognition Level is applied here (Figure 1). 

 

Figure 1: An image depicting the 5 Layer Cyber-Physical System/ 5C architecture adopted from (Lee, et al., 2015) 
and illustrated by author. 

According to Lee, et al. (2015), employing a 5-Layer Cyber-Physical System in factories 

offer numerous benefits to production lines which consists of elements such as sensors, 

machinery, and production system. For the elements, the moment the sensory data from 

vital components has been transformed into useful information, a cyber-twin of the 

components will be liable for securing time machine records and integrating future 

measures to provide self-awareness and self-forecast. Subsequently, more complex 

machine data would be collected to the elements information to observe the status and 



 

create the cyber-twin of each device. These cyber-twins provide the extra self-

assessment ability. Then with the production system, accumulated information from 

elements and device level information provide self-customisability and self-operability to 

the factory. At this point, the level of knowledge available guarantees a near zero 

production downtime and facilitates production and inventory planning for optimisation. 

Ahmadi, et al. (2017) asserts that the 5-Layer Cyber-Physical System facilitates 

engineering of better devices by leveraging performance data, remote device 

management, and operation optimisation, among other. 

2.4.2. Six-Layer Digital Twin Architecture 

A Six-Layer Digital Twin Architecture was created by Redelinghuys, et al. (2019) to 

facilitate interaction between the physical and digital entities, as well as the digital entity 

and the external world, targeted at circumstances where the products of several suppliers 

are utilised in the physical entity and the rest of the digital twin. According to 

Redelinghuys, et al. (2020), the Six-Layer digital twin architecture was inspired by the 5C 

architecture of Lee, et al. (2015). The first and second layers comprise of the physical 

entity. The first layer consists of physical devices such as sensors which exchange 

signals with the local controller. The local controller is located at the second layer which 

is the data source for the physical entity. The third layer provides a communication 

interface which is supplier neutral between the physical entity and the other layers of the 

architecture. Aside communicating with layer 4, it is able to directly log data to the cloud 

in layer 5 and at times layer six (Redelinghuys, et al., 2020). The fourth layer, also known 

as the IoT Gateway processes the data from the third layer to obtain useful insights for 

the upper layers. The fourth layer interfaces with the cloud data source, and the local data 

source. As such, adding a graphical user interface to this layer, where some of the major 

digital twin operations can be managed, is appropriate. The fifth layer is a cloud-based 

information repository for the physical and digital twin. As different stakeholders may have 

different information needs, numerous repositories are seen at this level. Holding the 

repositories in the cloud improves ease of access and use, and connectedness to the 

digital twin (Redelinghuys, et al., 2019). The sixth layer serves as a dashboard which 

connects the user to real-time historic information about the physical entity. It is equipped 



 

with emulation and simulation software such as Siemens Tecnomatix Plant Simulation 

which allows a user to interface with this layer. 

2.4.3. COGNITWIN 

Abburu, et al. (2020) presented an abstract architecture of the Cognitive Twin Toolbox 

(COGNITWIN) focusing particularly on the process industry. Three stages of twins were 

established: a Digital Twin, which makes use of only isolated prototypes of the physical 

system; a Hybrid Twin which has the ability to interrelate with its prototypes; and a 

Cognitive Twin which uses protracted prototypes that include proficient knowledge for 

problem-solving and to handle unfamiliar circumstances. The toolbox suggests five 

layers: Model Management Layer, Data Ingestion and Preparation Layer, Service 

Management Layer, Twin Management Layer, and a User Interaction Layer.  

The required model types are almost parallel to the distinct semantic models in the 

reference framework for digital twin proposed by Josifovska, et al. (2019) and contains 

first-order theory models based on the underlying physics, empirical models, etc. The 

Service Management Layer is liable for managing services, like registering and planning. 

Two types of services are distinguished. Data-driven and model-based driven services 

are the two types of services recognised. The Twin Management Layer controls the 

composition of the digital twin, especially, the management problem as a result of 

changes in the performance of the physical system. The toolbox also presents a User 

Interaction Layer where clients can delve into the COGNITWIN. 

2.5. DIGITAL TWIN APPLICATIONS 

As a result of artificial intelligence, machine learning, Internet of Things, Big Data 

Analytics, and cloud computing working together, digital twins has become more detailed 

and predictive, thereby facilitating valuable applications. Digital twins have been applied 

in several sectors, ranging from healthcare to manufacturing. Some application cases 

emerging from literature are discussed as follows.  

2.5.1. Manufacturing 

According to Fuller, et al. (2020), the greatest reason for applying digital twins in the 

manufacturing sector is finding ways to track and monitor products while saving time and 

money. Other drivers for the application of digital twins in manufacturing include the need 



 

to gain competitive advantage, requirements for production flexibility on the market, the 

desire to follow a worldwide movement, the need to achieve process transparency, and 

safety concerns, among others (Neto, et al., 2020). As manufacturing processes are 

increasingly becoming digital, it is opening up opportunities for smart manufacturing. Qi 

& Tao (2018) explained that digital twins in manufacturing help to bridge the gap between 

the physical and virtual processes such that the use of IoT for the collection of real-time 

data in large volumes, based on cloud computing allows manufacturers to identify 

bottlenecks in their processes, trace to the root-cause and find the best possible solution. 

This ensures that manufacturing processes are efficient and more competitive. In accord, 

Xu, et al. (2019) also explained that digital twins provide a new concept for fault diagnosis 

such that issues in manufacturing processes which cannot be traced to its root-cause and 

assessed physical, can be evaluated on the virtual twin, with the appropriate what-if 

analysis to find the best solution.  

2.5.2. Healthcare 

Digital twins in healthcare is classified under digital health technology. Here, the physical 

entity may be living, may be in the form of wearable devices, software for diagnosis, 

medical devices, or drug development. Philips (2018) explored digital twins of a human 

heart. They focused on how clinicians could confidently assess disease states of the 

heart, determine treatment, and guide therapies enabled by anatomical intelligence. Liu, 

et al. (2019) developed a healthcare system referred to as cloud healthcare which is 

based on digital twin healthcare (CloudDIGITAL TWINH). It offers important insights into 

a design of a setup that consists of the patient, the physician, the digital twin, and the 

technical implementation of the digital twin prototype. With the digital twin healthcare 

potential solutions can be assessed in virtual environments, such as drug 

experimentations, preparations and simulations for surgeries, staff scheduling, etc. Also, 

Orcajo (2021) described wearables with sensors that feed real-time data to the cloud 

healthcare to enable patient monitoring and help develop model for the early detection of 

symptoms, diagnosis of diseases at its early stage and assess the effectiveness of 

treatment. Several drugs may also be tested on the digital twin patient to select the best 

drug for the situation, given the patient’s medical records and conditions. 



 

2.5.3. Smart Cities 

According to Kosowatz (2021), digital twins are being employed in the planning of cities 

to facilitate planning and prediction. The digital twin of a city is expected to reflect 

accurately and affect the laid down procedures used to operate and manage the city. As 

explained by Khajavi, et al. (2019), the virtual mirror of a city with all the constituents of 

the city represented on the virtual entity, provides an opportunity to improve operability 

and city planning. The major areas identified by Kumar, et al. (2020) as vital for developing 

smart cities are physical infrastructure, planning, information technology infrastructure, 

and smart solutions such as tourism services, tragedy management, etc. Smart cities are 

to improve residents’ lives, promote security and environmental efficiency, through 

centrally regulated and supervised technical infrastructure (Niaros, et al., 2017). As 

asserted by Farsi, et al. (2020), digital twin technologies are important for city 

development and efficiency as it facilitates monitoring, the ability to clearly visualise, 

detecting and predicting concerns in real-time. Having the ability to view all nooks and 

crannies, and systems within a city virtually and applying what-if scenarios by leveraging 

on IoT technologies, artificial intelligence, and other technologies, to see what effects it 

will have on the city and its residents gives an opportunity to improve traffic flow, enhance 

energy efficiency, and improve security, among others. Some examples of smart cities 

given by Kosowatz (2020) include Singapore, which has integrated smart technologies 

into housing via a framework that takes into account, buildings, living, environment and 

planning to be able to analyse solar diffusion, wind flow, best sites for new constructions, 

etc; Dubai, which uses artificial intelligence to monitor bus drivers in order to reduce car 

accidents caused by exhaustion, and also having self-governing police stations where 

residents can make reports and pay for fines without dealing with a human being; and 

London, which desires to achieve a connected London by installing 5G cells 200 metres 

apart, using drones to identify places where cellular antennas can be installed, and fitting 

lampposts with sensors and charging ports for electric vehicles. 

2.5.4. Education 

Digital twin is becoming a new tool for education. According to Hinduja, et al. (2020), it 

allows rapid teaching and learning of new concepts. Using digital twins in education 

increases flexibility such that equipment that are too expensive for schools to afford and 



 

processes that are too slow to study physically may be accessed by just the click of a 

computer mouse. As explained by Hinduja, et al. (2020), digital twins in education 

encourages creativity and facilitates the simulation of complex experiments. In support, 

Sepasgozar (2020) also reasoned that digital twin in education improves creativity as 

there is the opportunity to have an active learning experience rather than a passive one. 

An example is students at Aarhus School of Marine and Technical Engineering using 3D 

replicas of automation systems to program automated production lines (Madni, 2019).  

2.5.5. Transportation 

As the populations increase, cities face the challenge of effective management of 

transport flows. There are usually control centres to ensure normal traffic flows on road 

networks and digitalising these centres is a key step to effective management. Rudskoy, 

et al. (2021) explained that digitalised control centres are achieved by implementing 

Intelligent Transport Systems. One of the major elements of the Intelligent Transport 

System is digital twins that make use of mathematical modelling methods to assess 

transport networks, identify issues and propose viable solutions. Access to the transport 

networks enables easy management of all aspects of the networks and the information 

related to it. According to Zhaohui, et al. (2021), digital twin in transportation ensures 

proper management of infrastructure, virtual assessments, and experiments to curb 

transportation issues.  

3. Materials and Methods  

This was quantitative research such that it employed quantitative methods for the study, 

that is, a systematic review and a bibliometric analysis. A systematic review was 

performed to obtain appropriate studies in digital twins for the research. A systematic 

review provides a summary of existing studies upon which informed judgements and 

recommendations can be made. A bibliometric analysis was also conducted to investigate 

the level of publications, the most researched subject areas, the most influential authors, 

and publishers, as well as the geographical distribution as used by Okumus, et al. (2019).  

3.1. Identification of Sources and Data Collection 

In identifying data sources, three major research databases were considered: Web of 

Science, Scopus, and Google Scholar. While some studies including Bramer, et al. (2017) 



 

concluded that a single data source is not adequate for bibliometric analysis and 

systematic review, others such as Rice, et al. (2016) argued that a single database is 

sufficient as other databases have no impact on the results. A single database was 

selected based on the latter argument. 

The data relevant to this study was retrieved from Web of Science Core Collection, an 

index of high-quality peer-reviewed publications currently managed by Clarivate 

Analytics. In order to identify all applicable publications, no lower limit was set, and the 

search was extended through to May 2021. The keyword string below was used to 

produce the preliminary database of publications in Web of Science. 

“Digital Twin*” OR “DT” AND “Digital Twin* + Architecture” AND “Digital Twin* + 

Application” AND “Digital Twin* + Reference Model” 

This keyword search yielded 2826 results. The quick filters on Web of Science were then 

used to filter the results on broad categories such as document type, the search results 

were limited to only journals; language, only the articles written in English were selected, 

and documents published later than May 2021 were excluded. This reduced the results 

to 1490 documents. The titles and abstracts of the publications were then manually 

assessed. The final dataset for this study after excluding additional 552 publications 

included a total of 938 publications. This search procedure was informed by PRISMA 

(Preferred Reporting Items for Systematic Reviews and Meta-Analysis) guidelines for 

performing systematic reviews (Figure 2). 



 

 

Figure 2: PRISMA flow diagram describing the collection of digital twin technology, architecture, and application 
documents from Web of Science (Moher, et al., 2009). 

3.2. Data analysis methods 

The data consisting of 938 documents was exported from Web of Science as both an 

Excel file and a Tab Delimited file. This is because the various analysis tools to be used 

could only work with one of these file types. The file consisted of meta data for each 

document, including name of authors, affiliated organisations and countries, title of article, 

source, abstract, publishers and publication locations, publication years, and other 

citation data. In order to use the VOSviewer software for the bibliometric analysis, a 

thesaurus file had to be created to filter the data, as used by Hallinger & Chatpinyakoop 

(2019). The thesaurus file had a ‘label’ column and a ‘replace by’ column, where same 

words expressed in a slightly different manner could be represented in singular form. For 



 

instance, some articles wrote ‘industry 4.0’ as ‘industry 4. 0’ and without the thesaurus 

file to correct this during the keyword analysis, VOSviewer was giving results for ‘industry 

4.0’, ‘industry 4’ and ‘0’. Also, names such as ‘Tao, Fei’ represented as ‘Tao, F’ were 

being treated as different names. The quantitative analysis made use of descriptive 

methods, co-authorships, citation and co-citation analysis, and co-occurrence analysis. 

Descriptive methods such as the use of pie charts, bar charts, tree map charts and maps 

were used to present basic features such as publication growth trend, publication outlets 

and publication geographical distribution, and research areas. This was done with Excel 

and Tableau software programs. 

VOSviewer, a software tool for structuring and visualising bibliometric systems such as 

journals and other publications was used to perform a bibliometric analysis. Jan van Eck 

& Waltman (2018) explain that VOSviewer has the ability to interpret and display large 

bibliometric maps in a comprehensible manner. Using the VOSviewer software, co-

authorship analyses have been performed, a keyword co-occurrence has also been 

conducted to identified top concepts that have appeared across several of the research 

in relation to digital twins, and a citation and co-citation for authors and articles has been 

undertaken to identify key authors and key articles in digital twin research. According to 

Zupic & Čater (2015), the co-citation analysis complements the citation analysis as it 

captures a broader literature base by basing its analysis on the referenced list. As such, 

it is not uncommon for items to appear in a citation analysis list and not appear on a co-

citation analysis list, especially if the citation analysis is based on just a single database. 

4. Findings and Discussion 

4.1. Findings 

The results are presented in line with the deductive approach followed by Karakus, et al. 

(2019). It begins from more general findings and flows down to more specific results. It 

begins by giving details of the data such as the publications per year, research areas, 

and publications per publisher. From there, the findings on co-authorship follows as per 

the countries, organisations, and authors. The results on co-authorships are then 

presented according to countries, authors, and documents, after which the co-

occurrences of author keywords are shown. Citation and co-citation of authors and 



 

documents are also presented. This makes it easier to understand as it gives broad 

knowledge about the data and findings before moving on to more specific outcomes. 

4.1.1. Publication Trend 

Out of the 938 documents retrieved from Web of Science, 1 was published as far back 

as 2004, 1 in 2014, 20 in 2017, 41 in 2018, 137 in 2019, 380 in 2020 and 310 from January 

1 to May 31, 2021. 48 documents were early access journals released before May 31, 

2021. Although the date for the search had no lower limits, there was no publication date 

older than 2004. As seen in Figure 3, there has been an upwards increasing trend in the 

publications on digital twin technology, its architecture, and applications because it 

recently started gaining thrust and the benefits derived from this concept has aroused the 

interest of industrial and research populations over the years (Pires, et al., 2019). 

 

Figure 3: Growth trajectory of publications on digital twin technology, architecture, and applications (n=890). 

This growth trend indicates that about 88% of the literature in digital twins have been 

produced in the past three years (2019 to 2021). This exponential growth is due to the 

realisation by industries and researchers the fascinating and substantial opportunities 

digital twin technologies offer (Ketzler, et al., 2020). These benefits of digital twins are 

projected to drive research over the years to come. 



 

4.1.2. Publication Outlets 

The 938 documents used for this study were published across 387 journals. The top 20 

journals published 412 out of the 938, which makes 43.9% of the total number of journals. 

IEEE Access, which is a multidisciplinary peer-reviewed open access journal of the 

Institute of Electrical and Electronics Engineering (IEEE) was the most productive 

channel, publishing 63 journals in total. The next two were Applied Sciences (Basel, 

Switzerland) and Journal of Manufacturing Systems which published 46 and 44 

documents respectively. The remaining journals published below 30 documents each out 

of the data used as shown in Figure 4. 

 

Figure 4: Top 20 journals in the publication of articles on digital twin technology, architecture, and applications ranked 
by number of articles in Web of Science until May 31, 2021. 

The publishers of these documents were also evaluated and ranked using the number of 

publications. A total of 125 publishers were identified in relation to the 938 documents 

assessed. Some publishers had just 1 publication and it would be cumbersome to include 

all 125 publishers. As such, the top 20 publishers with the highest number of publications 

were selected and presented in Table 1 below. From the table, the publisher with the 

highest number of publications is MDPI (Multidisciplinary Digital Publishing Institute), a 

publisher of open access scientific journals, with 172 publications. The next was IEEE 



 

(Institute of Electrical and Electronics Engineers) Publishing with 115 publications. 

Elsevier Science Ltd, Elsevier and Pergamon-Elsevier Science Ltd came next with 81, 

79, and 60 publications respectively. Elsevier and Springer appeared a number of times 

in the top 20 but from different publication cities as shown in Table 1.  

Table 1: Top 20 publishers in the publication of research on digital twin technology, architecture, and applications 
ranked by number of publications until May 31, 2021. 

Publisher Number of 

Publications 

Publication 

City 

Country 

MDPI 172 Basel Switzerland 

IEEE-INST ELECTRICAL ELECTRONICS 

ENGINEERS INC 

115 Piscataway USA 

ELSEVIER SCI LTD 81 Oxford England 

ELSEVIER 79 Amsterdam Netherlands 

PERGAMON-ELSEVIER SCIENCE LTD 60 Oxford England 

TAYLOR & FRANCIS LTD 57 Abingdon England 

SPRINGER 25 New York USA 

SPRINGER LONDON LTD 25 London England 

SPRINGER HEIDELBERG 25 Heidelberg Germany 

WILEY 18 Hoboken USA 

EUROPEAN RESEARCH CONSORTIUM 

INFORMATICS & MATHEMATICS 

18 Sophia 

Antipolis 

Cedex 

France 

EMERALD GROUP PUBLISHING LTD 14 Bingley England 

HINDAWI LTD 13 London England 

ASCE-AMER SOC CIVIL ENGINEERS 11 Reston USA 

ASME 10 New York USA 

SAGE PUBLICATIONS LTD 9 London England 

WILEY-HINDAWI 9 London England 

FRONTIERS MEDIA SA 7 Lausanne Switzerland 

WALTER DE GRUYTER GMBH 6 Berlin Germany 

ELSEVIER SCIENCE INC 6 New York USA 

 



 

The countries of the publishers were also assessed and represented in the form of a map 

in Figure 5 to show which countries where strongest in terms of publishing of articles on 

digital twin technology, its architecture, and applications. From the map, it is reflected that 

the United Kingdom had the most publications with 294 publications. United States of 

America (USA), Switzerland, and Netherlands followed with 221, 179, and 102 in that 

order. 

 

Figure 5: Geographical distribution of countries of publishers of research on digital twin technology, architecture, and 
applications. 

4.1.3. Research Areas 

The study was not limited to any specific research areas in order to ascertain meaningful 

representations in all fields in relation to digital twins as explained by Ross & Zaidi (2019). 

As such, 155 research areas were identified from the data extracted. The research area 

with the highest number of publications was Engineering, with 141 publications, which 

was almost twice as many publications as that of the next research area: Computer 

Science, Engineering & Telecommunications with 72 publications. The gap between the 

first two research areas was 69 publications, showing a clear advancement in research 



 

of digital twins in the field of engineering. Due to the large number of research areas 

identified, only the top 20 were represented in the Tree Chart below (Figure 6). 

 

Figure 6: A Tree map chart presenting the top 20 research areas studied by the identified documents on digital twin 
research. 

4.1.4. Co-authorship Analysis 

According to Jalal (2019), co-authorship analysis is the assessment of the collaboration 

relationships between two or more research publications in a specified. It may be in terms 

of authors of the publications, its affiliated organisations, and/or countries. 

The co-authorship of countries consists of countries, which are represented by nodes and 

links which connect the nodes in the form of co-authorships. There is a link between two 

countries if they have co-authored at least one document and the size of the nodes here 

are proportional to the total link strength of the country. For the purpose of this study, the 

minimum number of documents of a country was set to 5, and out of 70 countries 

associated with the publications, 39 met the threshold. The co-authorship of countries is 

presented with an overlay visualisation in Figure 7. Out of these 39 countries, the People’s 

Republic of China had the most co-authorships with 228 documents, 3495 citations, and 

a total link strength of 100. United States of America (USA) came in second with 139 



 

documents, 1595 citations, and 89 as its total link strength. The details of the next 3 

countries are specified in (X, Y, Z) format, made to represent number of documents, 

number of citations, and total link strength. The countries that followed are England with 

(81, 634, 63), Germany with (106, 930, 57), and France with (47, 620, 44). These were 

ranked as the top 5 countries for co-authorship based on their total link strength. The 

colour of the nodes in Figure 7 show how recent publications from the represented 

countries have been. 

 

Figure 7: Country co-authorship overlay visualisation map of the literature on digital twin technology, architecture, and 
applications (n = 70 countries in the co-authorship network; threshold of 5 documents per country; display of 39 

countries). 

The co-authorship of organisations shows the relationship patterns between 

organisations related to co-authored documents. In this case, the organisations are 

represented by the nodes and the connections between the nodes are shown by the links. 

Setting the minimum number of documents of an organisation to 10, 18 organisations out 

of the 1159 organisations associated with the publications in the data met the threshold. 

Out of these 18 organisations, the largest set of connected nodes consisted of 11 

organisations as shown in the network visualisation in Figure 8. The total number of 



 

documents, citations and total link strengths for each organisation was calculated. The 

organisation with the highest total strength was University of Hong Kong with 15 

documents, 92 citations, and 12 for total link strength. This was followed by Beihang 

University with 23 documents, 1364 citations and 8 for total link strength. The other 

organisations are presented in the format (X, Y, Z), representing number of documents, 

citations, and total link strength respectively. Jinan University followed with (12, 27, 8), 

National University of Singapore with (14, 738, 8), University of Auckland with (11, 324, 

4), Nanyang Technological University with (12, 217, 3), Guangdong University of 

Technology with (11, 530, 2), Zhejiang University with (10, 46, 2), Beijing Institute of 

Technology with (10, 167, 1), Sungkyunkwan University with (11, 107, 1), and then 

University of Cambridge with (17, 230, 1). The organisations stated were the top 11 

organisations in terms of total link strength which constituted the largest set of connected 

nodes. 

 

Figure 8: Organisation co-authorship network visualisation map of the literature on digital twin technology, 
architecture, and applications (n = 1159 organisations in the co-authorship network; threshold of 10 documents per 

organisation; display of 11 organisati 



 

Author co-authorships of the publications are presented with a density visualisation in 

Figure 9. For inclusion purposes, the minimum number of documents of an author was 

set to 5. Of the 3410 authors identified in the dataset, 25 met the threshold. In Figure 9, 

the density visualisation was weighted by the total link strength and the portions turning 

yellow signify a larger total link strength. Using the total link strengths, the top 10 authors 

with strongest co-authorships are presented below. The author with the strongest co-

authorship was Qiang Liu with 8 documents, 475 citations and total link strength of 29. 

Xin Chen and Jiewu Leng followed, each with 7 documents, 461 citations, and a total link 

strength of 29. As shown in Figure 9, these 3 authors have the brightest and biggest 

portion of yellow in the density visualisation. The specifics of the remaining of the top 

authors in co-authorships are presented in the format (X, Y, Z). Ding Zhang followed with 

(5, 331, 23), then Douxi Yan with (5, 240, 22), Fei Tao with (11, 1266, 12), Rikard 

Soderberg with (8, 197, 12), Kristina Warmefjord with (7, 187, 11), A.Y.C. Nee with (6, 

653, 10), and Lars Lindkvist with (5, 181, 9). 

 

Figure 9: Author co-authorship density visualisation of the literature on digital twin technology, architecture, and 
applications (n = 3410 authors in the co-authorship network; threshold of 5 documents per author; display of 16 

authors). 



 

4.1.5. Co-occurrence of Author Keywords 

Keywords are important words or phrases of an article, that usually represent its main 

content (Chen, et al., 2016). Co-occurrence of these keywords exhibit their 

interconnectedness based on their combined presence in articles. The co-occurrence of 

author keywords for this study are shown in Figure 10 with a network visualisation. For 

inclusion purposes, the minimum number of occurrences of keywords was set to 10. Of 

the 3110 keywords identified, 25 met the threshold. The total number of occurrences and 

total link strength for the keywords were calculated and the most frequent keyword was 

Digital Twin, with 542 occurrences and a total link strength of 429. The next keyword was 

Industry 4.0 with 89 occurrences and total link strength of 137, and then Internet of Things 

with 60 occurrences and a total link strength of 111. The occurrences and total link 

strength of the remaining keywords are presented in the format (X, Y) in that order. The 

next keyword was Cyber-Physical Systems with (49, 77), then Smart Manufacturing with 

(40, 63), Simulation with (46, 58), Machine Learning with (43, 58), Artificial Intelligence 

with (27, 45), Manufacturing (18, 37), and then Virtual Reality with (22, 32). These are the 

top 10 keywords based on the occurrences and total link strength. 



 

 

Figure 10: Co-occurrence of author keywords network visualisation map for literature in digital twin technology, 
architecture, and application until May 31, 2021 (n=3110 keywords; threshold of 10 occurrences; display of 21 

keywords). 

Considering Figure 10, the colours of the nodes represented as frames signify different 

clusters in which the keywords are regularly linked to each other. The cluster with the 

green colour consists of Digital twins, Industry 4.0, Cyber-Physical Systems, Industrial 

Internet of Things, and Smart Manufacturing, four of which are among the top 5 keywords. 

4.1.6. Citation and Co-citation Analyses 

Citation and co-citation analysis were employed in order to identify the most influential 

authors publishing on digital twin technology, its architecture, and applications. The 

citation analysis, using the Web of Science citation of authors, highlights the most 

prominent authors such as Fei Tao with 1266 citations, A.Y.C. Nee with 653 citations, 

Qinglin Qi with 617 citations, and the others, making up the top 20 as shown in Table 2. 



 

Table 2: Top 20 most cited authors in research on digital twin technology, architecture, and applications until May 31, 
2021. 

Rank Author Number of 

Documents 

Web of 

Science 

Citations 

Citations Per 

Document 

1 Fei Tao 11 1266 115 

2 A.Y.C. Nee 6 653 109 

3 Qinglin Qi 5 617 123 

4 Meng Zhang 4 524 131 

5 Qiang Liu 8 475 59 

6 Xin Chen 7 461 66 

7 Jiewu Leng 7 461 66 

8 Ang Liu 4 414 104 

9 Hao Zhang 5 394 79 

10 Ding Zhang 5 331 66 

11 Nabil Anwer 4 325 81 

12 Xun Xu 8 308 39 

13 Benjamin Schleich 4 282 71 

14 Sandro Wartzack 2 276 138 

15 Luc Mathieu 1 276 276 

16 Morteza Ghobakhloo 1 244 244 

17 Douxi Yan 5 240 48 

18 He Zhan 1 222 222 

19 T. DebRoy 3 220 73 

20 Abdulmotaleb El Saddik 4 210 53 

 

The outcome of the author co-citation analysis is presented in Table 3. From the table, 

the top 20 most influential authors identified in terms of co-citations include 5 of the most 

influential authors identified using direct citations: Fei Tao, Qinglin Qi, Benjamin Schleich, 

Jiewu Leng, and Hao Zhang. Despite this not being an unusual occurrence (Philip & 

Chatpinyakoop, 2019), it should be noted that Web of Science data includes only the first 

author of a cited document; other authors are not considered in a co-citation analysis of 

cited authors, and this could be the explanation for the considerable difference. 



 

Table 3: Top 20 most co-cited authors in research on digital twin technology, architecture, and applications until May 
31, 2021. 

Rank Author Co-citations Total Link 

Strength 

1 *Fei Tao 821 4768 

2 Michael Grieves 281 1841 

3 *Qinglin Qi 161 1280 

4 Jay Lee 161 1033 

5 *Benjamin Schleich 138 969 

6 *Jiewu Leng 137 1050 

7 Elisa Negri 123 912 

8 Thomas H.-J. Uhlemann 117 939 

9 Stefan Boschert 117 863 

10 Roland Rosen 110 880 

11 Edward Glaessgen 106 803 

12 Yuqian Lu 102 742 

13 Rikard Soderberg 99 725 

14 Kazi Masudul Alam 80 635 

15 Eric J. Tuegel 79 659 

16 Werner Kritzinger 78 571 

17 *Hao Zhang 76 707 

18 Yingfeng Zhang 67 578 

19 Michael Schluse 65 572 

20 Cunbo Zhuang 64 585 

*Indicates that the author also appeared in Table 2. 

A citation analysis was performed to complement the identification of the job journals in 

digital twin research. Based on the number of citations, the top 20 journals were selected. 

Out of the top 20 most cited journals in Table 4, 17 of the journals are among the top 20 

journals ranked according to number of publications in Figure 4. IEEE Access came out 

as the most prominent journal in both cases. 



 

Table 4: Top 20 most cited journals in the publication of research on digital twin technology, architecture, and 
applications until May 31, 2021. 

Rank Journal Total Number 

of 

Publications 

Total 

Number of 

citations 

1 *IEEE Access 63 1489 

2 *CIRP Annals - Manufacturing Technology 18 699 

3 *International Journal of Production Research 18 566 

4 *Journal of Manufacturing Systems 44 539 

5 *Robotics and Computer-Integrated Manufacturing 17 353 

6 *IEEE Transactions on Industrial Informatics 7 351 

7 *Journal of Ambient Intelligence and Humanized 

Computing 

7 280 

8 *The International Journal of Advanced 

Manufacturing 

23 245 

9 *International Journal of Computer Integrated 

Manufacturing 

22 245 

10 *Journal of Cleaner Production 11 219 

11 *Sustainability-Basel 24 169 

12 *Applied Sciences-BASEL 46 166 

13 Computers in Industry 5 158 

14 *Journal of Management in Engineering 10 118 

15 *Journal of Intelligent Manufacturing 11 110 

16 *Automation in Construction 11 107 

17 *SENSORS-BASEL 29 87 

18 *Engineering Fracture Mechanics 9 52 

19 IEEE Transactions on Power Electronics 5 46 

20 *Energies 14 39 

*Indicates that journal appeared in Figure 4. 

Similarly, a citation analysis was conducted to identify the most influential articles in digital 

twin literature. For inclusion, the minimum number of citations per document was set to 

80 citations. Out of the 938 documents, 20 met the threshold. Majority of the top 20 most 

cited articles in Table 5 were authored by the most influential authors presented in Table 



 

2 and Table 3 such as Fei Tao, Qinglin Qi, Benjamin Schleich, and Michael Schluse 

among others. The Web of Science citation counts of the topmost cited articles on digital 

twins are in moderation, as compared to citation counts of other digital technologies. 

Table 5: Top 20 most cited articles on digital twin technology, architecture, and applications until May 31, 2021. 

Rank Article Article Title Times 

Cited, 

WoS 

Core 

1 Qi (2018) Digital Twin and Big Data Towards Smart Manufacturing 

and Industry 4.0: 360 Degree Comparison 

288 

2 Schleich 

(2017) 

Shaping the digital twin for design and production 

engineering 

276 

3 Ghobakhloo 

(2018) 

The future of manufacturing industry: a strategic roadmap 

toward Industry 4.0 

244 

4 Tao (2017) Digital Twin Shop-Floor: A New Shop-Floor Paradigm 

Towards Smart Manufacturing 

244 

5 Tao (2019c) Digital Twin in Industry: State-of-the-Art 222 

6 Alam (2017) C2PS: A Digital Twin Architecture Reference Model for the 

Cloud-Based Cyber-Physical Systems 

197 

7 Soderberg 

(2017) 

Toward a Digital Twin for real-time geometry assurance in 

individualized production 

150 

8 Tao (2019b) Digital twin-driven product design framework 138 

9 Tao (2018) Digital twin driven prognostics and health management for 

complex equipment 

128 

10 Zhuang 

(2018) 

Digital twin-based smart production management and 

control framework for the complex product assembly shop-

floor 

127 

11 Bolton (2018) Customer experience challenges: bringing together digital, 

physical, and social realms 

116 

12 Zheng (2018) A systematic design approach for service innovation of 

smart product-service systems 

115 



 

13 Zhang (2017) A Digital Twin-Based Approach for Designing and Multi-

Objective Optimization of Hollow Glass Production Line 

112 

14 Liu (2019) Digital twin-driven rapid individualised designing of 

automated flow-shop manufacturing system 

109 

15 Ivanov (2021) A digital supply chain twin for managing the disruption risks 

and resilience in the era of Industry 4.0 

107 

16 Tao (2019a) Digital Twins and Cyber-Physical Systems toward Smart 

Manufacturing and Industry 4.0: Correlation and 

Comparison 

103 

17 Leng (2019) Digital twin-driven manufacturing cyber-physical system for 

parallel controlling of smart workshop 

103 

18 Knapp (2017) Building blocks for a digital twin of additive manufacturing 103 

19 Ding (2019) Defining a Digital Twin-based Cyber-Physical Production 

System for autonomous manufacturing in smart shop floors 

101 

20 Schluse 

(2018) 

Experimentable Digital Twins-Streamlining Simulation-

Based Systems Engineering for Industry 4.0 

87 

 

The articles were grouped into topical clusters and differentiated with colours as shown 

in Figure 11. Cluster 1 is made up of 6 red coloured frames. It is made up of Alam (2017), 

Soderberg (2017), Zhang (2017), Liu (2019), Leng (2019), and Ding (2019). These 

articles concentrated on digital twin architecture and digital twin design methodologies. 

Cluster 2, consisting of 5 green coloured frames focused on digital twins in manufacturing 

to achieve smart manufacturing. This cluster consisted of Qi (2018), Schleich (2017), 

Ghobakhloo (2018), Tao (2018), and Tao (2019a), three of which are the top 3 most cited 

articles. Cluster 3 consists of 4 blue frames: Tao (2019c), Tao (2019b), Knapp (2017), 

and Schluse (2018). These articles focused on emerging and fast-growing technologies 

in digital twins. Cluster 4, making up of Tao (2017) and Zhuang (2018) in yellow frames 

focused on digital twin shop floors. 



 

 

Figure 11: Network visualisation map of the top 20 most cited articles on digital twin technology, architecture, and 
applications until May 31, 2021. 

As the document citation analysis conducted was from only one database, Web of 

Science, a document co-citation analysis was conducted to obtain a broader perspective 

of the documents that have been influential in the development of digital twin literature. It 

was noteworthy that the topmost co-cited document in Table 6 did not appear in the most 

cited publications in Table 5. Further perusal found that the article was filtered out as a 

Proceedings Paper during the initial screening of the dataset. There is a reasonable level 

of overlapping between the top 20 documents with the most citations in Table 5 and the 

top 20 most co-cited documents in Table 6. There were 9 documents that appeared on 

both lists: Schleich (2017), Tao (2017), Tao (2019c), Qi (2018), Soderberg (2017), Alam 

(2017), Tao (2019b), Tao (2018), Zhang (2017). Other documents appearing on the most 

co-cited documents list is a demonstration of the ability of co-citation analysis to identify 

influential documents without restriction of a particular database used. 

Table 6: Top 20 most co-cited articles on digital twin technology, architecture, and applications until May 31, 2021. 

Rank Article Article Title Citations 



 

1 Tao (2018b) Digital twin-driven product design, manufacturing, and 

service with big data 

176 

2 *Schleich 

(2017) 

Shaping the digital twin for design and production 

engineering 

118 

3 Grieves 

(2017) 

Digital Twin: Mitigating Unpredictable, Undesirable 

Emergent Behavior in Complex Systems 

107 

4 Rosen 

(2015) 

About The Importance of Autonomy and Digital Twins for 

the Future of Manufacturing 

106 

5 *Tao (2017) Digital Twin Shop-Floor: A New Shop-Floor Paradigm 

Towards Smart Manufacturing 

102 

6 *Tao 

(2019c) 

Digital Twin in Industry: State-of-the-Art 100 

7 *Qi (2018) Digital Twin and Big Data Towards Smart Manufacturing 

and Industry 4.0: 360 Degree Comparison 

99 

8 Glaessgen 

(2012) 

The Digital Twin Paradigm for Future NASA and U.S. Air 

Force Vehicles 

88 

9 Negri (2017) A Review of the Roles of Digital Twin in CPS-based 

Production Systems 

88 

10 *Soderberg 

(2017) 

Toward a Digital Twin for real-time geometry assurance in 

individualized production 

79 

11 Kritzinger 

(2018) 

Digital Twin in manufacturing: A categorical literature 

review and classification 

77 

12 *Alam 

(2017) 

C2PS: A Digital Twin Architecture Reference Model for the 

Cloud-Based Cyber-Physical Systems 

74 

13 Boschert 

(2016) 

Digital Twin—The Simulation Aspect 74 

14 Uhlemann 

(2017) 

The Digital Twin: Realizing the Cyber-Physical Production 

System for Industry 4.0 

74 

15 *Tao 

(2019b) 

Digital twin-driven product design framework 69 

16 *Tao (2018) Digital twin driven prognostics and health management for 

complex equipment 

66 



 

17 Lee (2015) A Cyber-Physical Systems architecture for Industry 4.0-

based manufacturing systems 

65 

18 Grieves 

(2014) 

Digital twin: manufacturing excellence through virtual 

factory replication 

63 

19 Lu (2020) Digital Twin-driven smart manufacturing: Connotation, 

reference model, applications, and research issues 

62 

20 *Zhang 

(2017) 

A Digital Twin-Based Approach for Designing and Multi-

Objective Optimization of Hollow Glass Production Line 

62 

*Indicate that the article appeared in Table 5. 

It should be noted that the articles are represented by the surname of the first authors in 

this study only because that it how it was presented by the VOSviewer visualisation.  

4.2. Discussion 

In this study, the publications on digital twin technology, digital twin architecture and digital 

twin architecture were retrieved from Web of Science database. This dataset was filtered, 

analysed, and visualised using descriptive methods and bibliometric methods. Excel, 

Tableau and the VOSviewer software were used to evaluate and visualise the data. In 

this circumstance, the publication trend, publication outlets, research areas, co-

authorship of countries, organisations, and authors, co-occurrence of author keywords, 

and citation and co-citation of authors were analysed and presented. 

For the publication trend, there is an upward trend in the number of publications on digital 

twin technology, its architecture and application over the years. The number of 

publications gained momentum at about 2017 when researchers and industries began to 

get more curious about the possibilities of digital twins. According to Datta (2017), digital 

twins is gaining thrust because its possibilities are endless, and it may offer real-time 

precision. Considering that January to May 31, 2021, have as many publications as the 

whole of 2020 is an indication that the research and applications of digital twins is growing 

and will continue to grow speedily. 

Considering publication outlets, the journal analysis performed concluded that the 

research on digital twins, its architecture and applications are being published in good 

quality multi-disciplinary journals. These journals specialise in engineering, 



 

manufacturing, medicine and health, science and technology, robotics, computing, 

environment, culture, economics, and social sustainability among others. The first journal 

was IEEE Access. Applied Sciences came in second, then Journal of Manufacturing 

Systems, then Sensors, and Sustainability, making up the top 5 journals. Using the direct 

citation analysis in Table 4 it was found that the top 20 most influential journals publishing 

articles on digital twins, its architecture, and applications in terms of citations and the top 

20 in terms of number of publications Figure 4 are in correspondence and are mutually 

reinforcing. The 3 journals which were not part of the top 20 most influential journals in 

terms of citations were part of the top 25. Also, the publishers of the journals identified in 

the studies were ranked in terms of the number of documents published. It was found that 

the major publishers such as MDPI, IEEEE, Elsevier, Taylor & Francis Ltd, Springer, 

Wiley, etc are highly ranked publishers. From Figure 5 showing the map of publisher 

countries, majority of the publications were done in the United Kingdom, USA, 

Switzerland, and Netherlands. This however does not imply that these countries are the 

leading countries in relation to research on digital twins. 

Several research areas in the form of clusters were identified in the analysis. As no 

specific research areas were given, the ones provided by Web of Science is what was 

used. Engineering was the most researched field as it had the most documents. 

Hartmann & Auweraer (2021) explained that due to the incremental nature of the 

complexity of engineering design methods, research and development efforts are being 

made regularly to find easier and more efficient ways, and the research and employment 

of digital twins is a forward leap. Several of the other research areas identified had 

Engineering as part of the cluster. The other top research areas sciences such as 

Computer Science, Management Science, Chemistry, Material Science, among others. 

As concluded by Ante (2021), digital twin is being considered in several scientific subjects, 

and this goes to support the claim. Despite Business and Economics making it to the list 

of top research areas, it was only social science among the top 50 research areas, and it 

had few publications as compared to the other sciences. 

Co-authorship analysis of countries, organisations and authors was performed. Country 

co-authorships indicated that China had the most co-authorships with a total link strength 



 

of 100, 228 documents out of the 938, and 3495 citations. Over the years, China has 

become a drive to acknowledge in digital technologies. According to Wang, et al. (2017), 

it is among the first 3 countries for venture capital investment in digital technologies such 

as 3D printing, artificial intelligence, and virtual reality. It is therefore not startling that 

majority of the research on digital twins, its architecture and applications is from China, 

and the country is the strongest at making collaborations with other countries in this field. 

United States of America (USA), England, Germany, and France, all which are 

technologically advanced countries, followed in that order. Considering the rankings by 

Wood (2021), all top 5 countries for co-authorships in digital twin research are among the 

top 20 most innovative and research-enthusiastic countries. Aside identifying the top 

organisations and authors in co-authorships of digital twin research, the organisation and 

author co-authorship analysis confirmed the results of the country co-authorship analysis. 

Nine out of the eleven organisations shown in Figure 8 are in China. The topmost 

organisation, University of Hong Kong, is under the Special Administrative Region of 

China. Beihang University, Jinan University, and National University of Singapore are all 

institutions in China. The top 5 authors in co-authorship are also from China, even though 

they may not be currently living in China: Qiang Liu, Xin Chen, Jiewu Leng, Ding Zhang, 

and Douxi Yan. The findings suggest that research on digital twins are poorly dispersed 

among countries worldwide.  As these countries, organisations and authors are the most 

influential in co-authorships for this research, it will be prudent for upcoming or not so 

prominent countries, organisations, and others in terms of research on digital twins to 

seek for research collaborations with them for a wider audience and a higher impact. 

The outcome of the co-occurrence of author keywords signify that researchers have 

mainly studied these concepts related to the main concept of digital twins: industry 4.0, 

cyber-physical systems, smart manufacturing, internet of things, industrial internet of 

things, cloud computing, big data, simulation, augmented reality, virtual reality, machine 

learning, deep learning, additive manufacturing, sensors, monitoring, optimisation, 

sustainability, BIM (Building information modelling), and blockchain. Digital twins, being 

at the core of industry 4.0, incorporates digital technologies like internet of things, 

machine learning, cloud computing, big data, etc to create cyber-physical systems, virtual 

realities, and augmented realities via simulations and modelling. Digital twins facilitate 



 

with real-time monitoring for optimisation and sustainability. Also, application of digital 

twins in manufacturing, known as smart manufacturing, is noticeably high as put forth by 

(Fuller, et al., 2020). 

An author citation analysis was undertaken to rank the most influential authors in the 

research of digital twins. The top 20 most influential authors are presented in Table 2 with 

Fei Tao being ranked number 1. Among the top authors presented in terms of citations, 

majority, including Fei Tao, Qiang Liu, Xin Chin, Xu Xun, Douxi Yan, and A.Y.C. Nee were 

part of the top authors in co-authorships in Figure 9. An author co-citation analysis was 

undertaken to complement the author citation analysis, and although the results were not 

greatly overlapping, Fei Tao remained the most influential author, while Jiewu Leng, 

Qinglin Qi, Hao Zhang, and Benjamin Schleich made it as part of the top 20 authors for 

co-citation (Refer to Table 3). The results also highlighted a major gender bias in the 

research of digital twins. This goes to support the assertion by García-González, et al. 

(2019) that there is a gender inequality in research.   The results of the citation analysis 

for journals was in conformity with the results of the journal ranking using number of 

publications. Although there were changes in the rankings, 17 of the journals from the list 

of top 20 journals using number of publications in Figure 4 appeared in the list of top 20 

journals using direct citations in Table 4. 

From the document citation and co-citation analysis, the most influential articles in digital 

twin research were identified in Table 5 and Table 6. The articles are grouped into clusters 

that focused on smart manufacturing, digital twin architecture and design methods, 

emerging technologies in digital twins such as product design and additive manufacturing, 

and digital twin shop floors. These articles were authored by majority of the top authors 

identified in Table 2 and Table 3 and were also published in the most influential journals. 

5. Conclusion and Recommendation 

5.1. Conclusion 

In the past few years, digital twin research has increased significantly. The concept has 

impacted several sectors such as manufacturing, production, computing, engineering, 

etc. According to the analysis, it can be concluded that, digital twin research will continue 



 

to increase in the years to come, especially in the engineering, computing, and other 

applied sciences. However, there is more room for further research in the business field, 

and other social sciences. Also, the outcome of this research is a wakeup call for countries 

and organisations trailing in digital twin research, and researchers, particularly females to 

invest more in digital twin research, since studies have shown that digital twin is a 

worthwhile digital technology with great prospects for effectiveness, efficiency, and 

optimisation. 

5.2. Limitations 

The limitations of this study include the use of only one index for the identification of 

publications for the bibliometric analysis. Although Web of Science is a major index for 

bibliometric analysis, there is the possibility of exclusion of key documents in the research 

of digital twins as these studies may not be available in the index. Also, since this is a 

quantitative study, it is not possible to identify the full impact of publications as a 

qualitative study would have. For instance, an author may not be part of the top authors 

in terms of number of documents but may be very influential in his field of study. 

5.3. Future Works 

It is recommended that in future, several indices be combined to replicate this study for a 

broader spectrum of publications. It is also recommended that a qualitative study of the 

research in digital twins be performed, as a qualitative study of the research publications 

in digital twins may provide further information on the outcome of this study. A bibliometric 

analysis for digital twin research can also be performed in the different research areas in 

order to identify the key authors, publishers, documents, and journals in these fields of 

study. 
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