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Abstract

Flower-visiting insects provide essential pollination services, ensuring both global
food security and the continuity of wild plants. Recently documented declines in
pollinators give cause for concern. Identifying previously unappreciated habitats that
support diverse assemblages of these insects is an essential first step in mitigating 
further losses.

This study evaluates, for the first time, the role that large English country-house
gardens play in supporting flower visitors within expanses of intensively farmed
agricultural land. Focussing on 17 properties in lowland Central England, the results
show that these novel ecosystems are important sites for hoverflies, bees and
butterflies. In 2010 almost 10,000 flower-visitors from 174 species were recorded
Hoverflies were the only group to show a significant difference in species richness 
across the sites.

An important characteristic of these rural gardens is the high diversity of flowering 
plants available. More than a fifth of the world's plant families were represented, of 
which approximately 68% were non-native. The results showed that flower visitors 
did not prefer native plants over aliens, and that the dominance by aliens was no 
barrier for extensive use by the insects present. Both the species richness and 
abundance of flower visitors increased as plant richness increased.

The study revealed that half of all insect-plant interaction networks examined
exhibited a nested structure, a common feature of natural environments that has not 
previously been assessed in rural gardens.

In addition to flower resources influencing insect species richness, landscape-scale
effects were also significant. Insect groups responded differently to components in
the landscape according to the time of year and the spatial scale considered.
Bumblebees exhibited the greatest response to landscape factors and did so at 
larger scales than other groups.

The deployment of commercial trap-nests for solitary cavity-nesting red mason bees
in walled gardens revealed new insights into the differential mortality suffered by
male and female progeny. Female offspring were found to be disproportionately
affected by a combination of development and parasitism losses. This finding
suggests that effective mitigation strategies are needed before this species can be 
considered for use as a managed-pollinator.

Further research assessing the benefits crops such as oilseed rape derive from the 
presence of insects in nearby rural gardens would be a useful addition to this work.

Overall, the gardens of English country-houses emerge as sites of important natural 
as well as cultural heritage.
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The beauty and genius of a work of art may be reconceived though its 

first materia! expression be destroyed.

A vanished harmony may yet again inspire the composer.

But when the last individual of a race of living beings breathes no

more, another heaven and another earth must pass before such a 
can be again.

William Beebe (1906)

From a plaque marking the site of Gerald Durrell's ashes.
Durrell Wildlife Park, Les Augres Manor, Trinity, Jersey, Channel Islands.
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Chapter 1

Chapter overview
This introductory chapter sets out the case for studying flower-visitor insect
diversity. It identifies the main causes for insect pollinator declines and reviews the
role gardens can play in providing suitable forage and nesting habitat A brief
synopsis of the changes English country-house gardens have experienced throuqh
the centuries is followed by a section outlining the scope of the project and the key
research questions that will be explored. The chapter concludes with an overview of 
how the thesis is arranged.

Biodiversity and ecosystem services
As the human population continues its climb towards a predicted total of 10.1 billion

by 2100 (United Nations, 2011), biodiversity is forecast to decline over the same

period (Pereira et at, 2010). The pressures of a burgeoning global population on the

Earth's remaining natural environments and their non-renewable capital are both a

cause for concern and an incentive for urgent action (Wilson, 2001, Butchart et at.,

2010). As the awareness of the consequences of biodiversity loss increases, so too

does the interest in understanding the patterns and processes that drive it (Liu et 
at., 2011).

During the 1990s both regional and global biodiversity protection measures shifted 

from targeting individual species to placing increased importance on 'hotspots' of 

biodiversity (Mittermeier et a!., 1998). Later, ecosystem services, defined as 'the 

benefits people obtain from ecosystems' (UNEP-WCMC, 2011), were identified as 

vulnerable entities in themselves that warranted assessment and conservation 

strategies. The focus on these services stems from a realization that the survival 

and well-being of humans is intricately related to the health and robustness of the 

ecosystems they interact with (Costanza et al., 1997, Daily et at, 1997),

Pollination: An essential ecosystem service
Ecosystem services can be categorised according to whether they are cultural, 

provisioning, regulating or supporting. Pollination, which is the transfer of male 

gametes within pollen to receptive female flower organs, is considered an essential 

regulating process (UNEP-WCMC, 2011). Following a pollination event a plant may 

set seed, thus facilitating future generations of that species (Kearns and Oliveras, 

2009), as well as nutritionally supporting other organisms (Dias et at, 1999). Pollen 

transfer may be enabled by wind or water, but for the majority of angiosperms 

(approximately 88%, Ollerton et at, 2011) it is pollination by animals that facilitates

2



Chapter 1

fertilisation and seed-set. Although animal mediated pollination does not guarantee

the long-term survival of a plant population (and the organisms that rely on it), it

can nevertheless act as a necessary first step in the process (Rathcke and Jules, 
1993).

Pollinators belong to diverse groups within the animal kingdom and include birds, 

bats, opossums and reptiles (Dias eta/., 1999). It is, however, certain groups of 

invertebrates that are most associated with pollination. These include solitary and 

social bees and wasps (Hymenoptera), butterflies and moths (Lepidoptera), 

hoverflies (Diptera) and beetles (Coleoptera), (Waser, 2006). Globally, 3,000 species 

of plant are grown or used for food by humans and their domesticated animals, two- 

thirds of which require insect pollination (Dias et al., 1999). As a measure of how

important hymenopterans are in this process, bees have been recorded visiting 73% 

of these plants (Kremen and Chaplin-Kramer, 2007).

The importance of flower-visiting insects through their role as pollinators was

formally recognised in the Sao Paulo Declaration on Pollinators in 1999 (Dias et al.

1999). The statement that 'Pollination is one of the most important mechanisms in

the maintenance and promotion of biodiversity and, in general, life on earth' (Dias et

al., 1999, p. 18) heralded the start of what has subsequently become an area of 
intense research focus.

Research into pollinating insects stems from their acknowledged contribution to

biodiversity together with a heightened awareness that declines in their abundance

and richness could have ecological and economic consequences. Current

international and national projects include: STEP (Status and Trends of European

Pollinators) a European-wide collaboration aiming to understand and mitigate

against the drivers and impacts of changes in pollinating insect diversity and

abundance (STEP, 2012); and a suite of UK projects under the Insect Pollinators

Initiative backed by a £10 million research investment to investigate biological and

environmental factors affecting pollinating insects (NERC, 2009). The reason behind

this increased research effort comes from reports that pollinating insect numbers are 
declining.

Pollinator declines
A decline in pollinators (in particular pollinating insects) is now accepted to be 

occurring on a global scale (Wratten etal., 2012 and references therein). Potentially, 

this has major consequences for the humans and animals that rely on the nutritive 

and medicinal benefits that wild plants and crops provide (Klein eta/., 2007). Food
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security issues already exist on our increasingly populated planet, and pollinator

declines threaten to exacerbate these (Costanza et at., 1997, Daily et at., 1997, 
Fitzpatrick et a!., 2007).

Declining pollinator abundance and diversity can operate at local and global scales, 

generating productivity concerns for individual growers as well as threatening to 

destabilise world commodity markets (Dias et a!., 1999). The latter raises potential 

nutritional and health issues for many people (Allen-Wardell eta/., 1998, Steffan- 

Dewenter et a/., 2005, Kleijn and van Langevelde, 2006, Klein et at., 2007).

Countries such as China have already reported reductions in fruit and vegetable 

yields as a result of pollinator declines (Partap et at., 2001).

The global decline of the world's most common managed pollinator, the honey bee 

(Apis mellifera, Apidae) has received a great deal of attention in both the scientific 

and popular press (vanEngelsdorp and Meixner, 2010, Breeze et at., 2011, 

Thompson, 2012) and continues to exert what some consider to be a 

disproportionate claim on the scientific funding available for research into the loss of 

bee populations (Ollerton et at., 2012). Although the reduction in the number of 

honey bees and their colonies is causing concern it is not, in the words of 

vanEngelsdorp and Meixner (2010), 'universal'. Indeed, these authors suggest that 

whilst North American and European populations have been hardest hit, within these 

areas some countries have not experienced declines. In places where losses have 

occurred the primary causes have been cited as disease, parasites, overwintering

mortality, pesticides (both direct and indirect toxicity), reduced availability of forage 

and changes in climate (vanEngelsdorp and Meixner, 2010).

In contrast to the widely communicated reduction in honey bees, far less is known

about losses affecting the majority of wild pollinators. Kearns and Inouye (1997,

p.300) see this 'information imbalance' as a particular problem for wild bees, stating

that issues relating to honey bees have been 'studied extensively, often at the

expense of the other 20,000 - 30,000 bee species'. Some insect groups such as

bumblebees and butterflies are notable exceptions to this, with reductions in the

range and abundance of certain species well documented (Goulson, 2010, Fox et at 
2012).

Parallel declines in pollinators and wild and cultivated plants have been reported in 

Europe (Biesmeijer et at., 2006, Natural England, 2010, Potts eta/., 2010). These 

declines emphasize the risk that any disruption in pollination services may bring, 

including unpredictable, cascade-like effects that have the potential to disturb 

multiple food webs (Rathcke and Jules, 1993, Kearns and Oliveras, 2009).
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Pollinating insects
Not all insects are pollinators, despite their often frequent visits to flowers, nor does

each visit by a legitimate pollinator result in a pollination event (Kwak et at., 1996)

Classifying an insect group, genus or species according to its pollinating abilities is

therefore a difficult task. In their seminal work 'The principles of pollination

ecology', Faegri and van der Pijl (1966) described in detail the range of invertebrates

that are considered as pollinators. They identified four key insect orders warranting

particular attention: beetles (Coleoptera); flies (Diptera); bees (Hymenoptera) and 

butterflies and moths (Lepidoptera).

For the purposes of this study the general term 'flower-visiting insect7 will be used. 

This recognises that although insects alighting on flowers may appear to be

pollinating them, the occurrence of a pollination event cannot be assumed (Kevan 
and Baker, 1983).

Current state of native flower-visiting insect diversitv 
in the UK

Assessing the state of current native flower-visitor insect diversity in the UK is 

complicated by the fact that no single organisation researches and reports on all 

insect groups. Instead, specialist recording societies, non-governmental 

organizations (NGOs), e.g. Friends of the Earth, Government organisations (Natural 

England) and academics have all taken the lead in highlighting the status of 

particular groups at different times. A selection of these is given in Table 1.1.

5
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Table 1.1 Publications relating to the losses and current status of key flower-visitor 
groups in the United Kingdom.

Insect 

group

Key findings

Bumblebees

Butterflies

Honey bees

Hoverflies

Solitary bees

All

3 species extinct 
8 species in severe decline 
Worst affected are long- 
tongued species

UK butterflies are in serious 
decline
Ten-year trends show 72% of 
species declined in abundance 
Ongoing deterioration of 
habitats is main cause

UK managed colonies declined 
by 53% between 1985 - 2005

33% of species have declined 
over last 25 - 35 years 
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Threats to UK flower-visiting insect diversity
Flower-visiting insect populations in the UK are under pressure for many reasons.

These include: changes in agricultural practices, fragmentation or alteration of land

use (e.g. infrastructure creation or urbanisation) and the effects of climate change. 
These are now considered in turn.

Changes in agricultural practices

Major changes in the rural landscape have been a feature of the UK for centuries. 

From the increased use of ridge and furrow ploughing practices in the Middle Ages to 

the Parliamentary Enclosure Acts of the 18th and 19th century, land management has
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been in a constant state of flux (Thomas, 1984). The changes since World War II 

are, however, some of the most extensive to date. In common with the majority of 

Northern Europe, agricultural intensification, in particular'modern intensive farming', 

has been cited as the principal cause for the decline in biodiversity in the European 

countryside (Stoate etal., 2001, Carvell et al., 2004, Dormann etal., 2007, Henle et

a'- 2008)- More ^nd than ever before has been taken into agricultural production in

the UK. Currently 17.2 million hectares (70% of the area of the UK) is designated 
agricultural land (Defra, 2011).

High-yield crops such as wheat and barley rely on a mixture of agri-chemicals to

control weeds, fungi and crop-pests (Defra, 2011). As such, managed and

unmanaged pollinators are exposed to an ever-increasing range of treatments

(Breeze et al., 2012). The risks from acute toxicity following direct exposure have

been largely mitigated by the introduction of pesticide-use regulations

(vanEngelsdorp and Meixner, 2010), however the sub-lethal side-effects on insects

following chemical applications are only now being fully explored. Recent research

considering the effect of neonicotinoids on bumblebee queen production and bee

foraging and homing behaviour has shown that, even at trace levels, these

pesticides are able to impair reproductive and functional behaviour (Girolami etal., 
2012, Whitehorn etal., 2012).

Global and national economic drivers such as rapidly increasing commodity prices 

(Mitchell, 2008), financial incentives to grow specific crops, e.g. the mass-flowering 

oilseed rape (OSR), Brasslca napus (Diekotter ef a/., 2010), and the removal of 

payments to landowners to leave land out of production (set-aside) (Defra, 2011) 

continue to alter how agricultural land is used in the UK. The increased presence of 

OSR since the 1970s has been described as one of the most dramatic changes to the 

floral landscape for centuries (Cussans et a/., 2010). Attempting to understand how 

the presence of OSR (which produces a single pulse of flowers in spring/early 

summer) alters pollinator foraging behaviour, and how this impacts on wild plant

reproductive success, is an active research topic (Westphal eta/., 2003, Cussans et 

a/., 2010, Holzschuh eta/., 2011, Jauker eta/., 2012a,b).

The withdrawal of payments for set-aside has resulted in a sharp fall in uncultivated 

land on farms (Defra, 2011). The loss of field-margins that provide abundant 

flowering herbaceous perennials throughout the bee-foraging season is suggested as 

a major contributor to the decline in native pollinators (Osborne et al., 1991, Comba 

eta/., 1999b), as is the loss of suitable sites for ground-nesting specialists (Kremen 

and Ricketts, 2000). Added to this, the inappropriate timing of hedgerow 

management and the regular cutting of flower-containing grass leys for silage (as
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opposed to a single late cut for hay) has also altered forage availability for

pollinating insects (Lagerlof et al., 1992, Fitzpatrick et al.t 2007, Hannon and Sisk, 
2009).

Fragmentation and urbanisation

Habitat fragmentation has been described as 'one of the greatest threats to

biodiversity' (Rathcke and Jules, 1993). Through the reduction of patch sizes and the

subsequent isolation of species, fragmentation alters the survival potential of insect

populations (Westrich, 1998, Exeler et a!., 2010). Gene flow may be impeded and

genetic diversity reduced as options to migrate to new sites diminish (Saunders et

a!., 1991, Kwak et at., 1998). Although insect pollinators with general rather than

specific food requirements may respond differently to fragmentation, this form of

disturbance has the overall potential to disrupt plant-pollinator interactions (Rathcke 
and Jules, 1993).

By 2030 83% of UK residents are expected to be living in urban environments

(United Nations, 2011). The process of urbanisation is known to degrade existing

vegetated areas through land-take for building and infrastructure as well as

fragmenting remaining pockets of land that support wildlife (Fahrig, 2003). Urban

fragmentation reduces biodiversity and can lead to biotic homogenisation (Goddard

et al., 2010). The latter can result in the over-representation of generalist flower-

visiting insects at the detriment of specialist pollinators (Frankie et al. 2009,

Matteson and Langellotto, 2010).

Climate change

Changes in the phenology of flowering plants have been attributed to global warming

(UKCIP, 2012). As atmospheric C02 levels increase further, the flight periods of

pollinating insects and the opening of flowers may become increasingly dissociated,

leading to reduced food availability for insects and a reduction in pollination events

(Bartomeus etal., 2011). Although studies have suggested that the changes in the

timing of the first-flowering of some plants may be matched by correspondingly

earlier appearances of insects, e.g. butterflies (Roy and Sparks, 2000), the potential

impact on the insects themselves and plant-pollinator interactions is difficult to 
gauge (Memmott et at., 2007).

Summary of threats to insect diversity and potential opportunities

In summary, large-scale anthropogenic disturbance via agricultural intensification, 

fragmentation and through the effects of climate change suggests a continued and 

sustained negative impact on the world's insect pollinators. Despite this it is 

important to recognize that not all human actions are detrimental. Two examples of 

the positive effects of human-mediated interventions include the regular cutting of
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unimproved meadows, such as in Baden-Wurttemberg (Germany), where more than 

132 bee species have been recorded (Westrich, 1996), and allowing ivy (Hedera 

helix) to freely colonise walls in UK towns and villages, thereby indirectly 

encouraging populations of the oligolectic ivy bee (Colletes hederae Schmidt & 

Westrich, 1993) to establish in new areas (BWARS, 2012).

Ivy-covered walls are good examples of'synthetic ecosystems' i.e., conditions

and/or combinations of organisms not previously in existence (Odum, 1962). Hobbs

etal. (2006) recently extended this idea by suggesting that in the new ecological

world order, some ecosystems that do not fit into existing categories may be termed

novel ecosystems . The authors broadly define these ecosystems as areas containing

alternative combinations of species to those found in nature, which have come into

existence as a result of deliberate or inadvertent human intervention (Hobbs et at.,

2006). According to the definition, gardens may be considered novel ecosystems as

they contain unusual combinations of plants not normally found together as a direct

product of human actions. Gardens, as anthropogenic constructs, therefore possess

attributes that are of interest when considering insect diversity, not least because

the choice of plants used has the potential to alter the way plants and insects 
interact (Owen, 1981).

The role of gardens in supporting pollinating insects

Garden environments

Gardens throughout the world provide a mosaic of habitats that can support a 

diverse range of invertebrates (Owen, 1983, Miotk, 1996, Smith etal., 2006c,

Fetridge et at., 2008, Frankie et al„ 2009). Plant assemblages in gardens are 

regarded as notably species rich (Galluzzi etal., 2010) and often represent an 

eclectic mix of native and non-native species not normally found together. These 

'contrived plant collections' (Owen, 2010) offer rich habitats with the potential to 

provide suitable feeding and nesting opportunities for a range of fauna (Goulson et 

a!., 2002, Loram etal., 2008b). The floral and structural resources in gardens, e.g. 

woody shrubs and trees, have also been shown to extend temporally and spatially 

beyond those found in nearby 'semi-natural' areas (Goddard etal., 2010). The

presence (or otherwise) of these resources can act as variables that shape pollinator 

diversity in an area (Potts etal., 2003, Smith etal., 2006c).

The findings of a recent Defra report into the attitudes and knowledge relating to 

biodiversity and the natural environment in the UK show that of those UK residents 

who had access to a garden, 74% took steps to actively encourage wildlife into it. 

Additionally, 78% of respondents said they 'worry about changes to the countryside
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in the UK and the loss of native animals and plants' (Defra Environment Statistics 

Service, 2011). As gardens represent the most frequent contact between humans 

and nature in an increasingly urbanised society, they play an important role in 

supporting and maintaining human physical and psychological health, as well as 

providing educational opportunities for the next generation (Dunnett and Quasim, 

2000).

Although individual gardens in city and urban settings may be relatively small, 

aggregations of these domestic green spaces can allow the maintenance of 

biodiversity in an otherwise inhospitable landscape (Loram eta/., 2008a,b, Davies et 

a!., 2009, Sattler et a/., 2010). Indeed some regard urban green spaces as an 

'increasingly important refuge for native biodiversity' (Goddard et al., 2010, p.90). 

Detailed investigations into urban garden habitat structure and management have 

revealed they make a major contribution towards providing resources for wildlife 

(Smith et al., 2006a, Sattler et al., 2010). Both local (within garden) and landscape- 

scale factors are possible drivers for the different levels of flower-visitors observed 

(Smith et al., 2006b,c, Matteson and Langellotto, 2010).

In contrast to urban gardens, far less is known about gardens in rural areas. Engels 

(2001) notes rural gardens have the potential to contribute to the functioning, 

sustainability and resilience of nearby agricultural ecosystems. An example is the 

nutritional support garden flowers provide to adult hoverflies. The presence of flower 

resources can benefit nearby food crops through reduced herbivory. This arises 

because the larvae of many species of hoverfly are important predators of aphids 

(Hogg et al., 2011). The potential of forage resources in gardens is yet to be 

assessed in a rigorous way, and reflects the limited evidence available generally 

about how non-native flowers influence pollinator visitation (Ghazoul, 2006, Frund et 

al., 2010, but see Cussans et al., 2010 and Salisbury, 2012).

Within agriculture-dominated zones, flower-rich areas such as orchard meadows and

field margins have been assessed to establish whether a diverse array of flower-

visiting insects make use of available floral and nesting resources (Steffan-Dewenter

and Tscharntke, 2001, Steffan-Dewenter and Leschke, 2003, Osborne eta/., 2008a).

However, to my knowledge, no published research has examined the potential of

large rural gardens to support these insects. This is somewhat surprising

considering the continuity and well-documented floral resources large rural gardens 
possess.
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English country house gardens

English country houses represent more than simply a 'large house in the country' 

(Aslet, 1982). These properties frequently function as the centre piece of a landed 

estate and are often accompanied by lodges and gardens associated with the 

pastimes of wealthy occupants (Aslet, 1982). Littlejohn (1997) offers a more precise 

definition. He describes country houses as being large private residences with twenty 

rooms or more that are set in their own gardens and parkland. He adds that when 

such properties were constructed they were intended to serve as the family home for

several generations and that the occupants would derive at least part of their income 

from the associated agricultural estate.

Throughout the centuries English country houses have been regarded as important 

architectural, artistic and economic entities that represent significant features of 

British heritage (Christie, 2000). Despite a continued interest in these cultural sites - 

The National Trust has more than four million members and received over nineteen 

million paid visits to their sites in 20111 (The National Trust, 2012b), the fate of 

country houses has often been in question.

The 1974 exhibition at the Victoria and Albert Museum entitled 'The Destruction of

the Country House', brought the plight of these properties to the fore by revealing

that a thousand country houses were lost between 1874 -  1974 (Binney, 1974). The

post-war years were particularly unforgiving; with an estimated one house lost every 
five days in 1955 alone (Beckett, 2012).

Although the demise of physical structures relating to country estates is reasonably

well documented (Beckett, 2012), the parallel decline of their gardens and

landscapes has received far less attention. Elton et al. (1992, p.50) note 'houses

may be burned to the ground or knocked down and replaced, but gardens are even

more likely to disappear as fashion succeeds fashion'. Despite their apparent

transient nature, Christie (2000) highlights the importance of gardens by referring to 
them as integral parts of each estate.

The initial design of landscapes surrounding country houses often varied 

significantly. Some gardens followed the trends of the time, whilst others showed a 

more individualistic style, whereby the wishes of the owner (bound up in his political, 

social and educational fabric) were catered for by well-known and novice landscape 

designers alike (Christie, 2000). Areas within individual gardens often ranged 

between two extremes; ultra-formal terraces and parterres to self-created

1 This is the number of visits to all NT sites (including the 200 country houses it manages)
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naturalness (Christie, 2000, p. 138). An example of designed naturalness' was that 

of Alexander Pope's garden at Twickenham (Figure 1.1).

Figure 1.1 Alexander Pope's house at Twickenham (From an original painting at
Orleans House Gallery, Richmond, painter unknown). Published here with kind
permission from the Richmond Borough Art Collection, Orleans House Gallery 
Richmond. (WikiMedia Commons, 2005). Y'

Pope experimented by laying out his garden in harmony with nature noting, 'The first

rule - to adapt all to the nature and use of the place; the beauties not forced into,

but resulting from it' (Dutton, 1949, p. 105). He expanded on this theme in his verse 

Epistles to Several Persons: Epistle IV (Warton, 1822).

To build, to plant, whatever you intend,

To rear the column, or the arch to bend,

To swell the terrace, or to sink the grot;

In all, let Nature never be forgot.

Alexander Pope (1688 - 1774)

Informed by classical texts such as Virgil's Georgies and the pastoral poems 

Ecologues, Pope combined contemporary ideas about the countryside with a deeper
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appreciation of the human psyche which affected how people interacted with the 

natural world (Christie, 2000). Additionally he moved the focus away from the house 

and turned the attention to the different components of the garden: in his case an 

orangery, orchard, kitchen garden and grotto (Christie, 2000). Tree planting 

achieved the effect of dividing the garden up into small but distinct parcels. The

latter were not only aesthetically pleasing but had the effect of creating a nested set 

of distinct habitats within a larger whole.

Pope's garden was more an exception than the rule, as few owners seem to have

been as keen to immerse their gardens into the surrounding landscape. Instead,

they wished to make a statement demonstrating what their wealth could achieve

(Musgrave, 2009). The sixteenth century saw the arrival of many new plants from

abroad and this gave rise to a renewed interest in gardening. William Harrison wrote

in his Description of England in 1587 that 'Many strange herbs, plants and annual

fruits are daily brought unto us from the Indies, Americas, Canary Isles and all parts

of the world' (Dutton, 1949, p.95). In parallel with the availability of new plants, the

influence of continental landscaping styles started to alter the layout of English

gardens. The skills of Italian craftsmen brought to England by Henry VIII did not

stop at the adornment of buildings; they introduced architectural and formal

gardens, complementing them with clipped yew and box, ornate marble fountains 
and sundials (Dutton, 1949).

Today the gardens of large English country houses are still influenced and

characterised by these two seeming incompatible trends; that of sweeping nature-

inspired landscapes versus formal flower beds, borders and parterres containing

species that boast their origins far beyond the country's shores. It is this unique

blend of mixed habitat types, often within small geographic areas, that contributes 

to their potential importance as novel ecosystems.

The demand, most usually by the lady of the house, for the garden to produce 

abundant cut flowers throughout the year to decorate reception rooms is all but 

gone. Despite this, there is still a requirement for country house gardens to provide 

flowering periods that extend well beyond the summer flush of traditional roses. The 

reason behind this is related to the new ways in which some country houses are 

managed. The opening of estates to the public is one of several ways that income 

can be generated, thus allowing continuity of existence (Elton et al., 1992). The 

fashion of opening stately homes to paying visitors saw dramatic post-war growth 

when, in 1949, the sixth Marquis of Bath opened his house at Longleat. It was his 

success in attracting 138,000 visitors in the first year that paved the way for other 

house owners to follow (Elton eta!., 1992). Today, gardens can be hired for use as
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wedding venues or film sets as well as continuing to be places where the paying

public can visit to get inspiration and planting ideas for their own gardens (Althorp 

Estate, 2012, Boughton House, 2012).

Although present-day English country-house gardens are diverse from the

perspective of ownership and design, they share a common theme. They represent

flower-rich 'islands' (Fahrig, 2003) within expanses of intensively farmed land

(Figure 1.2). As this form of agriculture is known to suppress biodiversity

(Tschamtke et a!., 2005) this raises the possibility that rural gardens may be sites

where flower-visitors successfully persist and even act as source populations which

can disperse into the wider landscape. This is an extension of the 'Circe principle'

described by Lander et al. (2011) who suggest that the existence of resource-rich

land in an otherwise inhospitable matrix may waylay flower visitors as they pass

from one area to another. Establishing whether these gardens possess an, as yet,

unappreciated natural-heritage value in addition to their acknowledged cultural 

importance is central to this project.

Figure 1.2 Waddesdon Manor, Buckinghamshire (centre), set within a mosa 
intensively farmed land. Scale bar = 0.5km. Image GetMapping PLC, 20™
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Scope of the research project
This project explores flower-visiting insect richness, diversity and community 

interactions in gardens in rural areas by focussing on English country-house estates. 

It utilises a suite of properties in lowland Central England to achieve this, 

concentrating on several key insect groups.

Defining the area of study

Research in the field of pollination ecology is a dynamic and on-going process. A 

recent poll of 66 active researchers in the field yielded 86 questions in 14 categories 

which warranted further consideration (Mayer et a/., 2011). Clearly, the scope for 

any research project is limited by time and resources. A Ph.D. project is no 

exception. In order to incorporate as many gardens as possible into the study, whilst 

balancing the need to sample them regularly, identify the species observed and 

analyse the data collected, a single geographic area (that of Northamptonshire and 

the nearby counties of Bedfordshire, Buckinghamshire and Warwickshire) is used.

Land use in Northamptonshire is dominated by agriculture. In 1930, 99% of the

county was used for agricultural activities; however by 2000 this had fallen to 78%

(McCollin et a!., 2000). Although wheat and barley continue to be sown, there has

been a major shift towards planting oilseed rape (OSR) (Defra, 2011).

Northamptonshire, together with others in the region, has been described as a

'yellow county' (ITV, 2012) due to the dominance of this mass-flowering crop in

early summer. The shift to OSR (with a corresponding reduction in barley) reflects a

UK-wide trend that started in the mid-1970s. The total area occupied by this crop

has increased dramatically, from 402,000ha in 2000 to 705,000ha in 2011 (Defra,

2011). It is not just this change from one intensively grown arable crop to another

that presents unknown challenges for flower-visiting insects however.

Northamptonshire, together with many other lowland central English counties, has

also seen a dramatic shift in the ratio of land described as unimproved pasture to

that of intensive agriculture, of which the latter includes grass leys for silage

purposes (King, 2002). In the 1930s two-thirds of farmland in the county was left as

pasture, but by 2000 this had dropped to just a quarter (McCollin et at., 2000).

Across the UK the most valuable areas of unimproved grassland (described as

flower-rich meadows) have decreased dramatically, with 97% reportedly lost over a 
seventy year period (King, 2002, 2011).

In addition to these documented land-use changes, Northamptonshire has found 

itself infamous for being known as the county with the highest number of wild-plant 

extinctions since 1900 (Marren, 2000, 2001, but see Walker (2003) who placed it 

second). Walker and Preston (2006) suggest that the county has lost 11% of its
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native flora since 1700 and that from the 1950s onwards an average of six to eight 

species have been lost each decade (Walker and Preston, 2006).

Target insect groups

As discussed above, flower-visiting invertebrates include taxa from several orders. In

the past, many studies have focussed on a single plant or pollinator species,

particularly when they are believed to have closely evolved (Burkle and Alarcon,

2011). Considering a suite of flower-visiting insects from a number of different

groups has advantages over this method as it enables a community level approach

to be taken as well as permitting the degree of generalization and specialization

between plants and insects in a geographical area to be explored (Waser and

Ollerton, 2006). For the purposes of this project, insect species from the orders

Diptera, Hymenoptera and Lepidoptera are included (Table 1.2). By concentrating on

three groups a sound understanding of the main flower-visitors in rural garden

landscapes and the plants they interact with can be formally documented for the first

time. Detailed information on the study sites and organisms selected is presented in 
Chapter 2.

Table 1.2 The three insect orders containing nine target groups used in the study.

Order Common name

Diptera Hoverflies (flower flies) 
Other flies

Hymenoptera Bees(honey)
Bees (native, solitary) 
Bumblebees 
Wasps (social)
Wasps (solitary)

Lepidoptera Butterflies 
Day-flying moths

Project aims
The overall aim of this project is to explore the structure and composition of plant- 

pollinator assemblages in English country house gardens.

Specifically, the work seeks to elicit how novel ecosystems are structured by taking a

community-level approach that considers interactions between flower-visiting insects 
and the plants available.
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Furthermore, by quantifying within-garden and landscape-scale factors, the project

examines whether spatial attributes help explain the observed flower-visitor
richness.

Finally, through the use of artificial trap nests, the study seeks to determine which

factors affect reproductive success for a single species of cavity-nesting bee.

Research questions

The project seeks to answer the following broad questions:

1. What is the composition of flower-visiting insect communities in large English 

country house gardens and how do these compare to other sites?

2. Do communities of flower-visiting insects and the plants they visit exhibit non- 

random interaction patterns?

3. How do flower-visitors respond to the temporal and spatial variation associated 

with local and landscape-scale factors in and around gardens?

4. Can artificial trap nests in walled kitchen gardens provide new insights into 

solitary bee nesting behaviour and reproductive success?

Overview of the thesis

Chapter 1 INTRODUCTION

This is a broad introduction to the project establishing the importance 

of pollination as an ecosystem service and the threats it faces. The 

role of large gardens in supporting biodiversity is discussed in general 

and the dearth of information relating to rural gardens established. 

The chapter concludes by stating the scope of the project and 

identifying the overall aims for the work.

Chapter 2 STUDY SITES, STUDY ORGANISMS AND GENERAL METHODS

Chapter two explains the process for selecting study sites. It describes 

the target flower-visiting groups and the methods employed to gather 

data about them. Procedures specific to the field study seasons in 

2010 and 2011 are detailed, as are generic statistical techniques.
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Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7

FLOWER-VISITOR SPECIES RICHNESS AND DIVERSITY

In the third chapter the species richness (both actual and estimated) 

of flower-visiting insects in seventeen gardens is analysed and 

compared to other datasets. Differences in species diversity across 

gardens and between key groups are also elucidated. Finally,

community composition similarity is explored as well as the notion of 

rarity.

THE STRUCTURE OF PLANT AND FLOWER-VISITOR 

COMMUNITIES

Chapter four starts by assessing the species richness of the plants 

available. It quantifies the use of floral resources by flower-visiting 

insects across the season and explores non-random patterns in 

community interactions.

SPATIAL AND SEASONAL FACTORS AFFECTING THE DIVERSITY 

OF FLOWER-VISITORS

Within-garden and landscape-scale factors are considered in Chapter 

five to establish whether any observed differences in flower-visitor 

species richness between properties can be explained by 

environmental factors.

TRAP-NEST BEES IN WALLED GARDENS

Chapter six focuses on a subset of the gardens and looks specifically 

at trap-nest usage by the solitary bee Osmia bicornis. It focuses on 

differential survival rates of males and females as a result of two 

different causes of mortality.

CONCLUSIONS

The thesis concludes with a summary of the findings, a critique of the 

study and recommendations for future work.

18



Chapter 2

19



Chapter 2

Chapter overview
In this chapter the location of the study and sites are introduced. The target taxa
are described, with their feeding preferences and UK status included where known
Information on the two field seasons is given, together with generic procedures for 
statistical tests.

Introduction

The observation and accurate identification of flower-visiting insects in the gardens

of English country-house estates was a prerequisite to achieve the aims of the

project, as set out in Chapter 1. The sections that follow describe the selection

criteria for the study sites and the methods used to collect the raw data during the

2010 and 2011 field seasons. All data (unless otherwise stated) are original field 
data collected solely by the author.

Study sites

English country-house estates

Properties defined as large country houses in Britain exist along a continuum of 

size and age-range. Ownership also varies, and includes national organisations 

such as English Heritage and The National Trust as well as private trusts set up 

specifically to maintain the heritage of a site. Another cornerstone of English 

country-house ownership is that of wealthy individuals. Properties of this type can 

be subdivided into those estates that have been passed down from generation to 

generation within the same family, such as Althorp and Courteenhall in 

Northamptonshire, or those that have been acquired by individuals with no prior 

connection to the site e.g. Easton Neston, Northamptonshire.

Shortlisting potential garden sites

The county of Northamptonshire in lowland Central England boasts some 63 

historic gardens (Mowl and Hickman, 2008), the majority of which are associated 

with country-houses. In order to minimise climatic differences, gardens were 

considered as potential sites if they were located within a 50km radius of central 

Northampton. This criterion extended to properties in nearby counties.

A limiting factor in the success of the research project was identified early on as 

the obtaining of land-owner permission to conduct repeat sampling at country 

house locations over a two-year period. In particular it was anticipated that 

securing permission to access the gardens of privately owned houses which are 

rarely, if ever, open to the public might prove difficult. In the light of this, the list 

of potential properties to sample was compiled with the aid of published sources
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that cited owners amenable to research taking place. The reference work of Mowl 

and Hickman (2008), who documented Northamptonshire's historic gardens, was 

particularly useful, as was Heward and Taylor's 1996 work on the county's main 

estate homes.

Selection of gardens

Favourable responses to requests to conduct garden surveys were received from 

owners and estate managers at twenty-two of twenty-eight properties approached. 

From these, seventeen were selected. The final selection reflected a range of 

ownership types (trust, private and organisational), with house construction dates 

spanning approximately five centuries (Appendix I).

As the sampling of flower-visiting insects is a weather and temperature dependent 

activity (all are poikilotherms), maximum flexibility for potential site visits was 

necessary. To this end, an additional criterion at the time of selection was that no 

stringent access rules existed, e.g. sampling was not limited to a specific day a 

week. The gardens chosen for sampling are detailed in Figure 2.1, Table 2.1 and 

Appendix 1, and are hereafter referred to using the abbreviations given.



Figure 2.1 Location of the 17 gardens in central lowland England used in the
study. Abbreviations for property names as per Table 2.1. Scale bar = 10km. Map 
created in ArcMap (ESRI, 2011).
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Chapter 2

Study organisms
As discussed in Chapter one, three insect orders containing nine flower-visiting

groups were identified for inclusion in the study (Figure 2.2). These are now 
considered in detail.

A R^mhiPhl « 5  fl2Wer' V,Slt0rS recorded in the current study. Hymenoptera
A Bumh'ehee - Bombus hortorum, B Honey bee - Apis mellifera, C Solitary bee -

Lasioglossum sp„ D Social wasp - Vespula/Dolichovespula sp„ E Solitary wasp -
Bombvlh^Cm T rmeid' ° 'ptera ~ F Hoverfly - Eristalis tenax, G Bombyliid fly -
Adela r u L T r il \ ep 'dopt*ra ~ H ButterflV - Aglais unicae, I Day-flying moth - Aae,a rufimitrella. Images: Erenler (2010 and 2011).
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Hymenoptera
The aculeate Hymenoptera (bees, wasps and ants) comprise some of the most 

economically important pollinating insects throughout the world (Faegri and van der 

Pijl, 1966, Michener, 2007). Within the aculeates, bees (Apoidea) are the most 

frequent flower-visitors, often collecting both pollen and nectar for their brood, as 

well as imbibing nectar to meet their own energy needs (Michener, 2007)

Bees

Bumblebees (Apidae: Bombus)

Bumblebees (Figure 2.2 A) include social nesters ('true' bumblebees) and cuckoo 

species (those that select the nests of other species in which to raise their young) 

(Goulson, 2010). Depending on species, bumblebees make nests underground, 

amongst vegetation or in tree holes (Prys-Jones and Corbet, 2011). Tongue length 

also varies according to species, with longer-tongued bumblebees able to remove 

nectar from flowers with tubular corollas (Prys-Jones and Corbet, 2011). Most 

bumblebee colonies complete a single nesting event a year, with newly reared 

queens being the only individuals to survive the winter. The following spring the

overwintered 'true' bumblebee queens emerge and commence nest building 

(Goulson, 2010, Prys-Jones and Corbet, 2011).

The foraging range of most bumblebee species remains poorly understood (Goulson, 

2010); however certain species have been the focus of spatial studies. Osborne et 

at. (1999) found workers of Bombus terrestris L. regularly travelling 200m to forage 

in an agricultural setting in the UK, whilst Kreyer et at. (2004) noted the maximum 

forage distance for B. terrestris agg. in a German forested landscape was 2.2km.

In the UK there are 24 species of bumblebee. Three additional species that were

regularly found in the early part of the twentieth century are now considered extinct 
(BWARS, 2012).

Honey bees (Apidae: Apis)

Honey bees (Figure 2.2 B) live in colonies consisting of a single queen and many 

workers, often reaching up to 60,000 individuals (Hooper, 1991). They are classed 

as highly eusocial. Eusociality involves adult females from two generations working 

cooperatively together, with a clearly demarked division of labour (Michener, 2007).

Within a colony the queen is responsible for egg-laying, whilst members of the 

worker caste engage in a range of activities including foraging, nursing developing 

brood and general guard duties (Hooper, 1991, Michener, 2007).
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Honey bees are managed pollinators, with Apis mellifera (the European honey bee) 

classed as the most managed bee in the world (vanEngelsdorp and Meixner, 2010). 

Human intervention, in the form of nest provision and nourishment through the 

winter months (usually after honey reserves have been removed), means managed 

honey bees no longer function as fully autonomous organisms (Hooper, 1991).

Honey bees make a major contribution to agriculture through the pollination services 

they provide, with 52 of the leading 115 global food commodities dependent to some 

extent on their presence (Klein eta!., 2007). They are classed as super-generalists 

making them extremely versatile for commercial use (Michener, 2007, Kaiser- 

Bunbury etal., 2009, vanEngelsdorp and Meixner, 2010). Honey bees are known to 

have long foraging ranges; Beekman and Ratnieks (2000) found the mean range of 

honey bees on heather {Calluna vulgaris) in the UK to be 5.5km, with 10% of 

workers travelling more than 9.5km.

In the UK the native status of the dark honey bee, Apis mellifera mellifera is unclear.

Carreck (2008) makes a case for its existence based on archaeological evidence and

a study mapping its European distribution, however no formal assessment has been

made to establish the location of colonies in the UK (BWARS, 2012). It is therefore

reasonable to assume that encounters with honey bees in the UK are likely to be

with the non-native, managed, European species, Apis mellifera (Breeze et al. 2011
2012).

A 78% decline in beekeeping between 1953 and 2010 (Potts etal., 2010) together 

with a number of diseases and parasites has drastically reduced the number of 

honey bee hives in existence in the UK (Breeze etal., 2012).

Solitary bees

(Andrenidae, Apidae, Colletidae, Halictidae, Megachilidae, Melittidae)

Solitary bees (Figure 2.2 C) include aerial nesters and those that nest in the ground. 

They can be further sub-divided into two distinct reproductive types: those that 

provision their own nests and those that are cleptoparasitic, i.e., making use of the 

resources collected by other bees (Westrich, 1996). Solitary bees that construct their 

own nests do so without the assistance of other females and usually take no part in 

rearing the offspring (Michener, 2007). Cleptoparasites also usually die or depart 

without encountering the emergence of their progeny (Michener, 2007).
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Habitats that support solitary bees possess three key features: suitable space for 

nests, material for nest building, and sufficient food plants to supply nectar and

pollen needs (Westrich, 1996). Some solitary bees have general pollen requirements 

and are termed polylectic, whilst others are specialised on particular plants

(oligolectic). Monolectic bees restrict their visits to a single plant species (Westrich, 

1996; Cane and Sipes, 2006; Michener, 2007).

Solitary bees are active from early spring to late autumn in Europe (Westrich, 1996).

Most are univoltine, timing their emergence to coincide with the peak flowering of

plants they commonly visit (Westrich, 1996). The foraging distance of solitary bees

is positively correlated with body length, with Gathmann and Tscharntke (2002)

noting that the foraging range of sixteen European solitary bee species typically 
varies between 150 and 600m.

Westrich (1996) suggests that solitary bees are likely to have evolved in a variety of 

dynamic habitats such as shifting flood plains within large riverine systems. As

anthropogenic influences on the landscape spread, bees subsequently dispersed into 
new habitats (Westrich, 1996).

Solitary bees are regarded as increasingly important pollinators, due in no small part 

to the dramatic declines observed in honey bee populations in some northern 

temperate areas (Winfree eta/., 2007, Breeze eta/., 2011). Added to this is the 

realisation that although honey bees are good generalist foragers, there are certain 

crops for which their pollinating success is inferior to solitary bees. An example of

this is alfalfa (Medicago sativa). The solitary leaf-cutter bee (Megachile rotundifolia) 

is used as a managed pollinator on this crop (Michener, 2007).

In the UK there are approximately 228 species of solitary bee (BWARS, 2012).

Wasps

In the majority of cases, wasps do not forage for resources from flowers to feed their 

young; the exception being the pollen wasps (Vespidae; subfamily Masarinae). 

Instead, they gather animal protein such as live or masticated insects or spiders 

which they take back to communal nests (in the case of social wasps), or use them 

to provision cells that will contain offspring (solitary wasps) (BWARS, 2012). The

target prey is generally specific to the species of wasp collecting it. Prey items 

include aphids, caterpillars, flies, hoverflies, spiders and weevils, all of which may be 

immobilised by sting or paralysis (BWARS, 2012), Certain wasp species do not
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collect prey; instead they are parasitoids which oviposit directly into their hosts or,

alternatively, they are cuckoos that use the nests of bees to raise their offspring in 
(BWARS, 2012).

Social wasps (Vespidae: Dolichovespula, Vespa, Vespula)

Social wasps (Figure 2.2 D) consist of colonies that may be ground or aerial nesting

They visit flowers for nectar to fuel their flight activity and to look for prey items.

Whilst searching, pollen adheres to hairs on the thorax and abdomen, which may 

later be transferred to receptive flowers.

There are nine species of social wasp in the UK. Some of these have particularly

large populations. Crawshay (1905) noted more than 5,000 Vespula vulgaris

individuals present in a single nest. The total number of V. vulgaris workers that are

reared throughout a season can approach 10,000 (BWARS, 2012). Virtually nothing 

is known about the foraging ranges of social wasps.

Solitary wasps (12 families)

Solitary wasps (Figure 2.2 E) can be either ground or aerial nesting. As with social

wasps, flower visiting is limited to trips to obtain resources to fuel flight and to

search plants for prey items. Females prepare nests and cells without assistance

from a worker caste and die or disperse before their offspring emerge (BWARS,

2012). There are approximately 314 species of solitary wasp in the UK. Virtually 

nothing is known about their foraging ranges.

Diptera

Flies are an important group of flower visitors and play a key role in pollination, 

second only to hymenopterans (Yeates and Wiegmann, 2005). Hoverflies are 

regarded as particularly important flower visitors (Rotheray and Gilbert, 2011).

Hoverflies (Syrphidae: 3 sub-families, Eristalinae, Microdontinae, Syrphinae)

Also known as flower flies, hoverflies (Figure 2.2 F) occur on all continents except 

Antarctica (Rotheray and Gilbert, 2011). Most species can be categorised according 

to their larval feeding type which includes: predation of aphids and ants - termed 

zoophagy; consumption of live plant material - phytophagy, and the breakdown of 

detritus in soil and water - saprophagy (Gilbert eta/., 1994, Rotheray and Gilbert, 

2011). in the case of zoophages, eggs are laid near food sources such as aphid 

colonies or ant nests, whilst for saprophages tree sap, farmyard ditches or 

bumblebee nests are sought out and used (Stubbs and Falk, 2002).
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Hoverflies do not visit flowers to collect food for their offspring; instead they visit

them to satisfy their own nutritional and energy needs (Faegri and van der Pijl,

1966). Pollen and nectar are the two most important sources of energy for adult

hoverflies, the third being honeydew excreted by aphids (Rotheray and Gilbert,
2011).

The foraging ranges of hoverflies remain poorly understood, although they are easily 

capable of long distance flight. This is exemplified by the migration of certain species 

such as Episyrphus balteatus across the English Channel (Stubbs and Falk, 2002).

Hoverflies are usually considered generalists, visiting a range of flowers across the 

season (Rotheray and Gilbert, 2011).

There are currently 282 species of hoverfly recorded from the UK (Ball et at., 2011).

Other flies (including: Bombyliidae, Conopidae and Tachinidae)

In addition to hoverflies, several other fly families contain species that are notable

flower visitors. These include (but are not limited to): Bombyliidae, Conopidae and 

Tachinidae.

Bombyliids (Figure 2.2 G) are bee mimics with a rigid proboscis. They hover to 

nectar-feed from flowers and their larvae are scavengers or parasites in the nests of 

solitary bees. Conopids (thick-headed flies) have a long proboscis and regularly visit 

flowers to feed on nectar. Their larvae are internal parasites of bees. Tachinids are 

robust and often bristly flies that feed on nectar and pollen from flowers. Their 

larvae are endoparasites of butterflies and moths (Colyer and Hammond, 1968).

In the UK there are 287 species of fly within these three families: Bombyliidae (9),

Conopidae (24) and Tachinidae (254) (Dipterists' Forum, 2012), however only five

commonly occurring garden species are included for the purpose of this study:

Bombylius major (Bombyliidae), Conops quadrifasciata (Conopidae), Phasia

hemiptera (Tachinidae), Sicus ferrugineus (Conopidae) and Tachina fera 
(Tachinidae).

Lepidoptera
Both butterflies and moths visit flowers for nectar and pollen, with the latter 

considered necessary for oogenesis (O'Brien et a/., 2003). These two groups often 

have strong links to specific plants which are used as host sites for larval feeding,
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the exception being the lycaenids that are ant-nest associates (Brooks and Knight, 

1982). For the purposes of this study, butterflies and moths are recorded together.

Butterflies (Hesperiidae, Lycaenidae, Nymphalidae, Papilionidae, Pieridae, 

Riodinidae)

Although butterflies (Figure 2.2 H) are a small group, representing only about 360 of 

the 5,000 species of Lepidoptera in Europe (Chinery, 1989), they are more likely to 

be observed on flowers during the day than moths. Their seasonal emergence is 

closely tied to the availability of their lan/al host plants (Brooks and Knight, 1982, 

Chinery, 2005). There are 59 species of butterfly that regularly breed in the UK (Fox 

etal., 2012).

Day-flying moths (multiple families)

Few of the > 2,400 species of moth recorded in the UK are observed visiting flowers 

during the day, although some, such as the micro-moth Adela rufimitrella (Adelidae) 

(Figure 2.2 I) and the macro-moth, the silver Y, Autographa gamma (Plusiinae), are 

almost exclusively day feeders (Kimber, 2012).

Summary

These nine insect groups encompass a suite of species that are known from urban 

gardens and parks, as well as agriculture-dominated landscapes (Carter, 2001, 

Frankie et at., 2009, Bates et al., 2011b). English country-house gardens have the 

potential to meet some or all of the food, nesting and egg-laying requirements for 

these groups.

General fieldwork principles
Fieldwork took place over two years (2010 and 2011) and was conducted between

the months of April and September. This six-month period was chosen as it

corresponds to the maximum number of days when weather conditions meet the 

criteria for insect surveys (UKBMS, 2010a).

The following describes the general fieldwork principles for the two years.
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2010 Field season
The 2010 field season involved sampling predefined areas in each of the 17 gardens 
on four occasions during the year.

Establishing survey areas within the seventeen gardens

The types of garden area that are common to most country-house estates, such as 

beds, borders and rose gardens, were identified early in 2010 using online resources 

(The National Trust, 2012a) and published literature (Mowl and Hickman, 2008 and 

Musgrave, 2009). From these, a list of potential garden-area categories (hereafter 

referred to as components) was compiled. During in itia l site v is its to the seventeen 

properties in February and March of 2010 the presence or absence of these 

components was assessed. By conducting late-w inter site v isits (when the majority 

of garden perennials were in the ir dorm ant phase), potential areas for sampling 

could be identified w ithout bias. This was particu larly im portant for gardens with 

several flower beds and borders, as it meant the most floristica lly rich areas were 
unknown to the researcher during the selection process.

The aim when selecting areas to sam ple at each location followed a two-stage

process: firstly, components shared by many gardens were chosen for inclusion, e.g.

herb areas and flower beds and borders. Secondly, an attem pt was made to include

all other habitats available (UKBMS, 2010b). To achieve this, a sketch map was

drawn of each garden and annotated with the components present. During a

separate v isit non-contiguous transects (with a combined length of 600m  per

property) were measured out using a trundle wheel. Where only one or two

component types were present in a garden, all availab le flower beds and borders

were measured to the ir full extent first, followed by any other availab le components.

The category 'sem i-w ild ' made up the remaining length of the 600m transect (Table

2.2). Conversely, where gardens had extensive flower borders, only a proportion of

these were measured. This approach ensured that area selection did not place a

disproportionate importance on flower-rich patches in gardens where several habitat 
types were present.

Having measured the transects the sketch maps were updated with the start and

end locations of each area to be sampled, enabling quick and accurate relocation of 
transects on subsequent sampling visits.

By following th is method, transects of equal length based on a stratified sampling 

approach were identified in all gardens. This enabled areas to be repeat-sampled 

throughout the season. This type of sampling is sim ilar to that of Pollard walks for
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butterfly monitoring (Pollard, 1977), a robust sampling method that has been used 
for over th irty years.

The components included and their respective lengths at each of the seventeen 
gardens are given in Table 2.2.

Although walled ('k itchen ' o r'p roductive ') gardens were identified as ubiquitous 

features that would have originally been present at most country-house estates, only 

half of the properties selected for sampling still had these in existence. The category 

'beds and borders' therefore includes areas both within and beyond walled gardens. 

These walled areas became the focus of the 2011 field season (see below) and their 

history, and importance is discussed in greater detail in Chapter 6.
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Insect surveys and timing of sampling sessions

The need to accurately identify insects to species level, together with noting the 

plants they were visiting, was deemed of paramount importance to achieve the 

stated aims of the project. For th is reason the collection of insects using malaise or 

pan traps was not considered appropriate. Although these two methods have been 

used to record the species richness of a range of invertebrates in gardens (Sm ith 

e ta/., 2006c, Owen, 2010) the data collected provides no information about the 

flowers the insects visit. More importantly, these methods can underestim ate the 

presence of some species and lead to the destructive sampling of large numbers of 

others (Cane et a/., 2000). To avoid these problems the technique of hand netting 

using a standard butterfly net was used (NHBS, 2012, Pocock e ta/., 2012).

Between the 27th April and the 30th Septem ber 2010 the seventeen properties were 

each sampled four times. The gardens were sampled on a rotational basis in each 

of four broad sampling periods between spring and late sum m er (22 April -  5 June, 

6 June -  18 July, 19 July -  9 August and 10 August -  30 Septem ber). Properties 

were selected for sampling by generating random numbers from one to seventeen 

in a spreadsheet then matching the num ber drawn with the a lphabetically sorted 

properties. As a courtesy to property owners it was agreed that a m inimum  of 

twenty-four hours' notice would be given prior to any visit.

Potential sampling days were chosen using the BBC's 'next 24-hours' weather

forecast website for the region (BBC website). Perm ission to sam ple was only

sought if weather conditions were predicted to meet the standards necessary for

flower-visiting insect activity. This was e ither a tem perature of > 13°C with clear

skies, or a lternatively > 17°C and no rain. In accordance with the UK Butterfly

Monitoring Scheme protocol (UKBMS, 2010a), days when wind speeds were

predicted to reach five or more on the Beaufort scale were discounted for sampling 
purposes.

If a planned visit was inconvenient for the owner e.g. there was a pre-arranged

property
to the first site rearranged. Selecting properties in th is way ensured that gardens 

were not visited in the same order each time. The mean number of days (± SE) 

between sampling sessions per property was 39.8 ± 1.06, n =17.

Cancellation of visits and inclement weather meant a small overlap in sampling 

sessions occurred. Of the 68 sampling sessions, 91% were within the broad
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sampling periods stated above. The remainder were within ± 4 days (range 1 - 1 0  
days) of the previous sampling session.

Whilst walking along a transect, a distance 1.5m perpendicular to the route was 

included for surveying purposes. Where transects were contiguous with linear 

components such as beds or borders, 1.5m on the flower bed or border side of the 

surveyor was sampled. This observational area was set as a realistic 'space' for 

observations without requiring the researcher to step onto tilled/managed flower 

beds. Where transects passed through open components, e.g. orchards, 0.75m 
either side of the surveyor was included in the sampling. This method of belt 

transect sampling is sim ilar to other studies assessing the diversity and abundance 

of flower-visiting insects e.g. Lagerlof et at. (1992), Colla et at. (2008) and Friind
et at. (2010). Sampling in this way gave a total surveyed area of 900m2 per 
property per session (600m x 1.5m = 900m2).

Sampling took place between the hours of 10.45 and 15.45, unless daytime 

temperatures exceeded > 25°C, when sampling was deferred between the hours of 

12.45 and 13.45 due to potential reduced insect activity. Transects were walked at 

a standard pace of approximately 6m per minute (UKBMS, 2010b). In 2010, an 
area totalling 6.12ha was sampled in approximately 113 hours.

If a garden was open to the public on the day of the visit, care was taken to avoid 

sampling in areas where visitors were present to avoid disturbance of insects.

Insects alighting on flowers and legitimately in contact with either male or female

plant reproductive organs were recorded, irrespective of whether they appeared to

be transporting pollen in scopae, corbiculae or on hairs on the body. In addition to
recording the insect, the species of plant that was visited was noted. Flower-

visitors observed to be robbing nectar resources without coming into contact with

reproductive structures, e.g. Bombus spp. biting through the back of Salvia spp. 
flowers, were not Included.

Where possible, flower-visitors were recorded to species level in the field. If an 
immediate identification was not possible, insects were netted and placed in a 
small, labelled plastic ja r containing a ball of paper tissue to absorb excess 

moisture. The plastic jars were not tightly sealed, thus allowing insects to respire 
To avoid heat-stress the jars were placed in an insulated cooler bag for later 

identification. The time taken to net and tube each insect was excluded from the 
observation time. At the end of each sampling session insects in jars were
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identified and released. Where identification was not possible, individuals were
retained for processing as voucher specimens. Only those insects required under

the aims of the study were taken as voucher specimens as per the published code

of conduct for collecting insects (Joint Committee for the Conservation of British 
Invertebrates, 2002).

The castes of certain species of bumblebee and some morphologically sim ilar 

groups of hoverfly could not accurately be separated in the field. Their high 

abundance meant taking all as voucher specimens was both impractical and 

unethical. For these insects, broad classifications were made as per Dicks et at. 

(2002). These included the categories: Bombus terrestris/lucorum  (combining the 
workers of the species B. terrestris and the species complex B. lucorum sensu 

la to), B. vestalis/bohem icus (combining the males and females of both species) 
and Syrphus spp. (combining rectus, ribesii, torvus and vitripennis).

Preparation and storage of voucher specimens

Insects taken as voucher specimens for identification were prepared using ethyl 

acetate or by freezing, following the descriptions in Eversham (2010). Voucher 

specimens are held at The University of Northampton, School of Science and 

Technology, Newton Building, St George's Avenue, Northampton, NN2 6JD, UK.

Identification of species

The identification of flower-visiting insects required the use of identification guides, 

handbooks, dichotomous keys, consultation with specialists and visits to 

institutions with insect collections, e.g. The Angela Marmont Centre for UK 

Biodiversity at the Natural History Museum, London. The main identification 

sources used are listed in Table 2.3. Eleven individuals (all solitary bees) remained 

unidentified at the end of the season. As these were morphologically distinct from 

all other specimens they were included in the species richness calculations for the 
2010 field season, despite lacking a formal identification.
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Chapter 2

Floral surveys

On the same day that insects were surveyed, a complete inventory of all plants in

flower along the sampled transects was made. This was achieved by re-walking 
each transect route.

A plant species was recorded as present and in flower when a m inimum of three 

flowering units were observed. A flowering unit consisted of either: a so litary flower 

e.g. Tulipa spp., an umbel e.g. Verbena bonariensis, a head e.g. D ipsacus 

fu llonum , a spike e.g. A juga reptans or a capitulum  e.g. Doronicum  orienta/e 

(Dramstad and Fry, 1995, Carvel! et a l.t 2007). Flowers were only included when 

they possessed an intact, fresh perianth that showed stam ens presenting pollen 

and/or a non-wilted stigma, as per the methods of Primack (1985).

Flowering plants were identified to species level in the field. If th is was not 

possible, a photograph was taken and the image num ber noted next to a hand-

written description. Identification books were later used to identify plants to at 

least genus level. A list of any plants remaining unidentified at the end of the field 

season was sent to the head gardener at each property together with an electrons 

folder containing flower images, site locations and dates. At the end of 2010 less

than 0.3% of all plants observed remained unidentified to genus. These were 
excluded from analyses.

A range of resources were used to identify plants in flower. These are detailed in

Table 2.4. Nomenclature follows the most recent Angiosperm  Phylogeny Group 
publication (APG III, 2009).

Table 2.4 Resources used to identify flowering plants.

Book title/Website Reference

New flora of the British Isles 

RHS website

RHS New encyclopedia of plants and flowers 

The encyclopedia of planting combinations 
The flower expert

The tree and shrub expert 

Wild flowers of Britain and Ireland

Stace (1997)

RHS (2012b)

Brickell (1999)

Lord (2002) 

Hessayon (1995) 

Hessayon (1993) 

Blarney eta/. (2003)
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2011 Field season
In 2011 a subset of the seventeen properties was sampled. Sampling took place on 
three occasions at nine properties.

Survey areas

Properties that possessed walled 'k itchen ' o r 'p roductive ' gardens were the focus of 
the 2011 field season (marked with an asterisk in Table 2.1).

Insect surveys and tim ing of sam pling sessions

Each walled garden was visited on three occasions between the 11th April and 15th

September 2011. The selection protocol of 2010 was followed to decide the order 
in which the properties would be visited.

A standard sampling tim e of 1 hour 15 m inutes was allocated for insect sampling 

on each of the three visits to a garden. During th is time, the inner perim eter of the 

walled garden was walked at a standard pace (as per 2010), followed by two 

diagonal transects, each starting at a corner, passing through the centre and 

ending at the opposite comer. Finally any beds or borders not covered by the 

above perimeter or diagonal walks were sampled individually. This procedure was 

repeated several tim es during each v is it until the allocated sampling tim e elapsed.

The 2011 insect sampling differed from 2010 in that all flower-visiting insects

observed were noted, regardless of whether they were in contact with the

reproductive parts of flowers. This method meant individuals on the wing, those

that were resting on the ground or walls, or those walking over plants in search of

prey items were included. In addition, the activ ity of each insect was noted. Where

individuals were noted to be legitim ately in contact with flowers an identification of

the plant species was made. During the third v isit to each property large numbers

of social wasps were often found aggregating on fallen fruit. If th is occurred, the

species was noted but no attempt was made to accurately assess the num ber of 
wasps present.

Insects were identified, netted, prepared and identified using the same methods as 
in 2010.

Floral surveys

As with the 2010 sampling season an inventory of all flowering plants in the 

transects was made. This included all items in flower; from flowers present in 

lawns, to climbers on walls as well as both free-standing and espalier fruit trees.
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In addition to flowering-plant richness, an estimate of abundance (blossom  cover)

was made. The mean area of inflorescences was measured in cm 2. For

actinomorphic flowers a circu lar shape was assumed, with the radius measured,

whilst for zygomorphic flowers lengths and widths were measured, as per Hegland

and Boeke (2006). The measured parts of flowers included both plant reproductive 
organs and petals (perianth).

Analyses
Information relating to individual statistical tests is detailed within each chapter.
The following refers to generic procedures.

Tests for normality were conducted using Shapiro-W ilk, with homogeneity of 

variance established using Levene's test. Where tests violated assumptions, data 

were transformed accordingly and re-tested. Where necessary, non-param etric 
tests (e.g. Kruskal-W allis) were used.

Means are presented with ± 1 standard deviation, 1 standard error or 95% 
confidence intervals (detailed in text).

Unless otherwise stated, tests were performed using IBM SPSS Version 20 (IBM 
Corp., 2012).

Abbreviations
Abbreviations used throughout the thesis are listed in Appendix II.
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Chapter 3

visitor species richness
and diversity
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Chapter overview
This chapter describes the com m unities of flower-visiting insects in the gardens of 
large English country houses. Species richness and d iversity are quantified and 
comparisons are made with independently collected data as well as with vice-county 
lists. S im ilarity in flower-visitor com m unity composition is considered, and both 
seasonal and insect taxa-specific patterns are explored.

Introduction

Documenting insect com m unities

The collecting and cataloguing of pollinating insects to establish the ir d iversity has a 

long history (Donovan, 1792, Riley, 1892). Despite numerous academ ic publications 

on the subject (the search term  pollinator d ive rs ity ’ in Web of Science reveals 1,511 

journal articles published between 1982 and 2012), the assessm ent of, and 

explanation for, the exact composition of any particu lar group of flower-visiting 

insects continues to generate scientific interest (Franzen and Ockinger, 2012).

The focus on pollinator d iversity stem s from an appreciation that many natural 

ecosystems rely on a range of pollinators to ensure continu ity of existence (Potts et 

at., 2006). In addition, d iverse pollinator assem blages benefit crop yields, the true 

economic value of which is only now being fully realised (Greenleaf and Kremen, 

2006, Bommarco e t at., 2012). A greater understanding of pollinator d iversity allows 

informed decisions to be made about how best to encourage, m onitor and preserve 
pollinating insect communities in d iverse habitats (STEP, 2012).

Target insect groups

As discussed in Chapters 1 and 2, a number of flower-visiting insect groups are 

important ecosystem -service providers and therefore warrant investigation. For the 

purposes of academ ic study, the decision to focus on particu lar groups has often 

been driven by the specialism (s) of the lead investigator (Westphal e ta/., 2008, Lye 

e ta l., 2009, Keil e ta /., 2011). Concentrating research effort on only one or two 

insect orders is common, and has tangible advantages including the accurate 

identification of samples to species level with the aid of specialist entomologists 

(Westphal e ta/., 2008). This task is made harder if many orders are involved and 

funding is limited. By focussing on identifying only bees and hoverflies Frund e ta l. 

(2010) were able to answer questions about the response of insects to flower 

diversity, whilst Bates et al. (2011b) used the same two groups to address questions 

on how pollinator assemblages vary over urban-rural gradients. Only by working to
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species resolution can the biology and life history tra its of an organism  be taken into 

consideration when interpreting results. For example, Bates et al. (2011b) used this

approach to comment on the larval requirements of specific hoverfly species in 
relation to features in the landscape.

In contrast to a species-led approach, research that takes a more holistic view may

reveal hitherto unappreciated interactions between different po llinator groups and

the flowers they visit (Alarcon e ta/., 2008). However, what is gained in describing

'the bigger picture' is often tempered by a loss of resolution. For example, Lazaro

and Totland (2010) recorded the abundance o fte n  flower-visitor groups by assigning

individuals to broad morphospecies classes. These were then used as surrogates for

taxonom ic classifications. Although the morphospecies method is presented as a

valuable tool where rapid assessm ent of b iodiversity is necessary (O liver and

Beattie, 1996), it is known to have several disadvantages. These include the artificial

inflation of species richness that occurs when sexual d im orphism  results in male and

female specimens from the same species being erroneously classed as two separate 
species (Derraik et a!., 2002).

Insect assem blages within gardens

Gardens provide an excellent opportunity to observe insects visiting flowers. The

records obtained by intensively cataloguing a single-garden location, such as

Jennifer Owen's 30-year study of her Leicestershire garden (Owen, 2010), benefit

from repeat sampling over many years. Despite the sustained sampling effort, these

results are lim ited to a single site, thus restricting the interpretation of whether the 
garden is 'typ ica l' or not.

Studies of gardens that incorporate a replicated sampling strategy, such as that of 

Smith et al. (2006c) who assessed the presence and abundance of twelve 

invertebrate groups in 61 urban domestic gardens in Sheffield, increase the 

robustness of species richness estimates, but also suffer lim itations. In common with 

other invertebrate assessments in gardens, Sm ith eta/. (2006c) employed capture 

methods (malaise traps) that failed to reveal information about the plant species the
insects

were caught simply as they passed through gardens, or whether they were visiting 
specifically to use the floral resources available.

A means of overcoming the lim itations described above is to use a combination of a 

repeated sampling design (which focuses on several insect groups that are identified 

to species rather than morphospecies level), whilst also incorporating information on

UNiVERS! TV
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the flowers the target insect groups are using. In this way, accurate species richness 

and diversity indices can be calculated and, additionally, the community structure of 

the plants and insects can be described. To my knowledge, no published data exist 

using this combination of methods for insect com m unities in large rural gardens. The 

current study offers a unique insight into the potential role these sites play in 
supporting flower-visiting insects in the countryside.

In th is chapter flower-visitor species richness, d iversity and community structure is 

documented for a suite of properties. Individual sites are compared to establish 

whether the com m unities observed are sim ilar. Additionally, the data are explored in 

the context of other rural and large gardens. This is achieved by comparing the 

results from the current study with those from a dataset of 20 National Trust (NT) 

gardens in England and a published list of species compiled from three years' 

sampling at Buckingham Palace Garden (BPG). The results are also considered on a 

regional scale by placing them in the context of county-level records.

Flow er-visitor species richness

Baltanas (1992, p. 484) describes species richness as 'the most fundamental 

meaning of biological d iversity '. Evaluating species richness has often been 

considered a prerequisite when setting conservation targets or priorities (Margules 

and Pressey, 2000) or comparing multiple sites of interest (Beccaloni and Gaston, 

1995). For example Kearns and O liveras (2009) used species richness to compare 

urban and remote grassland areas in the USA to establish which environmental 

factors had the greatest effect on bee diversity. Two m ajor lim itations are associated 

with the species richness metric however. Firstly, species richness is dependent on 

both sample size and the extent of the area being studied (Peet, 1974). G reater 

intensity of sampling generally produces a higher num ber of species records, whilst 

larger areas often support more species (MacArthur and Wilson, 1967). A second 

issue is the presence of rare or hard-to-detect species at the study site of interest. 

Typically, the results from a sampling session document what is found, not what 

m ight have been found if all species were equally abundant and had sim ilar levels of 

crypsis. The absence of a species from a dataset may therefore represent a true 

absence (it is genuinely not present) or a false absence (the species is there but 
remains undetected) (Gotelli and Colwell, 2011).

To overcome the observation that the total number of species recorded is generally a 

'downward-biased' estim ator for the true richness of a local assemblage (Gotelli and 

Colwell, 2011), methods and tools have been developed to correct for this. Using
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species accumulation curves as a starting point, richness estim ators extrapolate 

forward to a hypothetical asymptote of a curve to predict the estimated species 

richness for an assemblage. The methods use the observed number of rare species 

present to adjust for those predicted to be present but not detected (Colwell and 
Coddington, 1994, Gotelli and Colwell, 2011).

Non-parametric methods currently provide the most reliable species richness 

estim ates (Chazdon etd/., 1998, W alther and Morand, 1998). They comprise seven 

main estim ators (Appendix III). Of these, three are particu larly appropriate for use 

with abundance or count data, namely: ACE (abundance-based coverage estimator), 

Chao 1 and Jack 1 (Gotelli and Colwell, 2011). The choice of which estim ator to use 

depends on the size o f the dataset available, the relative importance of the 

singletons and doubletons present and the variance and confidence intervals 

associated with the estimated species richness values (Chazdon eta/., 1998). Whilst 

all methods have their strengths and weaknesses, several authors have reported 

favourably on a number of them. For example, Chao 1 and Jack 1 were found to be 

the most robust estim ators for parasite species richness when considering hosts 

from different taxonom ic groups, as these two indicators were less biased and more 

precise than ACE (W alther and Morand, 1998). The re liab ility of Jack 1 has also been 

reported for artificial stream -influenced com m unities (Baltanas, 1992), as well as 

plant assemblages under hardwood stands (Palmer, 1990).

Species diversity

An assemblage of organisms is composed of a num ber of discrete units, with unit

classification at species level being the most common (Magurran and McGill, 2011).

The number of species occupying a site (the species richness) can be quantified or

estimated by sampling subsets of the total area. Despite generating a quantitative

measure for richness that can be used to compare one area to another, species

richness does not adequately portray the variation in abundance of individuals that

occurs between species. In short, both common and rare species are treated equally 
(Krebs, 2009).

Diversity indices combine evenness with richness to give a measure of how 

abundance is spread between the species observed (Colwell, 2009). Both Shannon 

and Simpson diversity indices are regularly used when considering pollinating insect 

communities. For example, Lazaro and Totland (2010) used S im pson's diversity 

index when investigating pollinator behaviour in relation to local flower composition, 

as this index gives a higher weight to common taxa. In contrast to this, Hennig and 

Ghazoul (2011) used the Shannon H' index to assess plant-pollinator interactions in
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an urban setting, whilst Frund et al. (2010) used the same index to exam ine

whether plant d iversity and flower-visitor d iversity were correlated. The Shannon H'

index is particu larly useful for measuring d iversity in gardens as, in addition to

considering richness and evenness, it is weighted towards rarer species (Krebs, 
1994).

Sim ilarity of flow er-visiting com m unities

In addition to m easures of species richness and diversity, the composition of species

present can provide a valuable measure that allows sites to be compared with one

another (Su et al., 2004). This has im plications for research looking to quantify

whether anthropogenic disturbance, e.g. agricultural intensification, has a

homogenizing or diversifying effect on insect com m unities (Jost e ta l. ,  2011).

Assemblages can be measured according to the ir s im ilarity or differentiation. In

assessing two assemblages for sim ilarity, the relative abundance of individual

species shared by the two groups is assessed and a value is returned that acts as a

proxy for the closeness of the two. The value can range from zero to one, with

assemblages sharing no species assigned a zero score whilst those that are deemed

identical are valued at one (Jost e t a l., 2011). A m ultitude of metrics ex ist to

measure sim ilarity based on incidence, abundance and estimated data (Jost e ta/., 
2011 ).

Species abundance distributions

Assessing two communities on the basis of the sim ilarity of the ir component parts

has its advantages where overlap between the two allows meaningful comparisons to

be made. A lim itation of community s im ilarity methods is that a single index value is 
calculated.

A more informative approach is to use species abundance d istributions (SADs)

(Magurran, 2011). Although these provide no information on species composition,

they describe (and illustrate) the distribution of species within a comm unity based

on the frequency of species represented by n individuals. They represent a useful

measure of the commonness and rarity of species that comprise any given sample, 
site or region (McGill, 2011).

SADs typically take the form of histograms (on arithm etic or log scales) or rank 
abundance distributions (RADs) (Krebs, 2009, Figure 3.1).

The shape of a SAD, frequently described as a hollow or 'la zy -J ' curve when plotted 

as a histogram (McGill et al., 2007), is a ubiquitous feature that occurs in many
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multispecies communities ranging from marine benthic environments to Amazonian 

rainforests (McGill et a/., 2007). In fact these authors describe the hollow-curve SAD 

on an arithmetic scale as 'one of ecology's true universal laws' (McGill et a!., 2007).

A drawback of using RADs is that long tails' representing species characterised by 

one or a few individuals vary according to the diversity of the community. This 

creates problems when trying to make meaningful mathematical comparisons 

between two or more datasets (McGill, 2011). A useful extension to SADs are 

empirical cumulative distribution functions (ECDFs), described by McGill (2011, p. 

122) as 'the optimal way to plot SADs'. ECDFs facilitate robust testing of data (either 

between distinct samples or against a standard distribution) using Kolmogorov- 

Smirnov procedures (McGill, 2011).
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Figure 3.1 Four ways of plotting species abundance distributions, (a) Histogram 
showing the number of species (binned) for a given abundance on an arithmetic 
scale (b) Histogram with abundance on a log2 scale, (c) Rank abundance 
distribution and (d) Scaled empirical cumulative distribution frequency with a logistic 
curve fitted through the data points. Copyright (2007) Wiley. Used with permission 
from McGill et al. (2007), Ecology Letters, Wiley publishing.
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Aims
The aims of this chapter are to evaluate flower-visitor species richness, diversity and 

community similarity in 17 English country-house gardens and to compare these 

results to other large gardens where data exist.

Research questions

1. What is the estimated flower-visitor species richness for the seventeen

gardens and how does this compare to the actual number of species 

recorded?

2. Does overall flower-visitor species richness and the richness of the four most 

speciose groups - bumblebees (BB), solitary bees (SB), butterflies and day-

flying moths (BDM) and hoverflies (HF), vary between gardens?

3. How does the species richness data collected for this project compare to 

others, namely: a dataset summarising the species recorded at twenty 

National Trust properties, a dataset recording the abundance of flower- 

visitors at a single large urban garden site and Finally to county-level data?

4. Does overall flower-visitor species diversity and the diversity of the four 

groups (BB, SB, BDM and HF) vary among gardens?

5. Are the communities of flower-visitors similar at each garden?

6. Are the species abundance distributions for each of the four groups consistent 

across the four sampling periods?

7. Within the assemblage as a whole do any of the groups show patterns 

according to season?
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Methods

Data collection

Empirical data were collected by sampling gardens in 17 large English country house

estates. Sampling took place between April and September 2010. Full details of the

sites and methods for recording and identifying flower visitors are given in Chapter 2 

(2010 field season).

Additional data were collated from a report prepared by Edwards (2003) for The 

National Trust. This report described entomological surveys undertaken in 20 of the 

Trust's gardens in seven counties between 7 July and 22 August 2003 (Appendix IV). 

For each garden a species list was provided, but this did not include insect 

abundance. Only data that could be compared directly with that of the present 

survey were selected from the report e.g. within the group Diptera - other flies 

(Chapter 2), only fly species that corresponded to those recorded in the current 

study were considered for inclusion. The data were prepared by compiling species 

lists for each of the twenty properties, with each species coded according to whether 

it was within the group bumblebees (BB), solitary bees (SB), butterflies and day-

flying moths (BDM), hoverflies (HF), flies (F), solitary wasps (SOLW) or social wasps 

(SOCW). By doing this it was possible to calculate the overall species richness for the 

twenty properties, as well as assessing the species richness of the groups of interest.

This facilitated a direct comparison between the report and the results of the present 
study.

A second dataset listing the aculeate Hymenoptera (hereafter referred to as

aculeates) and hoverflies recorded at Buckingham Palace Garden was also obtained.

These data, prepared by Harvey (2001) and Plant (2001), list the species recorded

in the Royal family's garden between 1995 and 1997. The dataset differs from the

current study and that of Edwards (2003) for two reasons. Firstly it represents only a

single site, and secondly the data were obtained primarily as a result of malaise and

pitfall trapping rather than hand-netting. Notwithstanding these differences, this

garden merits inclusion as it represents one of only a handful of studies that have

considered invertebrate populations in large gardens over a sustained sampling

period. Another positive aspect of using these data is that the number of individuals 
recorded is given.

To consider the species richness of the seventeen gardens sampled in a broader 

context (and therefore their potential importance), applications for vice-county (VC) 

data were made to national insect recording schemes. Aculeate data for the four 

counties visited during the current study were provided by the Bees, Wasps and Ants
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Recording Society (BWARS, 2012). On receipt, the data for each county were sorted

according to age. Any species recorded prior to 1938, and not seen after that time,

were excluded e.g., Bombus cuHumdnus, B. distinguendus and B. subterrsneus. All

records for ants (Formicidae) were then removed, thereby creating an overall list for

aculeates (minus ants) for each county. These records were further subdivided into

four groups: bumblebees (BB), solitary bees (SB), solitary wasps (SOLW) and social

wasps (SOCW). The data represent all species recorded per county from January 

1939 to September 2012.

Vice-county data for hoverflies were provided by the Dipterists' Forum Hoverfly 

Recording Scheme, the national recording body for hoverflies in the UK (Floverfly 

Recording Scheme, 2012). The data represent all hoverfly records submitted for the 

four counties of interest from January 1975 to September 2012.

Species richness estimates

The statistical program Estimates (Colwell, 2012) was used to calculate the 

estimated species richness for the 2010 field data and that of the twenty National 

Trust properties (Edwards, 2003). The other datasets (BPG and vice-county lists) 

were not suitable for examination using these methods as they were not derived 

from replicated sampling sessions. The data collected during the current project 

included abundance data, whilst that of Edwards was incidence (presence/absence 

data). This meant that although species richness calculations could be performed for 

both, they were performed using different indices (non-parametric abundance and

non-parametric incidence metrics, Appendix III). 

Several calculations were performed using the data from the current project. These 

were as follows: (i) each property was considered separately by using the four 

sampling sessions to derive a per-property species richness estimate, (ii) all 

properties {n = 17) were combined using the per-property total from each of the 

four sessions to generate a single species richness value, (iii) the four most speciose 

groups: BB, SB, BDM and HF were each assessed by using the total of four sampling 

sessions for each property (n = 17) to generate a per-group species richness value.

For each calculation the recommended default settings for the software were used.

This resulted in the bias-corrected formula for Chao 1 being used unless the value 

for doubletons was nil, in which case the alternative 'classic' formula was used 

(Colwell, 2012). Two of the three non-parametric species richness estimates that use 

abundance data (Chao 1 and Jack 1) are presented for comparison purposes.
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As some of the gardens sampled in the current study were sufficiently close for 

target species to potentially fly between them, the data were checked for spatial 

autocorrelation using Moran's I test in R (package Ape) (R Development Core Team, 

2012). The variables used for this analysis were the Jack 1 species estimate values 

and British national grid coordinates (Ordnance Survey, 2012).

Having checked for normality and homoscedasticity, one-way ANOVAs were used to 

check for differences in species richness between properties (all species across four 

sampling sessions and also for the four groups). These were followed up with Ryan- 

Einot-Gabriel-Welsch Q (REGWQ) post hoc tests.

For the Edwards dataset (Edwards, 2003), only incidence data were available. Using 

Estimates (Colwell, 2012), the species richness estimates for (i) all properties 

combined (n = 20) and (ii) the four groups (BB, SB, BDM and HF) were calculated. 

The non-parametric incidence estimators Chao 2 and Boot (Appendix III), which are 

equivalent to the abundance estimators used for the current study, are presented.

Species diversity

Shannon H' diversity indices (hereafter referred to as Shannon), were calculated for 

the 17 properties using Estimates (Colwell, 2012). Indices are presented for (i) all 

properties combined and (ii) each of the four groups (BB, SB, BDM and HF). The 

software generates a single diversity value and 95% confidence intervals (Cl).

Community similarity

The similarity between assemblages of flower-visiting insects across the 17 gardens 

was assessed using Estimates (Colwell, 2012). The Morisita-Horn and also Chao's 

Abundance-based Estimated Sorensen indices were calculated for comparison 

purposes as they are generated using different criteria (Chao eta/., 2005, 2006; 

Colwell, 2012). The former compares abundance between two sites on a species-by-

species basis and benefits from a lack of sensitivity to sample size. The downside of 

this index is that similarity is measured according to the composition of dominant 

species and largely ignores the effect of rare species, which can be key components 

in insect communities (Magurran and McGill, 2011). The latter index is based on the 

probability that two randomly chosen individuals, each drawn from one of two 

samples, are both representatives of a species that is present in both samples, but 

are not necessarily the same species (Chao eta/., 2005, 2006; Colwell, 2012).

The software used to compute these values allows for re-sampling to create

bootstrap-generated standard errors. In the current analysis the recommended '200 
re-samples' setting was used.
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An advantage of using Chao s abundance-based method is that it incorporates

unseen species, i.e. it takes into account the contribution that a species can make

when it is present at both sites but not necessarily detected at one of these (Chao et

al.t 2005; Colwell, 2012), thus reducing the negative bias associated with more

traditional indices (Chao et a/., 2005). Although this index is less likely to be affected

by dominant species (as per Morisita-Horn), it does not benefit from the detailed

species-by-species analysis that the aforementioned metric performs (Magurran and 
McGill, 2011).

As yet, multiple comparisons across sites remain too complex to be computed easily 

(Jost et a i, 2011) and therefore community similarity remains a calculation typically 

performed between two sites only. This produces multiple pair-wise results that 

require individual testing to establish whether a result is significantly different from 

another. Although Bonferroni (Field, 2009) or Dunn Sidak (Sokal and Rohlf, 1981) 

corrections help to avoid the Type I errors associated with multiple testing, when 

used at such a large scale they risk introducing Type II errors.

To overcome this, a different approach was taken to assess the results generated. 

Firstly, the values produced from the multiple comparisons were ranked according to 

their value (n = 136). As a low similarity score represents poor congruence in 

species overlap between sites, the lowest 5% of values were determined. These 

values (n = 7) were then examined to establish whether a disproportionate number 

were represented by an individual property. This approach was taken for both the 

Morisita-Horn and the Chao Abundance-based Estimated Sorensen values.

An independent, but complementary, method of looking at community similarity is

the creation of a dendrogram using nearest neighbour hierarchical classification

techniques (Oertli et a i, 2005). The Jaccard dendrogram created using SPSS (IBM

Corp., 2012) represents a binary index that discards joint absences and gives equal 

weight to matches and non-matches alike.

Species abundance distributions

To overcome the problems associated with testing rank abundance distributions, 

empirical cumulative distribution function (ECDF) plots were created. For each insect 

group the abundance of individuals from each species was used to examine 

differences across four sampling sessions. Complementing this, the insect data were 

incorporated into plots categorised by each of the four sampling sessions.
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In order to create the ECDFs for each insect group, the abundance of each species 

(per session) was ranked in ascending order and the fraction of the total abundance 

calculated. This was then plotted on a log-transformed x axis. The species data were 

maintained in the same ranked order and plotted as fractions of the total species 

richness on the y axis (McGill, 2011). The resulting ECDFs were tested for 

differences using a two-tailed Kolmogorov-Smirnov test with critical values (a) 

adjusted using the Dunn-Sidak method (Sokal and Rohlf, 1981, Appendix V).

ECDFs for the four sampling sessions in the season were created in the same way.

As honey bees are classed as a single species for the purposes of this study, the 

data could not be used to prepare ECDFs. To compare the difference in honey bee 

abundance across sessions, the number of honey bees observed at each property 

was summed. The original and transformed data did not meet assumptions for 

normality, therefore the non-parametric Wilcoxon signed ranks test was used.

Results

Overview of results

The sampling of seventeen properties in 2010 (each on four occasions) yielded a 

total of 9,893 records of flower-visiting insects from 174 species (Appendix VI). 

Approximately 1.5 insects were recorded per minute over a total area of 6.12ha. 

Hoverflies were the most abundant group (4,430 individuals) followed by 

bumblebees (2,870), honey bees (801), solitary bees (674), and butterflies and day-

flying moths (613). The remainder (505) were comprised of other flies, solitary and 
social wasps.

Of the four sampling sessions, Session 3 produced the most insect records (4,935).

Almost 50% of all individuals recorded in 2010 were from this session (mean 290.3 

± 148.1 individuals per property).

The results of Moran's I test showed no significant autocorrelation between sites, P = 

0.87, therefore independence of locations was assumed.
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Species richness

The total number of species recorded for each of the 17 properties ranged from 23 

at Kirby (KIR) to 75 at Courteenhall (CHALL) and Steane (ST), mean 61.6 ± 12.1. 

These values, together with the results of the Chao 1 and Jack 1 species richness 

estimators for each property, are presented in Table 3.1 and Figure 3.2.

The per-property species richness estimates were plotted against the pooled total of

flower-visiting insects per property (Figure 3.3). The lines of best fit for Chao 1 and

Jack 1 were almost identical, although the spread of data points around the trend 

line for Chao 1 was greater.
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C hap te r 3

O actua l 
num ber of 
species

A C h a o  1

Jack  1

Abundance of flower-visiting insects per property
(total for 4 sampling sessions)

Figure 3.3 Species richness for the  actua l num ber o f spec ies  recorded  (open 
d iam onds) the estim ators Chao  1 (filled  triang les) and Jack  1 (filled  squares) aga inst 
the abundance  of ind iv idua ls per property . Each sym bo l rep resen ts  fou r sam pling  
sessions. Solid trend line (Chao 1), dashed  trend  line (Jack 1).

A one-w ay ANO VA  revea led a s ign ifican t d iffe rence  in m ean actua l spec ies  richness 

between p roperties across the fou r sam p ling  sess ions, F 16 51 = 2.88, P  = 0.002. Post

hoc  tests (REGW Q) show ed K irby (KIR) was s ign ifican tly  d iffe ren t to  th irteen  o ther 

properties (F igure 3.4).
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Property

Figure 3.4 Ranked m ean spec ies  richness fo r each  p roperty  ( fou r sam p ling
sessions). Identica l le tte rs show  hom ogeneous g roups (REG W Q  p o s t hoc  tests). 
E rror bars = 95%  C l.

The species richness and estim ato rs  fo r each o f the  fou r insect g roups is g iven in 

Tab le  3.2. H overflies w ere the  m ost spec ies-rich  g roup, fo llow ed  by so lita ry  bees.

Table 3.2 Species richness estim ates fo r the  fou r m ost spec io se  flow er-v is ito r 
groups.

G roups fo r species 
richness estim ates

Species
recorded

Chao  1 (SD) Jack  1 (SD)

Bum blebees 14 15.00 (0.3) 15.94 (0.9)

So litary bees 50 72.13 (16.4) 68.88 (5.3)

Butterflies and day-
fly ing m oths 31 36.60 (3.9) 43 .35 (3.9)

Hoverflies 59 85.33 (14.5) 85.65 (4.1)
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Com parisons betw een  p roperties fo r spec ies  richness o f the  fou r flow er-v is iting  

g roups show ed no s ign ifican t d iffe rence  fo r BB, SB o r BDM (p  > 0 .05, Tab le  3.3). 

H ow ever HF richness varied s ign ifican tly  betw een p roperties  51 = 5.04, P  < 

0.001, Tab le  3.3). Post hoc  tests  (REG W Q ) show ed tha t K irby (KIR), w h ich had the 

low est hoverfly  richness, was s ign ifican tly  d iffe ren t to  12 properties. Ke lm arsh  (KEL) 

and Upton (UP), w ith  the h ighest hoverfly  spec ies  richness, w ere  s ign ifican tly  

d iffe ren t to K irby (KIR), Easton Neston (EN) and W rest (W R) (F igu re  3.5).

Table 3.3 Resu lts o f AN O VAs com paring  m ean spec ies r ichness across 17 p roperties 
fo r ind iv idua l in sect groups.

Species richness F d.f. P

Bum blebees (BB) 1.065 16,51 0.411

So litary bees (SB) 0.831 16,51 0.646

Butterflies and day-fly ing  m oths (BDM ) 1.327 16,51 0.218

Hoverflies (HF) 5.044 16,51 <0.001

P r o p e r t y

Figure 3.5 Mean hoverfly  spec ies richness fo r each property  (fou r sam pling

sessions). Identica l le tters show  hom ogeneous g roups (REQ W Q  p o s t hoc  tests) 
Error bars = 95%  C l.
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Species richness: Comparison with other locations

The recorded  spec ies richness (toge the r w ith spec ies  richness estim ates) fo r the  20

NT gardens sam pled  by Edw ards (2003) is g iven in Tab le  3.4. The  data presented

are fo r all p roperties com b ined  and fo r the  fou r insect groups. For com parison , the

datase ts from  the  cu rren t study and that o f Edw ards are presented  toge the r in Tab le  

3.5.

Table 3.4 Species richness (actua l and estim ates) fo r the  20 NT gardens sam p led  by
Edw ards (2003). Note, no standard  dev ia tion  va lues are p rov ided  by the  E s tim a tes  
so ftw are  fo r Boot.

G roups fo r spec ies 
richness estim ates

Species
recorded

Chao  2 (SD) Boot

All 20 properties 178 269.88  (29 .08) 208.73

Bum blebees 12 12.24 (0.71) 13.08

So litary bees 34 44 .45  (8.09) 39.18

Butterflies and d ay -
fly ing m oths 25 45 .25  (20 .19) 28.64

Hoverflies 54 83.39  (16.6) 63.63

Table 3.5 Com parison  o f recorded  spec ies  richness fo r 17 ga rdens in the  cu rren t 
study w ith tha t o f 20 NT gardens (Edw ards, 2003). Note 'A ll p rope rtie s ' va lue 
inc ludes species not w ith in  the  fou r g roups deta iled .

Recorded
species

Estimated
species

Present
study

Edw ards
(2003)

Jack  1 
(P resen t 

study)

Chao  2 
(Edw ards 

2003)

All p roperties 174 178

--------- - i f __

241.41 269.88

Bum blebees 14 12 15.94 12.24

Solitary bees 50 34 68.88 44.45

Butterflies and 
day-fly ing m oths 31 25 43.35 45.25

Hoverflies 59 54 85.65 83.39
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Comparing species richness across gardens

Extend ing the com parison  o f the  cu rren t study  to tha t o f a sepa ra te  la rge  garden

(Buck ingham  Palace G arden  - BPG), and a lso v ice-county  data, perm itted  the

inclusion o f tw o add itiona l insect groups; socia l and so lita ry  w asps (SO CW  and

SOLW ). The  fou r v ice -coun ties  listed in Tab le  3.6 co rrespond  to those  v is ited in the 

cou rse  o f the p resen t study.
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C h a p te r  3

Sam pling effort

The re la t io n sh ip  b e tw een  th e  n u m b e r  o f s p e c ie s  re co rd e d  fo r  e a ch  in se c t  g ro u p  and  

th e  n u m b e r  o f  re co rd s  on  w h ich  e a ch  v a lu e  is  b a sed  ( th e  s a m p lin g  e ffo rt)  is  sh o w n  in 

F ig u re  3 .6 . T he  d a ta  p o in ts  fo r  th e  c u r re n t  s tu d y  a re  in red .

W ith  th e  e x ce p t io n  o f  SO LW , th e  d a ta  p o in ts  fro m  th e  c u r re n t  s tu d y  a re  w ith in  (o r 

c lo se  to )  th e  ra n g e  o f  th e  o th e r  tw o  s tu d ie s  and  th a t  o f th e  v ic e -c o u n ty  d a ta .

N um ber of records ( lo g 10 scale)

Figure 3.6 R e la t io n sh ip  b e tw een  th e  n u m b e r  o f s p e c ie s  re co rd e d  and  th e  n u m b e r  o f 
re co rd s  fo r  f iv e  in se c t  g ro u p s  u s ing  d a ta  fro m  tw o  s tu d ie s :  th e  c u r re n t  w o rk  and  BPG

A l r  v ic e -c o u n t ie s . D a ta  a re  p re se n te d
us ing  log s ca le s . Red d a ta  p o in ts  sh o w  th e  p o s it io n  o f th e  c u r re n t  s tu d y  w ith in  th e  
c o n te x t  o f th e  o th e rs .
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Species d iversity

T he  S h a n n o n  d iv e rs ity  in d e x  v a lu e s  fo r  e a ch  o f th e  17 p ro p e r t ie s  a re  g iv e n  in F ig u re  

3 .7 . T h e  d iv e rs ity  v a lu e  fo r  K irb y  (K IR )  is  s ig n if ic a n t ly  lo w e r th a n  e ig h t  o th e r  

p ro p e rt ie s . T he  o v e ra ll S h a n n o n  d iv e r s ity  fo r  a ll p ro p e r t ie s  c o m b in e d  is  3 .0 6  ± 0 .1 8 .

In a d d it io n , S h a n n o n  d iv e r s ity  v a lu e s  w e re  c a lc u la te d  fo r  th e  fo u r  in s e c t  g ro u p s  

(F ig u re  3 .8 ) . T h e  h o v e r f ly  (H F ) g ro u p  w as  s t ro n g ly  d o m in a te d  b y  a s in g le  sp e c ie s , 

Ep isyrphus ba/teatus and  a se co n d  c o m p o u n d -s p e c ie s ,  Syrphus spp . (se e  C h a p te r  2, 

M e th o d s). T o g e th e r  th e se  a c co u n te d  fo r  6 1%  o f th e  4 ,4 7 4  h o v e r f ly  re co rd s . A s  a 

re su lt  th e  h o v e r f ly  d iv e r s ity  v a lu e s  w e re  re -c a lc u la te d  to  e x c lu d e  th e se . Fo r 

c o m p a r is o n  p u rp o se s  F ig u re  3 .8  in c lu d e s  h o v e r f lie s  ( i)  in  th e ir  e n t ire ty ,  ( ii)  w ith o u t 

E. balteatus, and  ( iii)  w ith o u t E. ba/teatus an d  Syrphus spp .
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C h a p te r  3

B B  S B  BD M  HF HF (e x c . HF (exc .
Eb ) E .b /S . sp p .)

Insect group

Fig ure 3.8 S h a n n o n  d iv e r s ity  fo r  fo u r  in s e c t  g ro u p s  (1 7  p ro p e r t ie s , a ll
s a m p lin g  s e s s io n s  c o m b in e d )  and  th e  re c a lc u la te d  v a lu e s  fo r  h o v e r f lie s  (H F).
HF (e xc . Eb) = h o v e r f lie s  e x c lu d in g  Ep isyrphus ba ltea tus o n ly . HF (e xc . E .b /S
sp p .)  = h o v e r f lie s  e x c lu d in g  E. ba lteatus and  Syrphus spp . c o m b in e d . E r ro r  
b a rs  = 9 5 %  C l.

Com m unity sim ilarity

The  re su lts  o f th e  p a ir -w is e  s im ila r ity  c o m p a r is o n s  (M o r is ita -H o rn  and  C h a o 's

A b u n d a n ce -b a se d  E s t im a te d  S o re n se n  in d ic e s )  a re  g iv e n  in T a b le  3 .7  and  T a b le  3 .8 .

In each  ca se  th e  to p  h a lf  o f th e  m a tr ix  re p o r ts  th e  in d e x  v a lu e , w ith  th e  lo w e r h a lf  

sh o w in g  th e  n u m b e r o f  sh a re d  sp e c ie s .

A  d e n d ro g ra m  u s in g  n e a re s t  n e ig h b o u r  h ie ra rch ic a l c la s s if ic a t io n  te c h n iq u e s  sh o w s  

K irb y  (K IR ) a s  a s ig n if ic a n t  o u t lie r  (F ig u re  3 .9 ).
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Figure 3.9 D e n d ro g ra m  sh o w in g  n e a re s t  n e ig h b o u r  lin k a g e  b e tw e e n  17 s ite s  based  
on in c id e n ce  d a ta  fo r  s p e c ie s  p re se n t  ( Ja c ca rd  m e th o d ) .

Species abundance d istribution  (ECD Fs)

The  E C D F s  fo r  ea ch  o f th e  fo u r  in se c t g ro u p s  a re  g iv e n  in F ig u re  3 .1 0 . T he  p lo ts  

show  th e  d is t r ib u t io n s  a c co rd in g  to  e a ch  o f th e  fo u r  s a m p lin g  se s s io n s . T he  re s u lts  o f 

K o lm o g o ro v -S m irn o v  te s ts  fo r  d if fe re n ce s  b e tw een  sa m p lin g  s e s s io n s  w ith in  

in d iv id u a l g ro u p s  a re  p ro v id e d  in T ab le  3 .9 .
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Chapter 3

Table 3.9 Results of Ko lm ogorov-Sm irnov tests between sessions for each of four 
insect groups. P  va lues in bold are s ign ificant for P  < 0.05. P va lues in bold red are 
s ign ificant fo r an adjusted P o f < 0 .0085 (D unn-S idak method).

Kolm ogorov-

Group
sessions

com pared
Sm irnov Z

value
Monte Carlo 

s ign ificance (P)

BB 1 2 0.64 0.704
BB 1 3 0.584 0.801
BB 1 4 0.605 0.741
BB 2 3 0.673 0.659
BB 2 4 0.355 0.996
BB 3 4 0.63 0.727

SB 1 2 1.378 0.022
SB 1 3 2.307 0 .0 0 0
SB 1 4 2.378 0 .0 0 0
SB 2 3 1.805 0 .0 0 1
SB 2 4 1.601 0.005
SB 3 4 1.14 0.072

BDM 1 2 0.969 0.184
BDM 1 3 1.318 0.038
BDM 1 4 0.378 0.979
BDM 2 3 1.505 0.010
BDM 2 4 0.836 0.333
BDM 3 4 1.318 0.035

HF 1 2 1.202 0.062
HF 1 3 2.61 0 .0 0 0
HF 1 4 1.052 0.129
HF 2 3 2.733 0 .0 0 0
HF 2 4 1.093 0.102
HF 3 4 1.943 0 .0 0 0

The ECDFs for each of the four sam pling sessions are given in Figure 3.11. The plots

show the d istribution according to each of the four insect groups. The resu lts of the

Ko lm ogorov-Sm irnov tests for d ifferences between groups w ithin the sam e session 
are provided in Table 3.10.
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Chapter 3

Table 3.10 Results of Ko lm ogorov-Sm irnov tests between groups for each of four 
sam pling sessions. P va lues in bold are s ign ificant for P  < 0.05. P  va lues in bold red 
are s ign ificant for an adjusted P of < 0 .0085 (D unn-S idak method).

Sam pling
session

Groups
com pared

Kolm ogorov- 
Sm irnov Z

value

Monte Carlo 
s ign ificance

1

1

1

1

1

1

BB
BB
BB
SB
SB
BDM

SB
BDM
HF
BDM
HF
HF

1.784
0.690
1.335
1.987
1.311
0.809

0.002
0.515

0.030
0 .0 0 0
0.036
0 .0 0 0

2
2
2
2
2
2

BB
BB
BB
SB
SB
BDM

SB
BDM
HF
BDM
HF
HF

1.173
0.760
0.705
1.161
1.643
2.136

0.081
0.425

0.002
0.070

0.004
0 .0 0 0

3
3
3
3
3
3

4
4
4
4
4
4

BB
BB
BB
SB
SB
BDM

BB
BB
BB
SB
SB
BDM

SB
BDM
HF
BDM
HF
HF

SB
BDM
HF
BDM
HF
HF

1.245
1.319
1.500
1.505
2.771
2.347

0.756
0.780
0.729
0.908
1.763
1.508

0.036
0.038
0.012
0.009
0 .0 0 0
0 .0 0 0

0.434
0.459
0.510
0.222

0 .0 0 1
0 .0 1 1

The num ber of honey bees recorded in each garden during each of the four sam pling 

sessions is provided in Table 3.11. The resu lts of W ilcoxon signed ranks tests 

showed that a s ign ificant d ifference in honey bee abundance was found between 

sessions three and four and sessions two and four (Table 3.12).
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Table 3.11 Honey bee abundance at each garden in each of the four sessions

Session
1

Session
2

Session
3

Session
4

Total per 
property

AL 7 7 16 1 31
BOU 1 2 30 10 43
CA 15 3 8 74 100
CM 3 10 7 27 47
CHALL 5 19 13 42 79
EN 3 1 0 1 5
FAR 30 3 6 7 46
HOL 1 4 5 9 19
KEL 0 7 14 32 53
KIR 4 0 0 0 4
LAM 1 0 6 32 39
LW 4 3 0 3 10
ST 4 13 7 3 27
SUL 2 6 29 52 89
UP 2 6 1 54 63
WAD 4 6 10 2 22
WR 61 21 6 36 124

Total honey bees
per session 147 111 158 385 801

Median value 4 6 7 10
25 percentile 1.5 2.5 3.0 2.5
75 percentile 6.0 8.5 13.5 39.0

Table 3.12 Results of W ilcoxon signed ranks tests for honey bee abundance
between sessions (n 
bold.

= 17 in all cases). S ign ifican t resu lts (P  < 0.05) h igh light

Paired sessions 1 - 2 2 - 3 3 - 4 2 - 4  1 - 4 1 - 3

Z  value
* *

-0 .388 -0.881 -2.121 - 2.574 -1.681 -0 .996
(based on negative
ranks)

P  values 0.698 0.379 0.034 O.OIO 0.093 0.319
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Discussion

Species richness of the 17 properties

Despite the acknow ledged species richness of flow er-v is ito rs in gardens (Sm ith  et 

at., 2006c, Pawelek e t a/., 2009, Owen, 2010), little  is known about the richness of 

gardens beyond urban m atrices. Urban areas represent a m osaic of flower patches 

com prised o f ind iv idual gardens and m unicipa l parks which m obile insects may view 

as a contiguous food resource (Goddard e ta l. ,  2010). For th is reason, species 

richness to ta ls for ind iv idual urban gardens should be viewed with caution. Rural 

gardens, on the o ther hand, are often more geograph ica lly  iso lated from  other 

s im ila r-s ized  flower-rich patches. In the past, these gardens would a lso have been 

part of a w ider m osaic o f flow er-rich  areas; how ever the d ram atic decline in 

unim proved grassland, in particu la r those areas described as w ild flower m eadows 

(King, 2011), m eans th is  is no longer the case. W hilst insects move between patches 

w ithin the landscape as they do in urban areas, the connectiv ity  between such 

patches (or the lack of it) p lays an increasing ly  im portant role in rural env ironm ents 

(Taylor, 1993). In accepting that these gardens are like ly  to be more d istan t from  

sim ilar-s ized resource patches than those in urban areas, quantify ing the species 

richness of flow er-v is iting  insects can be seen as a va luab le activ ity  tha t estab lishes 

im portant baseline data for sites w ithin the UK 's large ly agricu ltu ra l landscape.

The absolute species richness va lues across the 17 s ites (m ean 61.6  ± 12.1 per

property), and for all properties taken together (174) (Table 3.1), show that rural

gardens contain a wide varie ty  of species. As a resu lt of the sam pling m ethods used

in 2010 (only insects in contact w ith flowers were recorded), these resu lts suggest

that rural gardens act as im portant feeding locations for a range of species, in spite

of the fact that m any of the p lants ava ilab le  may be non-native cu ltivars. The

com position of flower resources in rural gardens will be exp lored fu rther in Chapter 
4.

W hilst the actual species richness data allow sites to be com pared, it is the more 

inform ative species richness estim ators such as Chao 1 and Jack 1 that provide the 

greatest insight into the potential richness o f flow er v is ito rs in rural gardens.

A lthough both Chao 1 and Jack 1 produced a lm ost identica l mean species richness 

values of 90 per property (Table 3.1), it was the latter that gave the m ost re liable 

measure based on the spread of data points (Figure 3.3). Pa lm er (1990) also found 

the Jack l  m etric to be the least biased and m ost precise of all the non-param etric 

estim ators, although he noted the va lues generated were still like ly  to be an 

underestim ate of the true species richness present. W hilst underestim ation may 

have im plications if whole regions are being assessed, ca lcu lations based on small
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sub-un its such as rural gardens are un like ly to be grossly affected, thereby

perm itting robust com parisons between s ites (Palm er, 1990). Overa ll, the resu lts

from  the current study suggest that desp ite a high num ber o f species being recorded

in the gardens (174), many species rem ain undetected (Jack 1 value of 241, Table 
3.1).

Differences in species richness between properties

Com paring the actual species richness recorded at ind iv idua l properties revea ls that, 

for the m ost part, th is  richness is broad ly s im ila r at all sites. An exception to th is  is 

K irby (KIR) which em erged as a c lear outlier. K irby 's  species richness was 

s ign ificantly  lower than th irteen other gardens (P = 0.002). Three additional 

gardens: A lthorp (AL), W addesdon (W AD) and Easton Neston (EN) were also less 

species-rich, a lthough not s ign ifican tly  so (F igure 3.4).

Species richness va lues are known to be affected by both sam pling effort and the

size of the area sam pled. As both the sam pling tim e and the area were standard ised

across all properties, the observed d ifferences can therefore  be assum ed to re late to

genuine d ifferences in site or landscape-specific  factors. The fo rm er will be explored

in greater detail in the follow ing chapter, when m easures o f flora l richness are 

considered.

Differences in species richness between insect groups

Hoverflies were the m ost species rich o f the four groups exam ined, w ith 59 species 

recorded in tota l across the seventeen gardens (Jack 1 estim ate  85 .7  ± 4.1),

So lita ry  bees had the second h ighest species richness with 50 species (Jack 1 

estim ate 68.9 ± 5.3), followed by butterflies and day-fly ing  m oths and bum blebees 

(Table 3.2). The high richness of hoverflies agrees with tha t o f Owen (2010) who 

recorded 94 species of hoverfly in her Le icester garden over th irty  years.

The d iverse array of hoverfly species that occurs in both gardens and sem i-natura l

areas is often expla ined by the range of feeding hab itats used at the larval stage

(Rotheray and G ilbert, 2011, Hoverfly Recording Schem e, 2012). Th is is in d irect

contrast to the genera lised feeding preferences of adu lt hoverflies that use pollen,

nectar or aphid excretions (Rotheray and G ilbert, 2011). Hoverfly larvae range from

prim ary and secondary consum ers to prim ary, secondary or h igher order

decom posers depending on the ir phylogenetic c lass ifica tions (Owen,-2010, Rotheray 
and G ilbert, 2011).

A lthough Owen (2010) found adults representing all four larval troph ic groups during 

her th irty -year study, more than 81%  of the 60,736 ind iv idua ls caught were from 

species whose larvae used p lants infested with aphids as the ir preferred feeding
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sites. Despite the num ber of hoverflies recorded in the current study being on ly 7%

of those found by Owen, a rem arkab ly s im ila r percentage had aphid-feed ing larvae 
(79.9% , Tab le 3.13).

The awareness that predation by hoverfly larvae (zoophagy) a llows aphid pests to be 

contro lled is one that generated in terest as fa r back as 1800 when Charles Darw in 's 

grandfather, Erasm us Darw in, cham pioned the ir use (Rotheray and G ilbert, 2011). 

This in terest continues today through the investigation of specia lis t and genera list 

aphid feeders as su itab le  agents for b io log ica l contro l of fru it and cereal crops 

(Cowgill e t a/., 1993, Bergh and Short, 2008, Haenke e t a!., 2009, Leroy e t a!.,

2010). Further work to estab lish  w hether the ratios observed for hoverfly  larval 

types also occur in non-garden flow er-rich  patches in the landscape would be useful. 

The resu lts could allow  consideration of w hether som e hoverfly species 'sp ill over'

from gardens into agricu ltu ra l fie lds, thus benefiting crops that m ight otherw ise 
suffer reduced yields.

In addition to being the m ost species rich group, hoverflies were the only taxa to

show sign ificant d ifferences in species richness across the 17 properties

(P < 0.001, Table 3.3). K irby (KIR) had the lowest hoverfly species richness (mean

1.75 ± 0.96) and was s ign ificantly  d ifferent to twelve o ther properties. Both

Kelmarsh (KEL) and Upton (UP) (m ean 13 ± 2.94, and 13 ± 2.58 respective ly) had

sign ificantly h igher hoverfly species richness than K irby, Easton Neston (EN) and 

W rest (WR) (Figure 3.5).
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Comparison with other gardens

By using a repeated sampling strategy encompassing 17 properties, the current 

study has found that, in general, these rural gardens are homogeneous in terms of 

flower-visitor species richness. A potential downside is that their proximity means 

interpretation beyond the counties studied could be considered limited. By 

comparing these to gardens from a wider geographical range, e.g. those assessed by 

Edwards (2003), and others such as Buckingham Palace Garden (Harvey, 2001,

Plant, 2001), a fuller interpretation of the value of these sites can be made.

Although the data from the 20 NT gardens (Edwards, 2003) only come from single-

site visits, they compare well to those of the present work. Despite different species 

richness estimators being used (see Methods), the Jack 1 values from the current 

study and the Chao 2 values derived from the Edwards data show surprising 

similarities (Table 3.5). Overall, the estimate for all species for the 17 gardens is 

241.4, whilst that for the 20 gardens is 269.9. Notwithstanding that these are likely 

to be underestimates for the true species richness for the combined sites (Gotelli and 

Colwell, 2011, Magurran and McGill, 2011), they highlight remarkably high species 

richness for areas that are human constructs.

Hoverfly species richness estimates were similar between the two studies, with 85.7

species predicted for the 17 gardens and 83.4 species for the 20 NT gardens (Table 

3.5). A possible explanation for this is the timing of the Edwards study relative to 

Session 3 of the current study. All but three of the NT surveys took place within the 

dates covering Session 3 of the present work, i.e. the time when the highest 

abundance of hoverflies was recorded (Figures 3.10 and 3.11). With a greater 

relative abundance of hoverflies on the wing in July and August, the opportunity to 

encounter these highly mobile insects increases. As the species richness estimators 

focus on rarity, i.e. the presence of singletons and doubletons (for abundance data) 

and uniques and duplicates (for incidence data) (Colwell, 2012), fewer 'rare' species 

are likely to be recorded during times of high abundance. This may explain why the 

estimates stabilised at similar levels for both studies.

The effect of rarity may also help to explain the difference in bumblebee estimates 

(Table 3.5). In the current study, 14 species were recorded against 12 by Edwards 

(2003). The estimators take these actual values and suggest likely species richness 

as 15.9 and 12.2 respectively, a difference of almost four species between the two 

studies. The higher estimated value for the current study is probably explained by 

the occasional observation of two 'rare' species, Bombus campestris and B. 

ruderatus. Individuals of B. campestris were observed only twice, once at
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Farnborough (FAR) and once at Waddesdon (WAD). This cuckoo species is associated 

with nests of B. pascuorum, although other carder bee nests may also be targeted 

(BWARS, 2012). Being a cuckoo species there is no worker caste and no pollen 

reserves are collected. For this reason visits to flowers are limited to those made by 

queens and males foraging for their own energy needs. The second species, B. 

ruderatus, was observed only once during the 68 site visits, (a single individual at 

Canons Ashby - CA). This long-tongued bumblebee is noted as a Nationally Scarce 

and BAP Priority Species (BWARS, 2012) and frequent encounters with this species 

would not be expected.

The higher number of sampling events in the current study (68 versus 20) that 

occurred throughout the season may have increased the chances for these less 

abundant species to be recorded. In turn these 'rarer' species push species richness 

estimates upwards. The fact these two bumblebee species were not recorded at the 

NT properties may have more to do with differences in seasons covered, methods

used and the time spent sampling, rather than the true distribution status of the 

species themselves.

The greatest discrepancy between the current study and that of Edwards is for 

solitary bees, with 50 species recorded from the current study versus 34 by 

Edwards, i.e. almost 50% more for the 17 properties than the 20 NT sites. The Jack 

1 and Chao 2 estimates for solitary bees reveal a similar picture, (68.9 and 44.5 

respectively, Table 3.5). The timing of the surveys offers the best explanation for 

this difference. Where the current study encompasses four visits from early spring to 

late summer, the brief of the NT study was for a single site visit in summer. Oertli et 

at. (2005) note that the sampling of only a proportion of a season can grossly 

underestimate bee diversity. Edwards himself comments on the depauperate nature 

of solitary bee sightings and suggests further surveys spanning all seasons. Early 

spring is a particularly important time for recording solitary bee species as 

highlighted by the SB plot in Figure 3.10.

Other authors have also noted that spring and early summer is characterised by high 

solitary bee species richness. Tommasi et at. (2004) sampled solitary bees, 

bumblebees and honey bees in urban gardens and parks throughout the year in 

Vancouver, Canada, and found strong seasonal variability between wild bees and 

honey bees. Wild bees (47 solitary bee and 8 bumblebee species) were most 

abundant in late spring, and were synchronous with the native flowers in the area, 

whilst honey bees were more abundant in late summer (Tommasi eta!., 2004).

80



Chapter 3

Data from Buckingham Palace Garden serve as additional information for comparison 

purposes. Differences in the duration of the study (three years), the location (an 

urban context) and collecting methods (predominantly malaise traps) mean care 

needs to be taken when interpreting any observed variation.

Notwithstanding the differences highlighted above, the species richness of social 

wasps was similar across all three studies (6, 7 and 6 species for the present study, 

Edwards' data and BPG respectively, Table 3.6). This congruence reflects the fact 

that few species of social wasp occur in the UK (currently eight, BWARS, 2012) and 

their relatively large colony size means encounters are frequent (BWARS, 2012).

The number of hoverfly species recorded from BPG was considerably lower than that 

of the other two studies (37 species versus 59 and 54 for the current study and that 

of Edwards). In terms of abundance, however, hoverflies represented the highest 

number of individuals (1599) and accounted for 68.9% of the combined total of 

hoverfly and aculeate (minus ants) individuals. In the current study, hoverflies were 

also the most abundant group, however they accounted for 53% of hoverfly and 

aculeate individuals (Table 3.6).

Solitary bee species richness at BPG was almost identical to that of Edwards (33 for

BPG against 34 recorded in the twenty NT gardens), although lower than the 50

recorded in the current study (Table 3.6). Harvey (2001) notes that the paucity of

active sampling and the use of malaise traps may have contributed to this low 

species richness.

Several authors report successful use of pan and malaise traps to census solitary

bees; however unless a detailed examination of the pollen present on the bodies of

trapped insects is made, these methods fails to return information on the types of

flowers visited. Additionally, time must be allocated to process specimens that have

become wet during the collection process (Grundel et at., 2011). Ideally a

combination of capture methods should be used to comprehensively sample solitary 
bees.

The relatively high bumblebee species richness shared by the current study and that 

of Edwards is not reflected in the BPG data (Table 3.6). The six species recorded at 

BPG are the suite of bumblebees classed as the 'big six'. These species are the 

most abundant and widespread in lowland UK (NHM, 2012) and are cited as 

bumblebees typically encountered in urban gardens (BBCT, 2012).

81



Chapter 3

Few studies of pollinator communities provide full species lists. Of those that do, e.g. 

Herrera (1988), Frankie et al. (2005), Oertli et al. (2005) and Kearns and Oliveras 

(2009), few comparisons can usually be made with UK studies as the species differ, 

but see Ahrne et at. (2009). An exception to this is the UK study by Bates et al. 

(2011b). In this work, the authors recorded thirteen species of bumblebee, a figure 

much closer to that of the current study and the Edwards report. Bates et al. found 

that, of the seven species present in addition to the 'big six', five had higher mean 

numbers of individuals in suburban and rural areas than in exclusively urban areas. 

This finding, along with similar results from Sweden (Ahrne et al., 2009), suggests 

that regardless of the size of a garden, its location within the wider landscape acts as 

a driver for the variety of bumblebee species present. As a group, bumblebees 

contain species that have undergone major range contractions in the recent past 

(Goulson et al., 2008). The fact that so many species are recorded in large rural 

gardens points to these sites being important locations.

The solitary wasp species richness figure in the current study (9) shows the greatest 

anomaly when considering the data from Edwards and BPG (43 and 40 respectively), 

Table 3.6. In fact, solitary wasp richness and abundance was so patchy in the 

current study it was not feasible to include this group in the earlier comparisons and 

estimates. The disparity is likely to have arisen because of two factors: (a) the food 

preferences of solitary wasps, and (b) differences in sampling criteria between the 

studies. The majority of solitary wasps (except cuckoo species) collect insect prey as 

food for their offspring and only visit flowers for their own energy needs (Chapter 2). 

As a consequence, the chance of encountering them on flowers may be lower than 

for other groups that collect pollen or nectar reserves. As one of the main criteria for 

the sampling for this project was that insects should be in contact with flowers, any 

solitary wasps observed moving over plants but not directly on flowers were 

discounted. Although using the same capture method as the current study (hand-

netting) Edwards recorded all insects, regardless of location. It must therefore be 

assumed that the species richness totals for the seventeen gardens studied are an 

underestimate of the solitary wasp species that are actually present there.

Overall, the species richness totals (both actual and estimates) suggest that large 

gardens are places that support a diverse array of flower-visiting insects. The 

findings presented here support the observation by Head (2012, p. 68) that gardens 

are intrinsically good places for wildlife', regardless of any active attempts to 

manage them to attract species.
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Comparison with vice-county data

One of the limitations of the current study is that flower-visitor species richness data

were not collected in non-garden sites around the areas of interest. This makes it

difficult to be sure gardens are, indeed, rich in flower-visitors compared to other

nearby areas. One of the reasons for using the sampling regime outlined in Chapter

2 was to ensure that a sufficient number of garden sites were replicated. In the

event that gardens had been paired with non-garden environments (such as

neighbouring agricultural fields), this would have necessitated halving the sample

size, and in doing so introduced many new variables, including crop type, differing

pesticide and herbicide use, and the presence and management of linear features 

such as hedges.

The inclusion of vice-county (VC) data is a means of ameliorating one of the 

limitations of this study and allows the species richness of the 17 gardens to be 

considered in a wider regional context. As with the earlier comparisons (the Edwards 

and BPG data), differences in sampling methods and the time spent collecting data 

make a true comparison with the VC data difficult. Additionally, VC totals may be 

inflated when counties are the 'home-turf' for some of the main specialists for the 

groups of interest. Examples include Stuart Ball, Roger Morris and Alan Stubbs 

(three acknowledged UK hoverfly experts who have sampled extensively in 

Northamptonshire), and Steven Falk in Warwickshire, who has worked with aculeate 

and hoverfly recording and conservation. Notable are the 11,643 aculeate records 

contributed by Falk in 17 years, out of a total of 12,731 records (spanning 114 

years) for the county. Also of relevance is that records sent in to national recording 

schemes often reflect the interests of the keenest recorders in the area and that 

rare, unusual and even migrant species records are more likely to be submitted than 

ubiquitous generalists. The inclusion of all habitat types (ranging from woodlands, 

marshes and SSSIs to urban centres and brown field sites) in VC data is both a 

strength and a weakness when comparing the data with gardens; it highlights how 

species-rich gardens are, but does not permit like-for-like comparisons.

Despite these acknowledged limitations, comparisons with VC data can still be 

informative. Jennifer Owen compared the species richness of her Leicester garden 

with that of the VC of Leicestershire and noted that, in spite of the small area 

studied (741m2), half of the aculeates recorded in the county appeared in her garden 

at some point during the 30-year period (Owen, 2010).

The data in Table 3.6 suggest that the gardens in the current study compare well to 

county data for certain groups, but that others are noticeably different. In Table 3.6 

the species richness for the 17 gardens is bulked to give a single value. To make
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comparisons more robust, the following refers only to the 13 properties in 

Northants; bumblebees (BB) = 13, solitary bees (SB) = 46 and hoverflies (HF) =

56). When comparing these totals to the Northants VC species richness values, they 

reveal that 93% of the bumblebee species recorded in Northants appeared in the 13 

gardens, as did 75% of the county's solitary bee species, 86% of the social wasp 

species and 31% of the hoverfly species.

The hoverfly species richness for the gardens is noticeably lower than that of the VC 

data. A possible explanation for this is that the 2010 records relate to just a single 

sampling year and that a wide variation in pollinator numbers from year to year is 

common (Herrera, 1988, Oertli eta/., 2005, Owen, 2010). Additionally, records from 

the 17 gardens were only made where insects were in contact with flowers (whereas 

the VC data are for hoverflies taken on flowers, in flight and at rest). Also, gardens 

represent one broad habitat type, whereas the VC data incorporate (amongst others)

woodlands and reservoirs; both of which support specific hoverfly species (Stubbs 

and Falk, 2002).

As with the comparisons with the Edwards and BPG data, it is the solitary wasp 

species richness figure that is most different to the VC records. In addition to the 

causes mentioned earlier, i.e. the different sampling protocol used in the current 

study and the foraging habits of this group, the greater range of habitats visited by 

VC recorders compared to those present in gardens is likely to offer the best 

explanation for this disparity.

Sampling effort

The above comparisons with the VC data establish that certain insect groups are well 

represented in the gardens. The robustness of this claim is tested by plotting the 

sampling effort of the current study alongside that of the other studies and the VC 

data. In showing the number of species observed against the number of records 

(Figure 3.6) the current study appears to sit well amongst data collected using a 

considerably greater sampling effort. As expected, the exception to this is the 

number of solitary wasp species recorded.

Species diversity

The use of species diversity metrics removes one of the problems associated with

species richness, i.e. all species (both rare and common) are treated with equal 

importance (Maurer and McGill, 2011).
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The Shannon diversity values generated for the 17 properties ranged between 2.51 

and 3.29, and was 3.06 for all properties combined (Figure 3.7).

These figures are broadly similar to those found by Kearns and Oliveras (2009) who

considered bee diversity in urban and remote grasslands in the USA (Shannon values 

ranging between 2.68 - 2.80).

When considering diversity on a property-by-property basis, Kirby (KIR) was found 

to be significantly lower than eight other gardens (Figure 3.7). This is in contrast to 

the differences observed when species richness was used as a discriminator (without 

recourse to an estimate of evenness). In this case, Kirby returned lower species 

richness than 13 gardens (Figure 3.4).

Differences in Shannon diversity values emerged for the individual insect groups with 

the exception of solitary bees and butterfly and day-flying moths (Figure 3.8). 

Bumblebees exhibited the lowest diversity value due to the high abundance of 

certain ubiquitous species such as Bombus pascuorum (651 individuals recorded 

across all gardens), B. hortorum (483) and B. lapidarius (387). This contrasted

sharply with species with few individuals; B. rupestris (5), B. campestris (2) and B. 

ruderatus (1).

Removing the two high-abundance groups from the hoverfly Shannon value revealed 

that the diversity of this group was more in line with SB and BDM, although still 

significantly different when confidence intervals were considered (Figure 3.8).

The importance of flower-visitor diversity has consequences beyond gardens. The

economic importance of diverse pollinator communities for the agricultural sector

was demonstrated by Klein et at. (2003), who found that solitary bee diversity (as

opposed to abundance) played a significant role in explaining variation in the fruit-

set of highland coffee. The authors found that the collective role played by a

pollinating community was important for pollination success. Klein and co-authors

further suggested that the conservation of areas proximal to coffee plantations was

crucial in helping to encourage and maintain bee diversity. Holzschuh et a i (2012)

highlighted a similar situation and called for bee habitat to be protected and

enhanced because yields of sweet cherry increased in the presence of wild bees.

They found that the deployment of honey bee hives by farmers was unlikely to

increase fruit-set or yield, but that promoting high-diversity wild bee habitats close

to orchards brought enhanced financial returns. More work is needed to establish

whether flower-visitor populations that thrive in rural gardens can bring economic 
benefits to nearby agricultural crops.
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Community composition

The main purpose in considering the similarity in community composition across the 

gardens was to identify sites that were notably different, with a view to exploring 

potential causes (Chapter 4).

The two indices of community similarity that were calculated (Morisita-Horn and 

Chao's Abundance-based Estimated Sorensen) revealed different but complementary 

results. The lowest seven pairings consistently included Kirby (KIR) (Tables 3.7 and 

3.8). In the Morisita-Horn analysis, Kirby occurred four times out of seven, with the 

remainder accounted for by SUL - KEL, SUL - WAD and WAD - UP (Table 3.7). In 

the second analysis, Kirby occurred six times out of seven, the seventh pairing being 

WAD - EN (Table 3.8). The fact that these pairings are independent of the number of 

species recorded, lends support to the robustness of the methods used. The results 

suggest that factors beyond species richness and diversity of flower-visiting insects 

are driving community similarity.

The alternative similarity method (cluster analysis) revealed a similar situation, with 

Kirby (KIR) a clear outlier on the dendrogram (Figure 3.9).

Species abundance distributions

Notwithstanding the fact that evenness is incorporated into species diversity 

measures, and similarity metrics benefit from the estimation of'unseen' species, 

both are limited by the fact they provide only a single value. Species abundance 

distributions (SADs) can provide a more complete picture about a community by 

describing it in terms of the number of individuals observed for each species 

recorded. In addition to providing a strong visual representation of a community 

along a continuum of rare to common species, SADs possess the additional useful 

characteristic of being amenable to robust testing.

Although little published material exists that illustrates SADs plotted as empirical 

cumulative distribution frequencies (ECDFs), the benefits of using them - both 

visually and as a precursor to testing distributions using Kolmogorov-Smirnov 

procedures - is not in question (McGill eta/., 2007, McGill, 2011).

The results of the current study showed that two insect groups are of particular 

interest. These are solitary bees and hoverflies (Figure 3.10). In the case of solitary 

bees, Sessions 1 and 2 did not differ, nor did Sessions 3 and 4, however all other 

possible combinations between the sessions were significantly different (Table 3.9).

As discussed in the species richness section above, the timing of emergence and 

reproduction by solitary bees is strongly linked to season (Tommasi eta/., 2004).
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The results of the Kolmogorov-Smirnov tests (without comparing the exact 

composition of the species present or their numbers) confirmed that certain times in 

the year were more similar for solitary bee species abundance than others e.g. 

spring and early summer were similar as was mid-summer and late summer. The 

implication for this is that crops in flower at these times may benefit from an 

increased diversity of bees. One mass-flowering crop that may gain is oilseed rape 

(OSR). In Sweden, Bommarco et al. (2012) found that the presence of insect 

pollinators (including honey bees) increased seed weight, seed quality and market 

value of this selfing crop. Jauker et al. (2012b) also found that seed set of OSR 

increased with increasing solitary bee density but that seed weight did not alter.

In their study, Jauker and co-workers (Jauker et al., 2012b) considered the 

pollinating effects of a single species of solitary bee, Osmia bicornis (the red mason 

bee), by comparing its efficiency with two species of hoverfly. In the current study 

O. bicornis was the second most abundant solitary bee species (61 individuals across 

14 properties). Jauker and co-authors found that red mason bees were more 

efficient pollinators on OSR than hoverflies, and that pollination could be achieved 

using lower bee densities than those used for honey bees ( 16 -36  mason bees 

versus 200 honey bees, Jauker eta/., 2012b). Although the study considered OSR 

pollination in an enclosed experiment (plants were caged), the suggestion that wild 

pollinators are valuable agents in the transfer of pollen in both open and closed crop 

systems seems reasonable. This assumption will benefit from further testing.

The difference in hoverfly abundance distributions focuses on Session 3, (Figure

3.10) . Results of the Kolmogorov-Smirnov tests confirm that significant differences 

occur between this session and the other three (Table 3.9). The ECDF plot (Figure

3.10) for hoverflies highlights both the high number of species represented by a

single individual, and also the few species possessing unusually high abundance.

Whilst flower-visitor communities generally fit the description 'rare is common and

common is rare' (McGill, 2011, p. 105), the hoverfly community in Session 3 is an 

extreme example of this.

The seasonal differences between groups are highlighted in Figure 3.11. Tests for 

differences reveal that Session 4 is the least different of the four, with only solitary 

bees and hoverflies showing significant differences (Table 3.10).

Whilst honey bees cannot be compared in the same way using ECDFs, the significant 

difference in their abundance in Session 4 when compared to Session 3 (P = 0.03) 

and Session 2 (P = 0.01, Table 3.12), highlights a pattern also observed by Tommasi 

eta/. (2004). These authors found that wild bees (SB and BB) were most abundant
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during late spring, whilst honey bee numbers peaked in late summer. They noted 

that honey bees were less abundant than solitary bees in early spring, a time 

coinciding with the majority of native flowering plants, and that, overall, honey bees 

were less abundant across all sites. This finding is echoed by the present study, with 

the combined number of SB and BB totalling 3,544 versus 801 honey bees (all 

properties, all seasons).

At the start of the 2010 field season all property owners were asked whether honey 

bee hives were present on their estates. Additionally, the county Beekeepers 

Association (NBKA, 2012) was approached to establish whether registered hives 

were located within 9km of any of the seventeen gardens. No hives were reported 

within the stated areas. In the absence of any managed colonies, the occurrence of 

honey bees in the sampled gardens is likely to have resulted from the extensive 

foraging range of this species (Chapter 2 Study organisms). An alternative 

explanation is that feral colonies were present, in particular at two properties,

Canons Ashby (CA) and Lois Weedon (LW). This was evidenced by activity in nearby 

roof structures at the two properties, although the colony at Lois Weedon 

disappeared mid-season (cause unknown). The relatively high number of honey bees 

recorded at Canons Ashby (100) suggests that if a feral colony was responsible for 

increased observations, another may also have been present at Wrest (WR), where 

124 individuals were recorded (Table 3.11).

The peak in honey bee abundance at the end of summer coincides with the peak in

colony size at this time (Tommasi et a i, 2004). In late summer two of the three

honey bee castes (workers and males) are on the wing (Hooper, 1991). In summary,

honey bees, whilst not very abundant in gardens, are regularly recorded there. It is

unclear whether the drivers for low numbers in spring are alternative forage

resources in the wider landscape. Could more honey bees be foraging on OSR earlier

in the year and therefore not visiting gardens? Alternatively, does a spill-over into

forage-rich areas such as gardens at the end of the season reflect the increased

colony size at the time, a decline in wild flower and mass-flowering crop resources,

or both? The answer is likely to be that a combination of factors is at play. Further

experimental work placing hives near to gardens and monitoring their foraging

preferences throughout the season may reveal the true state of the relationship 

between honey bees and rural gardens.
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Conclusions

The findings of this chapter can be summarised as follows:

• Large English country-house gardens contain a high number of species from a 
range of important flower-visiting groups, including hoverflies, solitary bees, 
bumblebees and butterflies.

• The results from species estimations, based on the singletons and doubletons 
observed, suggest that not all species are likely to have been encountered 
during sampling and that many more are likely be present.

• Whilst species richness is broadly similar across all 17 gardens, the garden at 
Kirby emerges as a significant outlier. Possible explanations for this will be 
explored in future chapters.

• Hoverflies were the only flower-visiting group to show a significant difference 
in species richness across properties. Kirby had the lowest hoverfly species 
richness whilst two gardens (Kelmarsh and Upton) had significantly higher 
hoverfly richness than the lowest three.

• Results from the study revealed that these 17 sites compare well to other 
large gardens. Congruence across certain groups (including the composition 
of these groups) suggests that species patterns are discernable in gardens.

• The large-scale nature of the study (almost 10,000 flower-visitors recorded) 
and the replicated design allows confidence to be placed in the results.

• A drawback of the work is the absence of a direct comparison with non-
garden sites close to the sampled locations. Comparing the work with vice-
county data allows inferences to be made about the richness of gardens in a 
regional context. The results suggest that large rural gardens are, indeed, 
species-rich locations.

• Of the individual insect groups considered, bumblebees had the lowest
species diversity values. This was explained by certain species being highly
represented, whilst others were characterised by sightings of only one or two 
individuals.

• The use of two similarity indices and a cluster diagram allowed the
community similarity at individual properties to be compared using different,
but complementary, methods. The garden at Kirby was the least similar of 
the sites considered.

• ECDFs provide a robust way of plotting and testing species abundance 
distributions for both individual insect groups and sampling sessions. Solitary 
bees emerged as a group characterised by many species in spring and early 
summer, which may have implications for crops and wildflowers in the 
neighbouring landscape. Hoverfly species abundance in the third sampling 
session illustrated that rare is common and common is rare.



Chapter 3

• As a single species, honey bees do not lend themselves to intra-group 
comparisons using species richness or diversity metrics. However 
comparisons of honey bee abundance across sessions showed they most 
frequently appeared in gardens in late summer.

Overall, the gardens of large English country-houses can be considered as important 

sites for flower-visiting insects. This has implications for biodiversity at a time when 

pollinator numbers are known to be in decline (Klein et a/., 2007, Wratten et a/., 

2012), and agricultural security faces severe challenges (Bommarco eta/., 2012, 

Jauker eta/., 2012b).

The suggestion by Head (2012) that gardens are important areas for wildlife, 

independent of whether they are specifically managed for this purpose, will be 

explored further in the following two chapters.
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Chapter overview
In this chapter the diversity of flowering plants in large English gardens is explored 
in the context of the insects that visit them. The influence of plant communities on 
flower-visiting insects is considered at three taxonomic levels, as well as according 
to their alien or native status. The effect of plant resource availability on insect 
visitors is examined on both a seasonal and per-property basis. Finally, patterns in 
networks of flower visitors and plants are elucidated. These are discussed in the light 
of current theories about the meaning of nestedness between these two trophic 
groups.

Introduction

Pollinating insects and the flowers they visit comprise some of the most ubiquitous 

interactions observed on Earth (Ollerton etal., 2011). Since the dramatic radiation 

of angiosperms in the Cretaceous, the foraging behaviour of insects within and 

between flowers and the subsequent response of plants over generations has driven 

the evolution of both groups (Kevan and Baker, 1983, Kearns and Inouye, 1997).

Highly specific interactions between pollinators and plants have been observed, 

predicted, and continue to be discovered (Darwin, 1862, Waser and Ollerton, 2006, 

Ryckewaert et al., 2011). Far more common, however, are generalist interactions 

characterised by insects visiting flowers from a taxonomically diverse range of plants 

(Waser et al., 1996, Kearns and Inouye, 1997).

Many researchers have observed that the diversity of plants available at a site 

correlates with the diversity of pollinators that occurs there (Ghazoul, 2006, Frankie 

et at., 2009, Friind et al., 2010). Attempts to understand whether greater flower 

variety per se explains increased pollinator richness - a phenomenon described by 

Frankie et al. (2005) as 'the mall effect', or whether certain combinations of plants 

or the nectar and pollen resources they offer are more important, continue to 

generate research attention (Potts etal., 2003, 2004, Cussans etal., 2010). In the 

past, this enquiry has focussed on establishing whether abundant flower richness 

facilitates pollination or generates competition between plants, both of which can 

influence evolutionary processes (Ghazoul, 2006, Hegland etal., 2009). Less 

attention has been paid, however, to how plant richness and composition helps to 

structure pollinator diversity, particularly in novel ecosystems. As overall biodiversity 

is declining (Natural England, 2010), and the ecosystem service of pollination is 

considered to be in crisis (Kremen and Ricketts, 2000), research that contributes 

new knowledge about plant-pollinator interactions involving whole communities is
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considered vital (Memmott and Waser, 2002, Olesen eta/., 2007, Lazaro and 

Totland, 2010).

In this chapter the availability of flower resources across seventeen large gardens is 

tested against a series of predictions to establish how floral resources influence and 

structure the flower-visiting insect communities found there.

Insect-plant interactions: Research focus to date

Research on plant-flower community interactions is frequently focussed on sites 

dominated by native plants (Ghazoul, 2006, Frund et al., 2010, but see Frankie et 

a/., 2009) and often occurs as a result of assessing restoration programs (Carvell et 

al., 2004, Forup et al., 2008). Studies that encompass a range of insect groups and 

their interactions with non-native (alien) plants are noticeably sparse (Carvell et al., 

2004, Lazaro and Totland, 2010), with virtually nothing known about the structure of 

plant-insect communities in novel ecosystems such as large, rural gardens.

Native and alien plant resources in gardens

Gardens are noted for their unusually high plant species richness (Galluzzi et a/., 

2010), with some authors commenting that many urban gardens have considerably 

higher plant richness than adjacent non-residential patches (Kirkpatrick et a/., 2009 

and references therein). Understanding the composition of plant assemblages in 

gardens is important as it can help explain how human-created green spaces link to 

elements in the wider environment (Smith et al., 2006b).

The biodiversity that large rural gardens support is important for the sites 

themselves, but also as a resource that can benefit nearby crops through enhanced 

pollination and pest control (Jordano, 1987, Tylianakis et al., 2007). Additionally it 

plays a role in engaging interest in the natural world, which has positive effects on 

human wellbeing (Loram et al., 2011). Gardens are now considered the main way 

that the majority of people come into contact with wildlife (Cannon et al., 2005).

A common theme that emerges from gardens is that plant resources are dominated 

by non-native exotic' or 'alien' cultivars (Loram et al., 2008b, Goddard et a/., 2010). 

In two separate studies, non-natives accounted for 70% of plant species recorded 

(Smith et al., 2006a, Loram et al., 2008b). A detailed analysis of garden vegetation 

in five cities in the UK found that, despite geographical differences, these urban 

gardens were remarkably homogeneous in plant species richness, diversity and 

composition (Loram et al., 2008b). It is predicted that the ratio of alien to
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native plants is likely to be constant across a suite of large gardens in rural 

locations.

Some authors have noted that alien plants in gardens are infrequently used by 

native pollinating insects (Corbet et al., 2001, Goddard etaL, 2010), whilst others 

comment that in the wider landscape these resources are used but not necessarily 

preferred over native plants (Williams et al., 2011). Whilst this suggests that the 

availability of native plants relative to aliens may help explain the insect 

communities observed in gardens, this is not borne out by the work of Smith et al. 

(2006c). These authors found that in 61 gardens in Sheffield, invertebrate species 

richness was only rarely related to the presence and abundance of native plant 

species. In summary, little empirical evidence exists to confirm the importance of 

native plants in gardens. The prediction is that in large rural gardens the 

species richness of flower visitors is likely to be invariant to the proportion 

of native plants.

Possibly of greater importance than the ratio of native to alien plant species is the 

availability of floral resources over an extended period. For some groups, such as 

bumblebees, the requirement for suitable forage throughout the season is well 

documented (Dramstad and Fry, 1995, Goulson, 2010), with urban parks and 

gardens seen as particularly important due to their year-round availability of pollen 

and nectar (Stelzer et al., 2010). For others such as solitary bees, a dearth of 

flowers at a particular time (e.g. early spring), may be more critical than season-

wide availability, with a lack of resources resulting in starvation and reproductive 

failure (Falk, 2011). Climate change threatens to accelerate the disassociation 

between insect flight periods and the flowering time of plants (Memmott et at.,

2007). It is predicted that the proportion of available plants that are visited 

by insects will vary across the season.

'Pollinator-friendly' plants

In recent years many books, magazine columns and web pages have been written 

encouraging the planting of annuals, perennials and shrubs that are favoured by 

bees and butterflies (Goddard et al., 2010). In 2011, the promotion of 'bee-friendly' 

or butterfly-loving horticultural plants was championed by two groups with 

unrelated agendas. Scientists seeking to raise awareness about the plight of 

pollinating insects joined forces with the horticultural industry in the hope that more 

pollinator-friendly plants would be bought and planted (Ollerton, 2012). Trading on 

the messages delivered by popular gardening presenters during their broadcasts, an 

increase in the prevalence of 'good' flower rewards for pollinators was seen as a win-
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win situation for all (Raven, 2012, RHS, 2012a). Evaluating the results of this 

'perfect for pollinators' initiative is ongoing (Ollerton and Erenler, in prep.).

Attempts to establish which native plants and horticultural variants are preferred by 

pollinators (based on empirical measures of nectar secretion and flower morphology) 

have been made, albeit on a limited scale (Comba et al.t 1999a,b, Corbet eta/., 

2001), but little work has been done beyond experimental trials (but see Cussans et 

a!., 2010). Collections of plants in gardens (be they native or alien, pollinator- 

friendly or variants bred for aesthetic purposes), form communities that are likely to 

structure flower visitor diversity in predictable ways, thereby mimicking processes in 

natural ecosystems (Smith 2006b).

Plant resource similarity in gardens

Planting decisions made by households are influenced by diverse factors including

income, social class, the choice of plants available for purchase, the size of garden

and the desire (or not) to demonstrate planting creativity to others (Zmyslony and

Gagnon, 1998, Power, 2005, Loram eta/., 2008a, 2011). The question of whether

planting schemes in proximally close urban gardens are more similar than those

further away has been explored, with some authors reporting a planting 'mimicry

effect' (Goddard eta/., 2010 and references therein), though Kirkpatrick et a/.

(2009) found no such 'spatial contagion'. This raises the question of whether large

rural gardens share ubiquitous species favoured by flower visitors. It is predicted

that certain plant families will experience higher than expected visitation by 

flower-visitors.

Use of metrics to assess flower-visitor and plant interactions

Assessing how flower visitors interact with available plant resources requires the use 

of a suite of network metrics which allow interactions to be described, quantified and 

analysed. The underlying rationale for using these is to decipher patterns within 

communities, the relevance of which can be extended beyond the area of study 

(Bluthgen et a!., 2008, Dormann eta/., 2009).

Networks of ecological interactions are typically described in terms of connections 

(links) between species (nodes) and can be represented by binary 

(presence/absence) or abundance data (Bluthgen et al., 2008). Five common 

interaction metrics (connectance, generality, vulnerability, linkage density and 

nestedness) are used in this study. These are now considered in turn.
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Connectance

Connectance (C) is a measure of the number of actual interactions or realized links 

(̂ ) between a sampled community of F flower-visitors and P  plants, expressed as a 

fraction of all possible interactions (Jordano, 1987, Dormann et a/., 2009).

C = L / (FP)

In calculating the number of realized links, a measure of the complexity of a network 

can be made; a useful tool when multiple sites are to be compared. Connectance has 

two main drawbacks however: it uses unweighted (presence/absence) data, thus 

giving equal importance to all species regardless of their abundance (Bluthgen et a/., 

2008), and secondly, it is known to be highly sensitive to sampling intensity 

(Banasek-Richter eta/., 2009).

Generality, vulnerability and linkage density

Generality (G) and vulnerability (V) characterise the number of links associated with 

a particular node. In a network of F  flower visitors and P  plants, the mean number 

of plant species visited by insects is termed generality (G = L / P), whilst the 

converse, vulnerability, is the mean number of flower visitors that a plant receives 

(V = L / F) (Bersier et a/., 2002, Bluthgen et a/., 2008). Linkage density is the mean 

of these two values (Tylianakis et a/., 2007). Qualitative methods for calculating 

these metrics have been superseded by quantitative equivalents (Bersier et a/.,
2002).

Nestedness

Nestedness is a measure of how communities of interacting taxa are organised

(Bascompte et a/., 2003). The concept originates in theories postulating how islands

are colonised from a mainland source (Ulrich and Almeida-Neto, 2012). The non-

random pattern proposed by Darlington (1957) suggests that for a series of islands

of various sizes and distances from the mainland, the most efficient dispersers will

occupy the majority of islands (including the most distant ones), whilst less mobile

dispersers will only appear on closer land parcels. The result is a nested pattern of

colonists arranged according to differences in species and site traits (Ulrich and 
Almeida-Neto, 2012).

This concept was extended to ecological networks by Jordano (1987), Bascompte et 

a/. (2003) and others to describe mutualistic interactions such as those between 

plants and pollinators. Considering flowers as islands, and making pollinators 

analogous to Darlington's mainland biota, the nested pattern proposed in the
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twentieth century to describe island colonization appears to be a common feature of 

pollination networks (Ollerton etal., 2007, Dupont eta/., 2009).

These networks are frequently interpreted as exhibiting 'specialization asymmetry', 

that is, specialists - species with few connections, interact with generalists - species 

with many connections (BILithgen etal., 2008). More specifically, this leads to 

generalised pollinators interacting with all or many plants, with subsequent insect 

taxa interacting with a decreasing subset of these (Allesina, 2012; Figure 4.1).

b
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Figure 4.1 Illustration of typical interactions between pollinators and plants.
(a) Generalist species (such as the pink-eyed bee) interact with many plants, 
whereas specialists have only a few or, in the case of the blue-eyed bee, a single 
partner, (b) The network shown in (a) is described as perfectly nested as all species 
interactions are proper sub-sets of other species interactions. As such, a triangular 
pattern occurs when the links (black squares) are arranged in a matrix. Reprinted by 
permission from Macmillan Publishers Ltd: Nature, (Allesina - 'The more the 
merrier', 2012). Copyright 2012.

Early calculations of nestedness between pairs of species involved the use of 

thermodynamic measures such as the Nestedness Temperature Calculator software 

of Atmar and Patterson (1993). This received criticism for overestimating the degree 

of nestedness in a network (Fischer and Lindenmayer, 2002) and was superseded by 

other programs such as NODF - Nestedness metric based on Overlap and Decreasing 

Fill (Ulrich and Gotelli, 2007, Ulrich et at., 2009). Recently, the weakness associated 

with using incidence data to analyze interaction networks has received increasing 

attention (Ings eta/., 2009; Almeida-Neto and Ulrich, 2011: Ulrich and Almeida- 

Neto, 2012), the main criticism being that presence-absence data imply that all 

interactions are of equal importance, when in reality this is unlikely to be the
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(Ulrich and Almeida-Neto, 2012). In response to this, weighted metrics have been 

developed offering more robust assessments of whether a community exhibits a 

nested pattern, e.g. WINE - Weighted Interaction Nestedness Estimator (Galeano et 

al.t 2009) and WNODF - Weighted Nestedness metric based on Overlap and 

Decreasing Fill (Almeida-Neto and Ulrich, 2011; Ulrich, 2012). The need to test 

calculations of nestedness against appropriate null models is necessary if correct 

interpretations are to be made (Dormann et a/., 2009, Gibson et a/., 2011).

The nestedness observed in mutualistic webs has been interpreted in several, often 

complementary, ways. For example, Memmott et a/. (2004) examined whether a 

non-random nested pattern might indicate robustness in the face of selected 

extinction events. Using 'attack tolerance curves' (Burgos et a!., 2007) they 

quantified the proportion of a guild that might become extinct following the 

elimination of species in another guild. Their findings suggested that the loss of core 

generalists (those that are maximally packed in the top left hand corner of Figure 

4.1b) posed the greatest threat to the continuation of pollinator-plant interactions. 

Fontaine et at. (2006, p.129) extended this concept by suggesting that nestedness 

confers resilience, and that 'generalist pollinators buffer the loss of specialist 

pollinators'. Bezerra eta/. (2009) tested this by simulating species removal.

Nestedness has also been used as a conservation tool to identify keystone species 

and highlight critical changes in interaction structure in advance of biodiversity 

losses (Benedek eta/., 2007, Ebeling eta/., 2011).

To my knowledge, network structure in gardens has not been assessed. Olesen et a/.

(2007, p. 19891) noted that 'in natural communities, species and their interactions

are often organised as non-random networks'. As the study sites for the present

work are human constructs (and therefore likely to contain non-native plants), one

of the aims of this work is to establish whether the reported non-randomness

associated with natural environments also applies to novel ecosystems. It is

predicted that networks in gardens mimic those of natural settings by

exhibiting a nested structure. Furthermore, as plant populations in 'natural'

settings experience quantitatively and qualitatively different visits from pollinating

insects over a season (resulting in networks appearing as highly temporally dynamic

- Herrera, 1988, Ollerton eta/., 2007, Dupont eta/., 2009, Alarcon, 2010), it is

predicted that some sampling sessions will have a greater proportion of 
nested networks than others.
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Aims
The aim of this chapter is to consider how assemblages of plants influence

communities of flower-visiting insects. Specifically, the chapter seeks to answer the

following questions:

1. Does the number of plant taxa available in a garden affect the richness and 
abundance of flower-visiting insect species that are observed?

2. What is the relationship between the availability of plants and those visited by 
flower-visitors, and does this differ across properties and seasons?

3. Is the proportion of native and alien plants similar across sampling sessions?

4. Are native plants in gardens preferred by flower visitors?

5. Are certain plant families that are common to a number of gardens more 
favoured by flower visitors than others?

6. Does connectance vary between properties across seasons where (i) only 
visited plants are assessed and (ii) all available plants are assessed?

7. Do generality, vulnerability and linkage density differ between properties and 
are seasonal patterns evident?

8. Do the observed plant and flower-visitor communities exhibit nested 
structures and are these consistent across the season?

Methods

Study sites and timing of sampling

17 gardens in four counties in lowland Central England were used as the basis for

the study. Sampling took place between April and September 2010. Full details of

the sites and methods for censusing plants and flower visitors are given in Chapter 2 
(2010 field season).

Plant classification

Plants were ascribed to families according to the most recent Angiosperm Phytogeny 

Group publication (APG III, 2009).

Throughout this chapter the term 'plant element' is used instead of plant species. 

This follows the convention of Frankie et al. (2005) and reflects the difficulty in 

classifying ornamental garden plants according to standard taxonomic guidelines.
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Here, plant element refers to any species, variety, cultivar or hybrid that is 

commonly used in the horticultural arena.

Due to the problems associated with reliably identifying certain plant elements, a 

generic grouping was sometimes used. Examples include Lavandula spp., Nepeta 

spp., and Origanum spp. This cautionary approach means overall plant species 

richness across gardens is likely to have been underestimated.

The classification of plant elements according to native or alien status was made 

with reference to Stace (1997) following the methods of Smith et al. (2006a) and 

Loram et al. (2008a).

Data analysis

Unless otherwise stated, each sampling session at each property was considered 

separately.

Relationship between plant availability and observed flower visitors

The relationship between plant family, genera or element availability and observed 

insect richness and abundance was explored using nonlinear regression. Power 

function trend lines were fitted through the data as these best represented the 

accumulation of flower visitors with increasing plant richness. The significance of 

each fit was established by performing linear regressions on log-transformed data.

Availability of plants compared to plants visited

The median number of plant elements available at each garden was compared to the

number of plant elements visited using a Mann-Whitney U test. The same test was

used to examine differences in availability and use of plants across the four sampling 
sessions.

Proportion of native and alien plants

Differences in the proportion of alien plants available across the four sessions were 

examined using a one-way ANOVA (the data met assumptions of normality and 

homogeneity). This was followed up with REGWQ post hoc tests.

The relationship between the proportion of native and alien plants available and 

those used in each of the four sessions was explored using a chi-square test of 

association in Excel following the methods of Dytham (2011).

Evaluating highly visited plant families

Plant elements that were common to a number of gardens within each of the four 

sessions (and which were visited by flower-visitors at a minimum of five properties)
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were identified. Working at family level, a per-session visitation preference index 

(VPI) was calculated. This index incorporated two factors; (i) the number of gardens 

where an element was used as a proportion of the number of gardens where the 

element was available and (ii) the number of elements used (within a family) as a 

proportion of the total number of elements available within the family in the session 

in question. The VPI values were log transformed and plotted against the (log 

transformed) number of elements available within the family. A linear trend line was 

fitted through the points and 95% confidence intervals added to identify those 

families with a VPI lying beyond the upper limits of the confidence lines. Flowers 

within families with a high VPI were characterised according to whether they were 

open or tubular, following the methods of Fontaine et al. (2006).

Connectance

For each sampling session plant and flower-visitor data were arranged as a matrix. 

The available and realised links were calculated according to

C =  L /  ( FP) (see Introduction). Connectance values were calculated for two 

scenarios:

1. The number of links between plants that had a minimum of one visitor and 
the number of flower-visitor species.

2. The number of links between all available plants (see Chapter 2, 2010 field 
season) and the total number of flower-visitor species.

Median connection values (n = 68 per scenario) are presented for each property.

Differences between properties were examined using the non-parametric Kruskal- 
Wallis test.

Generality, vulnerability and linkage density

Generality, vulnerability and linkage density values for each session were calculated 

in R (R Development Core Team) using the package Bipartite, Version 1.17 

(Dormann et al., 2008). Abundance data were arranged in matrices with flower- 

visitors as columns and plant elements as rows. Differences in median values 

between properties (n = 4) were examined using a Kruskal-Wallis test. Median 

values per session (n = 17) were also calculated and tested in the same way. Mann- 

Whitney U tests, with Dunn Sidak corrected critical values (Sokal and Rohlf, 1981) 

were used as non-parametric post hoc procedures.
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Nestedness

To assess whether communities of flower-visitors and plants exhibited nested 

patterns, the data were examined using WNODF (weighted nestedness metric based 

on overlap and decreasing fill) software, Version 2.0 (Almeida-Neto and Ulrich, 

2011). To avoid the problems associated with the non-matching of species 

attributes, e.g. the creation of'forbidden interactions' (Jordano, 1987, Weiner et al., 

2011), whereby spring insect species appear in matrices with late summer flowering 

plants despite the two never co-occurring, data from each sampling session were 

considered separately. Matrices of interacting species (n = 68) were prepared in 

EcoSim format (space delimited columns of plant elements and rows of flower- 

visitors), and run in the WNODF program using the following parameters: (i) matrix 

sorting was by row and column species richness, with rows and columns of equal 

species richness further sorted according to abundance totals and (ii) null model 're' 

was selected, whereby individuals are assigned to matrix cells proportional to the 

observed row and abundance column totals until total abundances for each row and 

column are reached. Finally, the degree of nestedness was established by comparing 

the actual distribution values with the scores obtained from 500 runs of the null 

model (Almeida-Neto and Ulrich, 2011, Ulrich, 2012). The probability of the 

observed network differing from random (and therefore exhibiting a nested pattern) 

was considered significant at a < 0.05. Differences between seasons were quantified 

by considering the proportion of significantly nested samples they contained. A chi- 

square test of association was used to establish whether these observed values were 

significantly different from expected.

Results

Plant richness

A total of 98 plant families, 409 genera and 988 plant elements were recorded

across all properties for sessions one to four inclusive, constituting more than 22%

of the world's total recognised plant families (APG III, 2009, Table 4.1, Appendix 
VII).

Relationship between plant availability and observed flower visitors

Flower-visitor species richness and abundance increased significantly as the number 

of plant families, genera and elements increased (Figures 4.2 and 4.3). Flower- 

visitor abundance was best explained by the number of plant genera available (R2 =

0.35, P < 0.001), with the number of plant elements being the poorest predictor of 

plant species richness (R2 = 0.19, P = < 0.001), (Table 4.2).
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Table 4 .2  Results o f linear regressions for flower-visitor species richness against 
plant taxa.

Plant taxa Flower visitor
species
richness

R2 value F Degrees of P value
freedom

Families 0.27 24.27 66, 1 < 0.001
Genera 0.21 17.16 66, 1 < 0.001
Elements 0.19 15.45 66, 1 < 0.001

Flower visitor
abundance

R2 value F P value

Families 0.28 25.37 66, 1 < 0.001
Genera 0.35 35.34 66, 1 < 0.001
Elements 0.33 35.53 66, 1 < 0.001

Comparing plants visited w ith  the num ber of plants available

The number of plants visited in each garden was significantly lower than the 

number of plants available, n = 68, Z  = -5.97, P < 0.001 (Figure 4.4).

Across the four sampling sessions, all except Session 1 had significantly lower 

numbers of plants visited than those available (P = < 0.01, Table 4.3, Figure 4.5). 

As some sampling events overlapped with dates in neighbouring sessions (see 

explanation in Chapter 2 -  2010 field season) the data were also plotted according 

to date. A sim ilar pattern to that found in Figure 4.5 was observed (Figure 4.6).

Table 4 .3  Results of Mann Whitney U tests for each of the four sampling sessions 
comparing the number of plant elements visited with the number of plant elements 
available. * = P < 0.05, * *  = P < 0.01, * * *  = P < 0.001.

Session 1 Session 2 Session 3 Session 4

Z value 
P value 
n

-2.09
0.04*

17

-4.46
< 0 .0 0 1 ***

17

-2.95
0 .003**

17

-3.62
< 0 .0 0 1 ***

17
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Alien and native plant elements

The percentage of available plant elements that were classed as aliens ranged

between 62 and 79% across the four sessions (Table 4.4). A one-way ANOVA

revealed there was a significant difference in the proportion of alien plants

available (F = 5.97, d.f. 3,64, P = 0.001). Post hoc tests (REGWQ) showed that 
Session 1 was different to Session 4.

Table 4 .4  Percentage of alien and native plant elements across each of the four 
sampling sessions. Data are given for (i) plant elements available and (ii) plant 
elements visited by flower-visitors. Numbers in brackets represent absolute values.

Session 1 Session 2 Session 3 Session 4

% alien plant elements available 

% native plant elements available 

Total plant elements available

62 (295) 

38 (181) 

476

69 (868) 

31 (384) 

1252

74 (848) 

26 (303) 

1151

79 (734) 

21 (198) 

932

% alien plant elements visited 

% native plant elements visited 

Total plant elements visited

66 (90) 

34 (46) 

136

71 (147) 

29 (59) 

206

76 (220) 

24 (69) 

289

77 (148) 

23 (45) 

193

Chi square tests of association revealed that there was no difference in the number 

of alien and native plants visited relative to those available (Table 4.5).

Table 4.5 Results of chi-square tests of association comparing the number of alien 
and native plants visited versus those available.

Session 1 Session 2 Session 3 Session 4

X2 0.80 0.35 0.72 0.41
d.f. 1 1 1 1
P value 0.37 0.56 0.40 0.52
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On a per-garden basis, the proportion of alien plants ranged from 0.45 to 0.91 

across all sampling sessions, with the proportion of native plants ranging from 0.09 

to 0.55 over the whole season. Overall, the mean proportion of available plants 

tha t were classed as alien was 0.68 ± 0.09 (Table 4.6).



in
c
o
co
cnQJin

cnQJ
t
QJ
Q .
O
Q.

0GJ
QJ
>
qj
in
QJ

UID
QJ
in
in
o
u
id
in

q j

EQJ
QJ

t o

a.
qj
>

a:

Q  *■
(J)
-H

ID
QJ

QJ
>

QJCDCID
a:

(D

Q  ^
in  n
-H c

ID
QJ

QJcn
cID
CL

in
ID

QJ
E
QJ
QJ

tQJ
O

cl

N f M a > ^ i n N i n ^ ^
o

o  o
-H -H -H -H -H -H

cD ^  rsi rsi N  cD r o  h  r o rsj
ro

o
-H
vDro

-H
v drsi

O

CDrsi
-H -H -H

on
o

o

-H

n  fs ^  co

o

-H
o  ■̂ruo rsi 00 ID O rsi rsi ro

-H
''Q-rsi

o  o  O

u o
ro
ro

ro O'*rsi rsi
ro ro

rsiro ro
^ r

uo
uo ^ r

uo
ro

<T>rsi
i

sorsi
l

cD
I

Orsi
i i i i i
ro
ro

cDrsi ro rsi
o

i
&

i
f\

i

r̂
o  o  o

i i
rsirsi rsi

rsi

"3-

o
i

in

ro

i
oo

UO
uo
o
1
uo
rs i

r ^ r s io i^ u o r s iu o ^ j - ^ - ro ro

H  -H -H
cn r̂ 
ld

oocD

o  o  
-H -H 
ro r̂
0 0  CD

-H -H -H -H -H -H
co r̂
cD  cD r s  N•  •  •  •
o  o  o  o

LO CD
1^.

O

-H
r \ i
r v

-H -H
uo
| \

o

o
-H
cD
r ^

i i i i i i i i i i i i i i

r o c n c D c o r o c o r s i c D ^ j - o o ^ o  c r ^ O H f N o o o n N O D i n o o  r s i r s i r o r s i r s i r s i r s i r o  r n r s i r o r s i
f \  o  

a c  rsi

o < i i z < o i i j S <
C cD U U U u j l l I ^ ^ in ui

o  o
-H -n

CD O

rsi

i

CD
ro

oo 
o

-H -H
^  O  
ID  CD

c J - ^ O O ^ N ^ c D O ^ H r o r O C O C O L D f N L D ^
f ^OOCOOOi Dr v i Df N*acUOOOr^r^OOOOr ' - i D

I I
c <J» r-H 00 ro r-H 00 UO o uo r-H CD CD UO 00
QJ• mmm 1 CDa UO • uo cD vD

a CDm ID A CD• CDa UO CDa a
<1

•
o

•
O

•
o

w
O

•
o

w
o

w
O

w
O O

w
o o o o o O

w
O

•
o

r̂

Q
a. <  *

<j\

o

rsi
ro

a»
o

CO
CD

O

in
QJ • •■■■»
£
QJ

ID
2  oo 
c ®ID II
*  c



Chapter 4

Highly visited plant families

The visitation preference index for ubiquitous and highly visited families revealed 

that different families were preferred at different times of the year. During spring 

(Session 1), Asteraceae, Boraginaceae and Lamiaceae were highly favoured (Figure 

4.7). In Session 2 this increased to four families: Amaryllidaceae, Apiaceae, 

Lamiaceae and Rosaceae (Figure 4.8). Asteraceae was again highly preferred in 

Session 3 together with Acanthaceae and Scrophulariaceae (Figure 4.9), whilst in 

Session 4 no family emerged as more highly visited than others (Figure 4.10).

.00 .20 .40 .60 .80 1.00 1.20

Number of plant elements present in family (log 10)

Figure 4.7 Preference index for highly represented and visited plant families in 
Session 1. Named families are those containing elements which experience higher 
than expected visitation rates. Coloured data points represent families common to 
three of the four sampling sessions. Amaryllidaceae = orange, Apiaceae = dark 
blue, Asteraceae = yellow, Geraniaceae = pale blue, Lamiaceae = purple and 
Rosaceae = red. Dotted lines = 95% Cl around linear trend line fitted through 
logged data.
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Number of plant elements present within family (log 10)

Figure 4.8 Preference index for highly represented and visited plant families in 
Session 2. Named families are those containing elements which experience higher 
than expected visitation rates. Coloured data points represent families common to 
three of the four sampling sessions. Amaryllidaceae = orange, Apiaceae = dark 
blue, Asteraceae = yellow, Geraniaceae = pale blue, Lamiaceae = purple, 
Ranunculaceae = green and Rosaceae = red. Dotted lines = 95% Cl around linear 
trend line fitted through logged data.
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Figure 4.9 Preference index for highly represented and visited plant families in 
Session 3. Named families are those containing elements which experience higher 
than expected visitation rates. Coloured data points represent families common to 
three of the four sampling sessions. Amaryllidaceae = orange, Apiaceae = dark 
blue, Asteraceae = yellow, Geraniaceae = pale blue, Lamiaceae = purple, 
Ranunculaceae = green and Rosaceae = red. Dotted lines = 95% Cl around linear 
trend line fitted through logged data.
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Number of plant elements present within family (log 10)

Figure 4.10 Preference index for highly represented and visited plant families in 
Session 4. Coloured data points represent families common to three of the four 
sampling sessions. Asteraceae = yellow, Geraniaceae = pale blue, Lamiaceae = 
purple, Ranunculaceae = green and Rosaceae = red. Dotted lines = 95% Cl around 
linear trend line fitted through logged data.

A list of the plant elements within families identified using the visitation preference 

index is given in Table 4.7. A measure of the availability of these elements and the 

proportion of gardens where they were visited is included, as well as the colour, 

general overall shape of the flowers and their native or alien status.
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Table 4.7 List of highly visited families per session (note, no specific families 
emerged for Session 4, Figure 4.10). Plant elements within each family that were 
visited by insects are listed, together with their alien or native status, their levels 
of occurrence and visitation across the gardens, their colour and flower 
morphology.

Families 
according to 
session.
* indicates family 
occurs in 
multiple sessions

Plant elements visited 
within each family 
(N = native, A = alien)
** indicates plant element 
occurs in multiple sessions

Number Proportion Colour Flower
of of gardens shape

gardens where T =
where visited tubular

present 0 =
(min. 5) open

Session 1

Asteraceae

Boraginaceae

Lamiaceae

Session 2

Centaurea montana (A)** 
Taraxacum officinale (N)**

Pulmonaria sp. (A) 
Symphytum sp. (N)

Glechoma hederacea (N) 
Lamium macula turn (A)

8 0.88 blue O
12 0.92 yellow O

6 0.83 lilac/blue T
9 0.56 pink/lilac/blue T

10 0.80 lilac/purple T
8 1.00 pink T

Mmarymaaceae Allium sp. (A) 8 0.88 lilac/purple O
Narcissus sp. (A) 7 0.71 yellow T

Apiaceae Aegopodium podagraria 
(A)

5 1.00 white O

Angelica archangelica (A) 5 1.00 white O
Astrantia major (A) 9 0.56 pink 0

Lamiaceae* Nepeta sp. (A) 11 0.82 lilac/blue T
Salvia sp. (A) 8 0.88 various T
Thymus sp. (A) 6 0.83 pink/lilac T

Rosaceae Alchemilla mollis (A) 13 0.38 cream 0
Rosa rugosa (A) 7 1.00 red 0
Rosa sp. (A) 13 0.92 various 0

Session3

Acanthaceae Acanthus mollis (A) 9 0.78 purple T

Asteraceae* Achillea sp. (A) 9 0.67 pink/white O
Centaurea montana (A)** 11 0.45 blue 0
Cirsium arvense (N) 6 0.83 pink/lilac 0
Cosmos bipinnatus (A) 6 0.83 pink/white 0
Echinacea sp. (A) o 0.75 pink 0
Ech in ops sp. (A) 8 0.75

•

blue 0
Leucanthemum sp. (A) 11 0.64 white 0
Taraxacum officinale (N)** 6 1.00 yellow o

Scrophulariaceae Buddleja davidii (N) 11 1.00 lilac T
Penstemon sp. (N) 7 0.71 various T
Verba scum sp. (A) 10 0.50 yellow O
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Median connectance values for each of the 17 properties for each of the two

scenarios (see Methods) are given in Figure 4.11. Connectivity was higher where

matrices were smaller (Figure 4.12), hence Kirby (KIR), with the fewest flower-

visitors and plant resources, had the highest median connectance value for both

scenarios. Results of Kruskal-Wallis tests revealed a significant difference between

median connectance values for properties under Scenario 1 (realised links between

the number of plants that were visited at least once and the number of insect

species they connected to), H = 31.47, d.f. = 16, P = 0.012. The median

connectance value for KIR (0.26) was > 80% greater than that of the second

highest connectance value (Althorp - AL, median value = 0.14). Under Scenario 2,

no difference in median connectance values between properties was observed (H = 

17.56, d.f. = 16, P > 0.05).
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Figure 4.12 Decreasing connectivity as a function of matrix size for two scenarios.
Scenario 1 (dark grey diamonds) = matrix comprised only of plant elements visited
by insects, n = 68. Scenario 2 (light grey squares) = matrix comprised of all plant
elements available, n = 68. Lines of best fit drawn for each scenario with R2 values 
included.

Generality, vulnerability and linkage density

Flower visitors interacted with a mean of 4.5 ± 3.6 plant elements across all 

properties and sessions (generality) whereas plant elements interacted with an 

average of 3.6 ± 1.0 flower-visiting insect species (vulnerability). Overall there was 

an average of 4.1 ± 2.0 interactions per organism (linkage density).

I he median generality and vulnerability values per property are given in Figure

4.13. Kruskal-Wallis tests revealed there were no significant differences in

generality, vulnerability or linkage density values across gardens (generality: H =

18.24, d.f. = 16, P = 0.31; vulnerability: H = 24.27, d.f. = 16, P = 0.08; linkage 

density: H = 17.96, d.f. = 16, P = 0.33).
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Across the four sampling periods, Session 3 exhibited the highest median 

generality values (Figure 4.14). A Kruskal-Wallis test revealed that a significant 

difference existed between sessions (H = 27.82, d.f. = 3, P =<0.001), with post

hoc tests showing that Session 3 was significantly different to all others, and that 

Session 1 was different to Session 4 (Table 4.8).

Sampling session
Figure 4.14 Median generality (dark grey bars) and vulnerability (light grey bars) 
values (n = 17) for the four sampling sessions. Error bars = range.

Table 4.8 Results of post hoc tests (Mann Whitney) for differences in median 
generality values between paired sessions. Degrees of freedom = 3 in all cases. 
Dunn Sidak adjustment of critical values used (Sokal and Rohlf, 1981).

Paired sessions Mann Z P (adjusted a < 0.009)
examined Whitney U * = significant

_______ value

1, 2 78.0 -2.29 0.022
1, 3 22.0 -4.22 <0.001*
1, 4 58.0 -2.98 0.003*
2, 3 38.0 -3.67 <0.001*
2, 4 103.0 -1.43 0.160
3, 4 56.0 -3.05 0.002*

120



Chapter 4

Nestedness

The outputs of the 68 WNODF nestedness procedures (involving 34,000 null model 

simulations) are given in Table 4.9. All 17 properties had at least one session with 

a significantly nested network. On average, 2.1 ± 0.7 networks were significantly 

nested per property (51% were nested overall).

Assessing the results according to the different sampling sessions (Figure 4.15) 

revealed that Session 2 had the highest proportion of significantly nested 

communities (12 of 17 gardens), followed by Session 4 (10 out of 17 gardens). 

Less than half were nested for the remaining two sessions. A chi-square test of

association showed no significant difference in observed versus expected numbers 

of nested networks (X2 = 5.36, d.f. 3, P = 0.15).

Figure 4.15 Proportion of communities within each sampling session exhibiting 
significantly nested interaction networks.
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Table 4.9 Results of 68 tests for nestedness. P values of < 0.05 (in red) denote
matrix significantly different from random and therefore nested (Ulrich pers. 
comm.). Red bold < 0.01.

Property Session Flower-
visiting
insect
species

Plant
elements

WNODF 
degree of 
nestedness

WNODF Z 
value

P value

AL
AL
AL
AL
BOU
BOU
BOU
BOU
CA
CA
CA
CA
CM
CM
CM
CM
CH
CH
CH
CH
EN
EN
EN
EN
FAR
FAR
FAR
FAR
HOL
HOL
HOL
HOL
KEL
KEL
KEL
KEL
KIR
KIR
KIR
KIR
LAM
LAM
LAM
LAM

1
2
3
4 
1 
2
3
4 
1 
2
3
4 
1 
2
3
4 
1 
2
3
4 
1 
2
3
4 
1 
2
3
4 
1 
2
3
4 
1 
2
3
4 
1 
2
3
4 
1 
2 
3 
1

26
26
23 

8
36 
31 
26 
20 
35 
35 
22
29 
31 
26 
25 
19
27 
33 
44
24
25 
18 
41 
17 
31
31
32 
22
30 
30
37 
15
33
38
28 
22
7

11
7
5

23
26 
35 
23

15
17
18
5

22
31
39
16
21
23
24 
29
40
29 
55 
34
23
30 
44
27 
12 
16
32
28 
22 
20 
32 
26
24 
29 
59 
20
23 
39 
75
24 
4 
9
6 
6

18
25 
38 
18

4.03
6.65

19.73
n.a.
0.12
5.83 

19.01
6.25
5.43
1.79
6.52
8.94 
0.54 
0.93

14.30 
8.74
5.10
6.83 

16.00 
12.44
5.95 
3.88

10.62
12.33
1.97
6.07

20.84
6.12
4.56
3.83 

15.65
9.11 
0.62 
4.37

21.31 
4.87 
n.a.

13.41
13.89
16.00
1.35
5.56 

26.40
1.35

0.02
-3.59
-3.42
-0.05
-1.50
-4.83
-1.38
- 2.11
-2.39
- 0.01
-0.40
-2.95
0.99

-0.84
-3.46
-2.69
-0.92
-3.46
-1.18
-1.67
-1.43
-3.86
-2.05
-2.56
-3.66
-1.85
-1.03
-1.32
-2.77
-1.38
-1.46
-0.65
0.30

-2.59
-2.16
-2.99
-2.28
-1.96
-0.04
-0.60
-2.16
-2.61
0.58

-2.16

0.49
<0.01
<0.01

0.48
0.07

<0.01
0.08
0.02
0.01
0.50
0.34

<0.01
0.16
0.20

<0.01
<0.01

0.18
<0.01

0.12
<0.05

0.08
<0.01

0.02
<0.01
<0.01

0.03
0.15
0.09

<0.01
0.08
0.07
0.26
0.38

<0.01
0.02

<0.01
0.01
0.03
0.48
0.27
0.02

<0.01
0.28
0.02
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Table 4.9 continued

Property Session Flower-
visiting
insect
species

Plant
elements

WNODF 
degree of 
nestedness

WNODF Z 
value

P value

LW 1 32
LW 2 37
LW 3 30
LW 4 16
ST 1 31
ST 2 31
ST 3 44
ST 4 27
SUL 1 25
SUL 2 30
SUL 3 24
SUL 4 28
UP 1 32
UP 2 39
UP 3 27
UP 4 35
WAD 1 24
WAD 2 22
WAD 3 35
WAD 4 11
WR 1 24
WR 2 31
WR 3 29
WR 4 23

25
38
41
18
21
28
57
27 
19 
50 
34 
37
28 
30 
48 
41 
11 
11 
16
7

19
18
22
16

1.49
2.39

19.62
4.71
2.73
1.59

13.82
4.48
7.41
6.70
4.57
9.19
3.14
2.99

14.42
10.39
2.47
5.80

14.10
7.89
2.35
3.66

15.44
14.14

-1.60
-2.99
-0.57
1.02
0.29

-3.43
-0.43
0.09

-1.75
-0.53
-3.05
-3.58
-0.23
-0.50
-3.38
-2.16
-2.54
-3.17
-1.35
-2.77
-4.93
-4.01
0.66

-1.91

0.05
<0.01

0.28
0.15
0.39

<0.01
0.33
0.46
0.04
0.30

<0.01
<0.01

0.41
0.31

<0.01
<0.01
<0.01
<0.01

0.09
<0.01
<0.01
<0.01

0.25
0.03

Discussion

Relationship between plant availability and observed flower visitors

The sampled gardens contain a remarkably high diversity of plants (Table 4.1).

As only urban garden plant diversity has been considered to date (Smith et a!.,

2006a, Loram et at., 2008a,b), the results of this study provide the first insight into 
how diverse estate gardens can be.

Both flower-visitor species richness and abundance were found to positively 

correlate with the number of plant families, genera and elements available. Despite 

all taxonomic levels of plants significantly influencing these response variables, 

some were of more relevance than others. For example, the number of plant 

genera within a sampled area of garden was the best predictor of insect 

abundance, P < 0.001, R2 = 0.35 (Figure 4.3). The observed relationship between 

plants and flower visitors echoes the findings of Fontaine et at. (2008) who 

considered the response of Bombus terrestris individuals to plants in experimental
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conditions and Ebeling et al. (2008, 2011) who found the number of pollinating 

insects was 'strongly positively' affected by the number of plant species available in 

a grassland in Germany. Ebeling et al. (2008) noted that, as with the power 

functions used here (Figures 4.2 and 4.3), the relationship was both non-linear and 

saturating. Lazaro and Totland (2010) noted the effect plant richness had on 

specific pollinator guilds. By considering visitation rates to two plant species placed 

within patches of Taraxacum officinale (dandelion) they established that some 

guilds behaved differently and that in the case of bees, eusocial and solitary 

species did not respond in similar ways. Similarly, Hegland and Boeke (2006) found 

that whilst the number of hoverflies responded positively to plant species richness 

in a temperate grassland, bumblebees did not. Further analysis considering the 

response of specific guilds to plant richness in gardens will add to these findings.

Notwithstanding the association noted in the current study, plant richness explains

only a proportion of the observed insect richness (Figure 4.2). Other factors will be 
explored in Chapter 5.

During the 2010 field season the assessment of plant abundance was not possible 

due to time constraints. Further work incorporating the abundance of flower 

resources in rural gardens into analyses will add to the knowledge gained from this 

study into how pollinators behave in novel habitats.

Comparing plants available with the number of plants visited

Fewer plant elements were visited than those available (Figure 4.4). In the case of

Sessions 2, 3 and 4, the number visited was significantly lower than those

available, P < 0.01, (Figure 4.5). Whilst Session 1 was also significant, it was less

so than the others (P = 0.04). One possible explanation for this concerns the

availability of flower resources in early spring. At this time flower resources are

often scarce (pers. obs.). Optimal foraging theory states that the preference for

patches containing high densities of flowers should be the norm for the majority of

pollinators (Pyke, 1984). Therefore having arrived at a florally dense patch,

foraging is maximised by visiting several (or many) flowers within the area

(Hegland and Boeke, 2006). This generates the appearance of heightened use in 
flower patches within gardens.

A concern in treating the four sampling sessions as distinct was the fact that a 

small amount of field-work took place on dates a few days beyond the boundary of 

the previous session. As described in Chapter 2 (2010 field season), this situation 

arose because of visiting restrictions imposed by some property owners. To check
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whether this affected the results, the number of plants available and those visited 

were plotted according to the date assessed. The outcome mirrored that of the 

session-wise tests, thus placing confidence in the results obtained (Figure 4.6).

Alien and native plant elements

The majority of plant elements available were classed as alien, ranging from 62% - 

79% across the four sampling sessions (Table 4.4), with the percentage of alien 

plants increasing as the season progressed. A one-way ANOVA revealed that 

Session 4 had a significantly higher number of alien plant elements than Session 1

(P < 0.001). Overall, the mean percentage of alien plant elements was 68 (Table
4.6) .

This is remarkably similar to results obtained for gardens in urban areas. For 

example Loram et at. (2008b) reported that across five UK cities (incorporating 267 

gardens), the percentage was 70. Similarly, Smith et al. (2006a) reported that in 

61 Sheffield gardens 70% of plants were alien, as were those in a study of home 

gardens in Mexico City.

Despite some variation between properties and across the seasons (Tables 4.4 and

4.6) , the congruence in the overall mean proportion of aliens is a surprising result,

raising questions about why this near consistent figure of 70% occurs, regardless

of whether gardens are urban or rural, and located in Scotland, Ireland, lowland 
England or Mexico.

Several authors have noted that urbanisation tends to increase the proportion of 

alien plant species (Roy eta/., 1999, Smith etal., 2006b), although the exact 

causes have rarely been explored. Whilst this 'urban = alien' rule may hold true for 

cities (Smith eta/., 2006a, Loram eta/., 2008b), the majority of the sites sampled 

in the present work are located many miles from the nearest towns. As such they 

are not subject to common urban influences and characteristics including the heat 

island effect and matrices of green spaces and hard surfaces. It is likely that the 

proportion of aliens found in the gardens surveyed occurs due to two simple 

factors: plant availability and planting preferences.

Brickell (1999) notes that some 15,000 plant species are available commercially to 

garden owners in the UK. Regional variation in soil and climate are likely to affect 

what grows well in an area, thus determining which plants garden centres sell, but 

overall, garden nurseries almost exclusively stock alien plants (pers. obs.). Many 

people see their gardens as highly visible extensions of their homes, and are
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known to be influenced by what neighbours plant (Goddard eta/., 2010). Few 

choose to fill flower beds and borders exclusively with natives and indeed for many, 

native flowers only feature as a side-effect of poor weed control. Instead, garden 

owners can select from a wide range of nursery plants (Smith et al, 2006a). 

Gardening fashions come and go, and the composition of plant communities in the 

gardens of large estates is unlikely to resemble that of previous times unless an 

attempt at historical planting is made (e.g. certain beds within the gardens at Kirby 

and the small Elizabethan garden at Holdenby). Although earlier planting regimes 

in estate gardens were also likely to contain many aliens (early plant exploration 

and importation was often initiated and Financially underpinned by wealthy 

landowners, Fisher, 1989), today head gardeners have access to broadly the same 

plants as those available to the general public. The increasingly common activity of 

opening country-house gardens to the public adds renewed vigour to the desire to

conspicuously exhibit complex planting schemes containing intriguing alien 

elements.

Notwithstanding the high proportion of alien plants available, flower-visitors do not 

appear to prefer native plants over their alien neighbours in mixed planting 

environments. Results of a chi-square test of association revealed that the number 

of alien and native plants visited by insects did not depart significantly from the 

number of alien and native plants available (Table 4.5).

Overall, the domination of large rural gardens by alien plant species does not 

appear to act as a barrier for flower-visiting insects looking to feed there. For 

example fourteen species of bumblebee were recorded across all sites, 

representing 58% of the UK total and 93% of those potentially encountered 

according to current distribution maps (BWARS, 2012 and Appendix VI). In fact, 

the high richness of insects recorded suggests that the presence of aliens elevates 

the importance of these sites as rich habitats for pollinating insects.

A limitation of the 2010 fieldwork was that the relative abundance of native and 

alien flowers was not assessed. Also, the assignment of alien or native status to 

plants followed the definitions given by Stace (1997). This does not take into 

account plants have become naturalised or are so morphologically similar to their 

native counterparts that they may be indistinguishable to flower visitors. An

example of this is the cultivar Lamium maculatum (an alien according to Stace) 
and the native L. album.
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Highly visited plant families

Certain plant families emerged as more highly visited than others based on the

visitation preference index. Only Session 4 did not have distinct plant families that

achieved higher than expected visitation rates. There was little congruence across

the seasons with only two families (Asteraceae and Lamiaceae) appearing as highly

visited in more than one sampling session (Figures 4.7, 4.8, 4.9 and 4.10). Two

plant elements, Centaurea montana and Taraxacum officinale (both Asteraceae),

appeared in two sessions, but the general rule was for different plant elements and

families to replace others in importance as the season progressed (Table 4.7).

Although a long tail of singletons (plant elements occurring at only one garden in

any session) was the rule, the fact that many flowering plants favoured by insects

appeared in five or more gardens suggests a level of plant resource homogeneity 

across sites.

In categorising the elements within the most visited families according to both 

colour and flower morphology, a picture emerges of highly visited early spring 

flowers being a mixture of alien and natives that are frequently lilac or blue in 

colour, and tubular in shape, e.g. Pulmonaria sp. and Glechoma hederacea. As the 

season progresses, increasingly more open flowers are preferred from a range of 

colours with a greater emphasis on alien species. A likely explanation for this is the 

phenology of the insect visitors recorded. Bumblebees (especially long-tongued 

species) and solitary bees such as Anthophora plumipes are in flight early in the 

year and are able to exploit resources from a variety of tubular flowers. Both 

appear to favour blue/lilac plants in spring (pers. obs.). Later in the year, as the 

diversity and abundance of hoverflies and butterflies increases, the diet breadth of 

visitors expands and easily alighted flowers with open resources are preferred.

Taraxacum officinale (dandelion) is an interesting example of this 'open-flower' 

group. Dandelions generally appear in early-spring and are known as a 

'cornucopian' flowers (Kevan and Baker, 1983) as they offer copious quantities of 

nectar and pollen and can attract pollinators from nearby plants (Fontaine et al., 

2008, Munoz and Cavieres, 2008, Lazaro and Totland, 2010). They are 

cosmopolitan weeds that are little tolerated by gardeners who frequently eliminate 

them with systemic herbicides (pers. obs). Despite their ongoing removal, the 

current study found that where dandelions were allowed to persist, they were a 

much visited plant. In the 2010 field season 15 hoverfly, five bumblebee, nine 

solitary bee and eight butterfly and day-flying moth species, as well as the 

common honey bee, were recorded visiting them. Across the two sampling years 

(2010 and 2011) 41 flower-visitor species were recorded visiting this plant element 

(data not presented). The flowers appeared to be particularly favoured both early
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and late In the year (Table 4.7) when forage quantity and quality elsewhere in the 

gardens may have been at a premium. In Session 4 they were visited at more than 

50% of the properties where they occurred (data not presented). In gardens that 

are routinely managed to a high level, e.g. Coton Manor, T. officinale was 

conspicuous by its absence.

A recommendation arising from this work is that, balanced with the functional

needs of a garden, patches of grass (including lawns) should be left unmowed (or

at least mowed less frequently) early and late in the season to provide additional 

forage for flower visitors.

The results of this work on highly visited flower families do not serve as an

exhaustive guide to which specific plants should be included in a garden. Rather

they act as a reference for land managers, head gardeners and institutions such as

The National Trust and English Heritage, who may wish to consider whether the

green spaces in their charge are serving biodiversity in the most environmentally 

profitable way.

Connectance

The connectance values revealed different results depending on the scenario used 

(see Methods above). Under Scenario 1 (whereby only those plants recorded as 

interacting with flower-visitors were considered), the median connectance value for 

Kirby was found to be significantly higher than that of the other properties (Figure 

4.11). Under Scenario 2 (where all plants in the sampled area were included,

regardless of whether they were visited) no differences in median connectance 

values were observed (Figure 4.11).

Although the shift from significance in Scenario 1 to non-significance in Scenario 2

is most likely a function of network size - connectance is known to decrease as

network size increases (Jordano, 1987, Santamaria and Rodriguez-Girones, 2007,

Bluthgen et a!., 2008 and Figure 4.12), it raises questions about which scenario is 

most informative.

To my knowledge, authors reporting connectance values have only performed 

calculations according to Scenario 1, e.g. Jordano (1987) and Memmott and Waser 

(2002). This may be because sampling involving pollinators and plants is routinely 

focussed on a specific insect or plant species, with little or no consideration given 

to non-target plant elements in the surrounding area (e.g. Potts et a\., 2004). The 

exclusion of plants that are available (but not visited) when calculating
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connectance could be seen to undermine the very meaning of the metric: 

'Connectance is the number of pair-wise interactions expressed as a fraction of the 

total number of interactions possible' (Winemiller, 1989, p.960). Although in 

practice it is not possible to census everything at a site (Magurran and McGill, 

2011), a regime that fully samples certain patches to include all plants available is 

desirable (Thompson et al.f 2004). By considering plants that are visited versus 

those that are available (including sub-categories of whether these are alien or 

native), a better understanding of community interactions can be gained. In the 

case of gardens, this can help increase our knowledge about how these areas 

interact with the wider landscape (Smith, 2006a).

As the major limitation of connectivity is its sensitivity to sampling effort, and 

therefore matrix size (Bluthgen eta/., 2008, Banasek-Richter etal., 2009) direct 

comparison of absolute connectance values with those of other studies as in 

Tarrant (2010) was not deemed appropriate.

Generality, vulnerability and linkage density

The mean number of plants that flower-visiting insects interacted with was higher 

than the mean number of insect species that visited each plant (generality 4.5 ± 

3.6 versus vulnerability 3.6 ± 1.0, data not presented). Alarcon (2010) found this 

situation was reversed for networks in meadows within pine forests in the USA 

(mean generality value = 2.39, mean vulnerability = 8.33). Large generality values 

indicate that flower-visitors connect with a diverse range of plants (Alarcon, 2010). 

The difference in generality and vulnerability values between the current study and 

that of Alarcon (2010) may reflect the underlying habitat type and therefore floral 

availability. In large rural gardens many flowering plants are present, and 

generalists such as hoverflies may visit a wide selection of these. In the Alarcon 

study the number of pollinator species was typically three to four times greater 

than the number of plant species, a factor that could limit generality values. In the 

current study some sessions occasionally had higher numbers of pollinators than 

plants, as per Alarcon's study sites, but no consistent pattern emerged. A mean 

linkage density value of 4.1 ± 2.0 partners per plant or animal species was 

recorded across all properties and sessions in the current study.

The suggestion above that large numbers of ubiquitous generalists such as the 

hoverfly Episyrphus balteatus (the marmalade hoverfly) may significantly alter 

patterns of generality can be considered in the context of the current study. 

Generalisation did not differ significantly between properties (Figure 4.13), 

however when considering values on a seasonal basis, Session 3 (which coincides

129



Chapter 4

with the peak occurrence of E. balteatus) had significantly higher generalisation 

values than the other three sessions (Figure 4.14 and Table 4.8). Across sessions 

two, three and four the marmalade hoverfly interacted with 194 different plant 

elements (data not presented) making it a 'super-generalist1 (Kaiser-Bunbury et 

si., 2009). This classification has also been applied to the honey bee in a network 

context,* for example Ebeling et al. (2008) found honey bees accounted for almost 

50% of visits to flowers in a German grassland setting. The super-generalist label 

for honey bees is not always appropriate however. Lazaro and Totland (2010) 

found that, despite accounting for half of all visitors, honey bees behaved as 

specialists, particularly favouring Taraxacum officinale. In the current study, honey 

bees represented only 8.1% of visitors (Chapter 3). They were not such extreme 

generalists as E. balteatus, but neither were they specialists as they interacted with 

102 plant elements (data not presented).

The increased generality observed in Session 3 (Figure 4.14) suggests that during 

summer, mutualistic webs involving flower-visitors and plant species are more 

complex. Some authors have interpreted this heightened complexity as a product 

of the higher attractiveness of an area (Ebeling et al., 2011), whilst others have 

voiced caution when invoking interpretations about generality, stating it is another 

metric that is highly sensitive to species richness and sampling effort (Tylianakis et 

a!., 2007, Banasek-Richter et al., 2009). A correlation between generalisation 

values and the size of the respective matrix for the complete 2010 field season 

found a strong positive association between the two (two-tailed Spearman's rank r 

= 0.67, n = 68, P < 0.01). Suffice to say, although Session 3 show increased 

complexity, the exact causes cannot easily be explained.

Although the current study incorporated a repeated sampling design across many

gardens, it was not without its limitations. A possible weakness is that the

quantified links represented only a single year. As flower-visitor dynamics are

known to vary between years (Herrera, 1988, Frond et al., 2010), and not all visits

result in a pollination event (Kwak eta/., 1996), extending the study to include

multiple seasons and/or pollen transport networks would be advantageous (Alarcon 
et al., 2008, Alarcon, 2010).

Nestedness

One of the aims of this chapter was to establish whether networks of flower-visiting 

insects and plants in gardens exhibited a nested structure, thus mirroring those in 

natural settings. Although the prediction was that there would be some temporal 

differences (Dupont et al., 2009), no presumption could be made that any of the
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networks would be significantly nested. The WNODF results (Ulrich, 2012) suggest 

that networks in large rural gardens do indeed exhibit nestedness. With just over 

50% of sessions emerging as significant, and all properties having at least one of 

their four sampling sessions categorised as such, it is reasonable to state that 

mutualistic links in garden ecosystems, in common with those in grasslands, pine 

forest meadows and coffee agroforests (Tylianakis eta/., 2007, Alarcon, 2010, 

Gibson et a/., 2011), generate non-random, specialist asymmetry (Figure 4.1b).

Ulrich reports on the 'substantial controversy' in the literature relating to the 

plethora of methods proposed to define, quantify and test patterns of nestedness 

(Ulrich et at., 2009). Whilst weighted metrics seem the most logical applications to 

use (and were therefore selected for this work), other researchers, such as

Vazquez et at. (2007), have suggested that abundance may be responsible for 

generating asymmetry.

In addition to analyzing the data for this study in WNODF, two other nestedness 

packages were used (data not presented): the incidence-based NODF package (the 

non-weighted version of NODF, Ulrich, 2012) and the abundance-based WINE 

(Weighted-Interaction Nestedness Estimator) package (Galeano et at., 2009), 

performed in R (R Development Core Team). The former suggested that 72% of 

the 68 networks were nested (c.f. 51% using WNODF, Table 4.9). The second 

package (WINE) also inflated the number of significantly nested networks (pers. 

obs. and Almeida-Neto and Ulrich, 2011), but posed a more significant problem for 

comparison purposes as matrix size meant reliable results could not be provided 

for almost 20% of networks examined. In contrast to this, Gibson ef at. (2011) 

recorded that weighted and unweighted metrics both returned similar numbers of 

nested networks (although the datasets examined contained more pollinators than 

plants and the mean matrix size was just under half that of the current study, 809 

± 601 versus 1,555 ± 1207).

From a temporal perspective, Sessions 2 and 4 both had a higher proportion of

significantly nested networks than either Sessions 1 or 3 (Figure 4.15), although a

chi-square test of association did not find these to be significantly higher. This

suggests that whilst novel ecosystems such as large rural gardens mirror natural

environments in terms of exhibiting nested patterns, they do not show a pattern of 

temporal variation.

The controversy in the literature highlighted by Ulrich et at. (2009) also extends to 

the interpretation of nested patterns and cuts across both natural and novel
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ecosystems, raising two questions. Firstly, if, according to James eta/. (2012), 

greater nestedness does not imply community persistence, then what do habitats 

containing networks with many core generalists actually signify? Secondly, if the 

notion that networks are cohesive and provide pathways for rare species to exist 

(as well as offering responses in the face of perturbations) is now held in 

contention (Bascompte et a/., 2003; Bluthgen et a/., 2008), then what are their 

real value7 The answers to these questions represent further work that goes 

beyond the scope of this thesis.

Conclusions

The findings of this chapter can be summarised as follows:

• A high diversity of plants exists in the gardens of large English country
houses. More than a fifth of the world's plant families appeared in the 17 
gardens examined.

• A strong link exists between flower resources and the diversity of insects 
that visit them. Flower-visitor species number and abundance both 
increased as flower diversity increased.

• Despite a wide variety of plants being available, only a subset was visited.
In early spring a greater proportion of the flowers available were visited 
than at any other time.

• Approximately 68% of plants in large rural gardens are 'aliens'. A figure of
70% has been recorded in urban gardens from Mexico City to Scotland
(Smith et al.f 2006a, Loram et al., 2008b). This is the first inventory taken
for rural gardens and it returns a remarkably similar level of non-native 
resources.

• Flower-visiting insects in novel ecosystems such as rural gardens 
demonstrate no preference for native plants over aliens.

• Few ubiquitous plant families showed high visitation rates in more than one 
sampling session. Asteraceae and Lamiaceae were the exception to this. In 
general, ubiquitous, frequently visited early spring flowers were blue to lilac 
in colour and tubular in shape. As the season progressed more open flowers 
were preferred.

• Dandelions emerged as important components of the diets of many different 
insect guilds. 41 species were recorded visiting them. There is the potential
for estate managers to leave more of this resource available, particularly 
early and late in the season.

• Connectance values, calculated according to plants visited and those 
available, offer two separate measures of the realised links between flower 
visitors and plants. Under Scenario 1 (plants visited), the garden at Kirby 
had a significantly higher mean connectance value than others.
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• High connectance values are associated with small matrix size. Kirby
networks are characterised by low numbers of insects and plants. This
generates small interaction matrices and therefore potentially high 
connectance values.

• Insects interacted with more species of plant than plants did with insects. 
High generality values signify greater complexity in a network. The high 
generality observed in sampling session 3 may be a product of the high 
number of plants and insects recorded.

• Half of all the networks examined were found to be significantly nested. 
Assessing the implications for this result is problematic as the topic is a 
major source of controversy.

In summary, large rural gardens offer an array of nectar and pollen to flower- 

visiting insects. The results of this study suggest that the predominance of alien 

plant species is no barrier to extensive use by flower visitors. Plant species richness 

emerges as being positively correlated with insect richness and abundance, and it 

is tempting to invoke a causal link between the two. The reality is that many other 

factors that affect both variables may be at play. These include garden 

management and its effect on the availability of nesting materials, as well as 

landscape-scale effects (Steffan-Dewenter and Schiele, 2008, Frund eta/., 2010). 

The latter will be explored further in the next chapter.
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Chapter overview
In this chapter flower-visitor diversity is explored in the context of landscape-scale 
and within-garden factors, with both spatial and temporal aspects considered. The 
response of individual insect groups is examined, as well as differences within a 
single group based on nest-site preferences.

Introduction
Ecosystem service provision can be altered by both local and landscape-scale 

factors (Haenke et at., 2009). Agricultural intensification is one of several 

anthropogenic changes that can have profound effects on biodiversity and in 

particular on pollinating insects (Carre et al.t 2009, Carvell et a i, 2011). Changes 

resulting from agricultural intensification include increased production on new or 

existing areas of land, and the decline and fragmentation of semi-natural habitats 

(Klein eta/., 2007, Kremen eta/., 2007 and Henle eta/., 2008). Taken in isolation 

or combination these factors have the potential to disrupt the ecosystem service of 

pollination by affecting flower-visitor presence and abundance, with implications for 

both wild plants and crops (Klein eta/., 2007).

Understanding how different components in the landscape drive the richness and 

diversity of beneficial flower-visiting insects has received considerable interest in 

the past (Steffan-Dewenter eta/., 2002, Goulson eta/., 2010). Remote sensing 

techniques, the use of digital maps, and the development of multivariate analysis

software have supported this enquiry (Sdderstrom eta/., 2001, Leps and Smilauer, 

2003, Schaffers eta/., 2008).

Insect interactions with the wider landscape

Flower-visiting insects are known to perceive and respond to landscape structure in

different ways according to their dispersal abilities and foraging range (Steffan-

Dewenter eta/., 2002). Foraging distance is linked to body size, meaning that

bumblebees typically fly further than solitary bees (Greenleaf et a/., 2007).

Different responses to landscape context also arise because of variation in life

history traits. As a result, central place foragers such as bumblebees and solitary

bees (which gather food and take it back to a central place, the nest) behave

differently to butterflies and hoverflies, which visit flowers to feed, but search out

specific (often different) plants or locations for egg laying (Hegland and Boeke, 
2006).
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In the United Kingdom, 70% of the total land area available is used for agriculture 

(Defra, 2011). In recognizing that intensively farmed areas can potentially be 

hostile environments for pollinators, agri-environment schemes (which include 

financial rewards for farmers who plant flower-rich strips) have been introduced in 

Europe and North America (Fuentes-Montemayor et a/., 2011). As a consequence, 

a strong research focus has developed to assess the value of these schemes for 

beneficial insects (Haenke etal., 2009, Carvell eta!., 2011, Fuentes-Montemayor 

et a!., 2011). Emerging from such studies is the view that generalized 

interpretations about pollinator responses to landscape-scale factors are rarely 

appropriate as different groups and guilds respond in different ways (Jauker et a!., 

2009). In addition, it has been suggested that such interpretations can lead to 

'erroneous recommendations to landscape planning and conservation' Jauker et al. 

(2009, p.553). Instead, insect responses to landscape variables should be assessed 

using individual groups and by incorporating several spatial scales (Jauker et al., 

2009).

Despite the obvious benefits of considering a range of insect groups usually only 

one or two are the focus for research. For example, Schweiger et al. (2007) and 

Flaenke etal. (2009) considered only hoverflies, Fuentes-Montemayor etal. (2011) 

recorded farmland moths, and Steffan-Dewenter et al. (2002) and Carre et al. 

(2009) analyzed bumblebees, solitary and honey bees. Exceptions to this include 

Soderstrom etal. (2001), Hegland and Boeke (2006) and Schaffers etal. (2008), 

all of which considered multiple (but different) groups.

Even when a range of taxa are considered, changes in temporal responses to wider 

landscape factors are rarely considered, with many studies collecting data over 

only a few months. For example Haenke et al. (2009) and Jauker et al. (2009) 

gathered data in only June and July, but see Hatfield and LeBuhn (2007), who 

considered the seasonal aspect of bumblebee occurrence. To my knowledge no 

published accounts exist of flower-visitor responses to landscape-scale factors 

involving multiple groups over multiple spatial scales which also take a temporal 

perspective. On this basis it is predicted that the insect groups observed in 

large rural gardens will respond to landscape variables in different ways 

across the season.

Gardens within the wider landscape

Gardens are known to support a diverse range of insects (Owen, 2010). As 

discussed in Chapter 3, much knowledge is derived from work assessing urban and 

suburban gardens, with virtually nothing known about their rural counterparts.
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Gardens often support a higher density of bumblebee nests than neighbouring 

semi-natural environments (Osborne et al., 2008b). Additionally, they emerge as 

the land-use class exerting the greatest effect on the success of Bombus lapidarius 

and B. pascuorum nests (Goulson et a/,, 2010). Notwithstanding the potential 

benefits rural gardens may bring by supporting pollinators through provision of 

forage and nesting resources, work to assess whether these insects might spill-

over into neighbouring agricultural areas is rare. The research of Samnegard et at. 

(2011) to assess the effect of distance from rural gardens on the abundance of wild 

bees and the pollination success of a single plant Campanula persicifolia is a 

notable exception to this.

The choice of spatial scale

Selecting the appropriate landscape-scale depends on the insect group of interest. 

As indicated above, this can relate to both insect body-size and life history traits. 

Hadley and Betts (2012, p.535) note that 'landscape spatial scale must be justified 

in biological terms and should be relevant to daily foraging movements and large 

spatial-scale population dynamics'.

With the exception of honey bees, the foraging range of bumblebees is better 

described than most other groups, although repeat studies exist for only a few 

species (Osborne et al., 2008a). Assessments of bumblebee flying distance 

capacity have been made using several methods including homing experiments, 

pollen analysis, mark-release-recapture techniques and harmonic radar (Osborne 

et al., 1999). Bumblebees generally cover between several hundred metres to 

several kilometres in search of food (Morandin and Winston, 2006, Westphal et al., 

2006). Solitary bees, on the other hand, may only forage within a few hundred 

metres (Morandin and Winston, 2006, Haenke ef a/., 2009, Jauker et al., 2009).

It is predicted that bumblebees and solitary bees will respond to 

landscape-scale variables at different spatial scales. In particular, it is 

expected that proportions of landscape components within larger circles 

around the centre of sampling sites will offer a better explanation for 

observed bumblebee richness and abundance than smaller circles.

Many moths disperse over only short distances (Fuentes-Montemayor et al., 2011). 

Although some butterfly species are known to migrate many kilometres, little is 

known about how most species respond within smaller landscape scales (Chinery, 

1989). Fuentes-Montemayor eta/. (2011) noted that both micro and macro moths 

showed strong responses to landscape variables at a 250m scale from a centroid, 

whilst Ockinger et al. (2009) focussed on the importance of habitat quality
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regardless of scale for both nectaring and ovipositing behaviour. It is predicted

that butterflies and day-flying moths will respond to landscape-scale

variables in less predictable ways than bees as they are not central place

foragers, and that finer spatial scales may be more important than larger 
scales.

In parallel with butterflies and day-flying moths, hoverflies also utilise the 

landscape in a different way to bees. Their response may be further complicated by 

the wide variety of larval feeding preferences that exist (Rotheray and Gilbert,

2011 and Chapter 3 of this work). Additionally, hoverflies exhibit a diverse range of 

body sizes, are often highly mobile, and have excellent vision (Haenke et a i,

2009). Added to this is the presence of migrant species in summer, such as 

Episyrphus balteatus and Scaeva pyrastri, which can occur in great numbers 

(Sutherland et a/., 1999, Dipterists Forum, 2012). Haenke et al. (2009) note that 

hoverflies concentrate on the most rewarding resources available in the landscape, 

particularly as the proportion of arable land increases, and that these effects are 

more noticeable at spatial scales of 0.5 - 1km rather than at 2km or 4km. It is 

therefore predicted that the response of hoverflies to plant resources in 

gardens will be stronger than individual land-use categories in the wider 

landscape. If a landscape-scale effect is present, this is likely to be 

revealed within smaller circles.

The competing forces of landscape-scale and within-garden factors

In Chapter 4 the species richness and abundance of flower-visitors was noted to be 

significantly correlated with the richness of plants available (Figures 4.2 and 4.3). A 

key finding emerging from Chapter 4 is that whilst plant richness offers a partial 

explanation for the richness and abundance of the insects observed, other 

landscape-scale factors are also likely to be involved. It is predicted that 

landscape-scale factors will be more important for large-bodied central 

place foragers such as bumblebees, whilst local plant assemblages make 

take priority for hoverflies and butterflies.

For insect groups with short foraging ranges (such as solitary bees), local 

landscape factors relating to nest-site suitability may play an important role 

alongside plant species richness and nearby landscape characteristics. Partitioning 

an insect group according to nesting characteristics may reveal more than by 

analyzing the group as a whole (Krauss eta/., 2003). It is predicted that 

ground-nesting and cavity-nesting solitary bees will respond differently to 

environmental factors.
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Analyzing complex datasets

Various statistical techniques are available for assessing the response of insect 

species to multiple environmental factors. These include multiple regression, 

general linear models and generalised linear and mixed effects models (Shaw, 

2003). These methods are popular when species richness or abundance data are 

bulked across samples, giving a single dependent variable to test against multiple 

causative factors e.g. Hatfield and Lebuhn (2007), Jauker eta/. (2009) and Carvell 

eta/. (2011). If, however, the analysis benefits from multiple dependent variables 

being included, then ordination using direct gradient analysis such as redundancy 

analysis (RDA) or canonical correspondence analysis (CCA) can help combine 

numerous species with many environmental variables (Jongman eta/., 1995, Leps 

and Smilauer, 2003). These multivariate methods benefit from the lack of 

assumptions made about the distribution of the species abundance values, as well 

as giving good results when only patchy data are available (Jongman eta/., 1995, 

Leps and Smilauer, 2003). In addition, tests for significance (Monte Carlo 

permutations) can be calculated together with strong visual representations 

obtained when ordination diagrams are produced (Ter Braak and Smilauer, 2002).

Aims
The aim of this chapter is to consider how spatial and temporal variation in local 

and landscape-scale factors affect flower-visitors in the gardens of seventeen large 

English country houses. Specifically the chapter seeks to answer the following 

questions:

1. Do insect groups respond to landscape variables at different spatial scales?

2. Are seasonal patterns associated with responses to landscape variables 
discernible?

3. Are some flower-visitor groups more responsive to landscape variables than 
others, regardless of scale?

4. Which is the more important driver for flower-visitor presence in gardens: 
landscape composition or plant richness?

5. Do life history traits, such as nest site preferences, provide insights into 
which local-scale factors have the greatest influence on the composition of 
solitary bee communities in walled gardens?
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Methods

Study sites and timing of sampling

The gardens of 17 properties in four counties in lowland Central England were used 

for the study. In 2010 all 17 were sampled four times, with a subset of nine walled 

gardens sampled three times in 2011. Sampling took place between April and 

September in both years. Full details of the sites and methods for assessing flower-

visitors and plant richness and abundance are given in Chapter 2 (2010 and 2011 

field seasons).

Landscape-scale variables 

2010 data (17 properties)

Landscape-scale variables were assessed using digital Ordnance Survey 

mastermaps (EDINA, 2012) overlain with the 2007 Countryside Survey Landcover 

vector map (NERC, 2011) in ArcGIS software (ESRI, 2011). The centre of each of 

the seventeen houses was identified and concentric circles of 750m, 1,500m and 

3,000m radius drawn around each house point. The areas within each of the three 

circles categorised as 'arable and horticulture' (AH), 'broadleaved woodland' (BLW), 

'built up areas and gardens' (BUG), 'fresh water' (FW), 'improved grassland' (IG) 

and 'low-productivity grassland' (LPG) were calculated. An example of a single site 

overlaid with circles of different radii and individual land cover parcels is given in 

Figure 5.1. The values in the category 'built up areas and gardens' were adjusted 

down in each case by removing the area of garden sampled. The purpose of this 

was to reveal whether the presence of other gardens nearby had an effect on the 

insect diversity observed at the properties sampled. For each spatial scale the 

percentage contribution of each of the six categories was calculated. Percentages 

were arcsine transformed before use in analyses (Sokal and Rohlf, 1981).
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Figure 5.1 Use of digital maps to assess land cover at different spatial scales using 
ArcGIS software (ESRI, 2011). A: For illustration, two circles of radii 750m (pink) 
and 1,500m (blue) are shown around the centre of Canons Ashby House (red 
point). B: The same two circles are overlaid with the Countryside Survey 
Landcover map (NERC, 2011), with each land parcel attributed to a land use 
category. Scale bar = 750m.

2011 data (9 walled gardens)

Landscape-scale factors were quantified by creating two concentric polygons at 

500m and 750m from the perimeter of the wall at each garden, using the same 

digital maps and software used for the 2010 data. Within each of the two polygons 

the total land categorised as 'arable and horticulture', 'broadleaved woodland' and 

'improved grassland' was summed and calculated as a percentage. Percentages 

were arcsine transformed as above.

Within-garden variables

2010 data

Plant richness (assessed as the number of plant genera available in each garden at 

each of four sampling sessions) was used as the within-garden variable for the

2010 flower visitor data (see Chapter 4, Table 4.1).

2011 data

Within-garden data for the 2011 flower-visitor dataset comprised plant richness 

(assessed as the log-transformed number of plant genera available in each walled 

garden at each of three sampling sessions) as well as blossom cover (log- 

transformed values of the area of flower resources available in m2 - see Chapter 2, 

2011 field season). In addition, the percentage of beds and borders within each
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walled garden was calculated by using OS Mastermaps (EDINA, 2012) overlain with 

Bing Aerial maps in ArcGIS software (ESRI, 2011). Also calculated was the 

combined area of the south and east facing walls within each garden. This was 

done by measuring out wall lengths using a hand-held GPS device (Garmin Etrex 

10) and calculating heights with a clinometer (Silva ClinoMaster).

Data analysis (2010 data)

The relative contribution of landscape-scale and local-scale variables to flower- 

visitor species richness was assessed using the multivariate analysis software 

Canoco Version 4.52 (Ter Braak and Smilauer, 2011). For the 2010 data, flower 

visitors were assessed in each of the four sampling sessions according to four 

groups: bumblebees (BB), butterflies and day-flying moths (BDM), hoverflies (HF) 

and solitary bees (SB). The sampling sessions were treated separately to 

incorporate differences in plant species richness across the season.

Exploratory analysis

To establish which method of direct gradient analysis to use (linear or unimodal), 

gradient lengths were assessed using detrended correspondence analysis (DCA) on 

log-transformed (n + 1) dependent data (Leps and Smilauer, 2003). As the 

gradient lengths were all short (considerably less than 4.0 SD recommended for 

unimodal techniques), the linear RDA method was the most appropriate (Ter Braak 

and Smilauer, 2002).

Exploratory RDAs were performed on each insect group for each session at each of 

the three spatial scales (n = 48). For each RDA the environmental variables 

assessed were the six landscape categories (listed above), together with the 

number of plant genera available. The response (dependent) variables were the 

log-transformed (n + 1) number of individuals recorded for each insect species at 

each property. Automatic forward selection was used to identify environmental 

variables making the greatest contribution. To test the significance of these 

variables the software was set to run 499 Monte Carlo permutation tests. These 

tests shuffle the environmental variables and attribute them at random to any of 

the dependent variables. The null hypothesis is that observed variation in the 

dependent variable is independent of the underlying environmental variables. The 

null hypothesis is rejected for environmental variables returning statistically 

significant results (P < 0.05).

Redundancy analysis at specific spatial scales

For each insect group and sampling session (n = 16) the spatial scale with the 

highest amount of variability explained by the first two axes, i.e. the cumulative
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percentage explained by the first two eigenvalues, was selected as per Kleijn and 

Langevelde (2006). These sessions were further examined by performing repeat 

RDAs (this time without forward selection, with the results plotted as ordination 

diagrams using CanoDraw (Ter Braak and Smilauer, 2011). Due to space limitation 

only ordination diagrams for significant RDA models are presented.

Variance partitioning

To explore the possible overlap between the six landscape categories used in the 

2010 data analysis (grouped together and denoted as in Figure 5.2) and the 

within-garden variable 'number of session-specific plant genera available' (X: in 

Figure 5.2), the variance partitioning procedure described by Borcard eta/. (1992) 

was used. This method returns the individual effect and overlap of environmental 

variables split into two natural subsets. The percentage contribution of a subset 

(e.g. A in Figure 5.2) is assessed by calculating the difference between the 

marginal effect of XY and that of its conditional effect when the second subset X2 is 

accounted for. This is achieved by re-running the redundancy analysis and noting 

the sum of the eigenvalues of all canonical axes for X x measured when X2 is 

considered as a covariable. The procedure is reversed to obtain the percentage 

contribution represented by B. The overlap (C in Figure 5.2) is obtained by 

subtracting the sum of A and B from the amount of variability obtained from an 

ordination when both Xx and X2 are combined (without the use of covariables). The 

variance partitioning is completed by placing the results in the context of the 

unexplained (residual) variance (D) (Leps and Smilauer, 2003).
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Figure 5.2 Venn diagram illustrating the partitioning of variance in the flower- 
visitor group data according to the contribution of two subsets of environmental 
variables (Xj = landscape-scale variables and X 2 = within-garden plant genera in 
the session of interest) using the methods of Borcard et at. (1992). A represents 
the variance explained by X\ usirg X 2 as a covariable, with B showing the reciprocal 
position. C is shared variance. D represents unexplained (residual) variance. After 
Leps and Smilauer (2003).

Data analysis (2011 data)

Response of an insect group according to differences in nesting biology

To assess whether separation of a group of insects based on their nesting biology 

delivers insights into local-scale effects, solitary bees recorded within the nine 

walled gardens in 2011 were used. Due to the low number of solitary bees 

recorded in the third sampling session only sessions one and two were used. Bees 

in each session were classified according to whether they were either ground or 

cavity nesting (BWARS, 2012). The response of each nesting group (log- 

transformed n + 1 data) to three landscape-scale and four within-garden factors 

was assessed using stepwise forward multiple regression. Bed and border area 

percentages were arcsine transformed before use in analyses. Standard checks on 

the results were made according to Field (2009).
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Results

Overview of landscape variables

The three landscape-scale categories accounting for the highest percentage of land 

use for 2010 and the same three variables for 2011 are quantified in Table 5.1. 

Depending on year and spatial scale the two highest categories were for arable and 

horticulture (AH) and improved grassland (IG). The mean values for the within- 

garden variables for the two years are given in Table 5.2.

Table 5.1 Landscape-scale variables for the two sampling seasons (2010 and 
2011) showing the three land-use categories accounting for the highest percentage 
of area within concentric polygons around the properties. AH = arable and 
horticulture, BLW = broadleaved woodland, IG = improved grassland. 1 Area based
on a defined radius from the main house (17 properties); 2 area based on a defined 
distance from the outer wall of nine walled gardens.

2010
Radius AH BLW IG
of
area1

(%) (%) (%)

mean SD range mean SD range mean SD range

750m 40.2 14.0 15.6-63.6 9.4 7.6 1.0-23.0 45.5 11.3 26.2-67.7
1500m 55.7 13.9 24.8-81.1 6.7 4.1 1.0-13.6 30.5 9.6 13.5-43.3
3000m 57.9 9.0 41.8-76.7 5.3 4.0 1.9-17.1 28.7 7.1 17.4-43.0

2011
Radius AH BLW IG
of
area2

(%) (%) (%)

mean SD range mean SD range mean SD range

500m 31.4 17.3 8.7-56.4 13.8 10.2 3.3-30.5 50.3 15.1 30.9-81.7
750m 43.0 18.0 15.2-69.1 10.2 6.9 2.4-20.2 42.0 13.0 22.1-63.8
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Table 5.2 Within-garden variables for the two field seasons (2010 and 2011) 
showing the mean number of plant genera for Sessions 1 - 4  (2010 field season) 
and mean number of plant genera and mean blossom density for Sessions 1 and 2 
(2011 field season). The mean area of beds and borders and the mean combined 
area of the south and east facing walls are also given for the 2011 field season.

2010

Number of plant genera
Session 1 Session 2 Session 3 Session 4

mean
SD

range

2011

Number of plant genera

25.9
9.0

10.0-42.0

Session 1

57.1
19.0

14.0-91.0

Session 2

57.1
23.2

12.0- 88.0

46.4
20.0

14.0-84.0

Session 3 Session 4

Blossom cover (nr)

mean
SD

range

13.8
8.2

8.0-34.0

35.4
22.1

10.0-83.0

mean
SD

range

Beds and borders 
(% of walled garden)

13.9 
15.1 

0.8-34.4

All sessions

49.6
57.9

1.2-175-2

mean
SD

range

18.0
22.8

0.2-75.1

Combined area of the 
south and east facing 
walls (m2)

mean
SD

range

All sessions

350.0
148.8

115.2-570.0

Exploratory redundancy analysis

The results of the redundancy analysis for each group per session according to 

each of three spatial scales for the 2010 data are given in Table 5.3. The shaded 

cells represent the highest variation explained by the first two axes and are 

therefore the spatial scale that is deemed to have the most influence on the 

diversity of flower-visitors observed.
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Chapter 5

Redundancy analysis at specific spatial scales

Using the results in Table 5.3, secondary RDAs were performed on the landscape

scale showing the most explained variance. Full details of the significance of the

first and subsequent axes, together with correlations between environmental

variables and axes 1 and 2 are given in Table 5.4. Ordination diagrams for the five

significant models (bumblebees - Sessions 1, 2 and 4 and Session 3 for both

butterflies and day-flying moths and hoverflies) are presented in Figures 5.3, 5.4, 

5.5, 5.6 and 5.7.

Figure 5.3 Ordination diagram created after redundancy analysis using the 2010 
Session 1 bumblebee data at a 1,500m spatial scale. Red arrows indicate 
environmental variables, blue indicate individual species. Species names are 
composed of Bom (Bombus) plus three or four letters from the species, e.g.
Bom J a p  = Bombus lapidarius. Full species names are listed in Appendix VI.

Figure 5.3 shows that the first ordination axis is positively correlated with an 

increasing area of land categorised as 'built up areas and gardens' (BUG) and 

'broadleaved woodland' (BLW) and negatively correlated with an increasing area of 

'low productivity grassland (LPG), whilst the second is positively correlated with an 

increasing area of 'arable and horticultural' (AH) land and 'fresh water' (FW). The
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first axis explains 30% of the variation in the bumblebees observed (F = 3.83, P =

<0.01). The sum of all canonical axes (including those not shown) explains 57% of

variation (F  = 1.68, P = 0.03). Bumblebee abundance in early spring is positively

correlated with an increased number of plant genera available in the areas sampled

as well as responding positively to the landscape variable 'arable and horticulture'.

As the latter increases, some species of bumblebee show an increased presence in 

gardens.

Figure 5.4 Ordination diagram created after redundancy analysis using the 2010 
Session 2 bumblebee data at a 3,000m spatial scale. Red arrows indicate 
environmental variables, blue indicate individual species. Species names are 
composed of Bom (Bombus) plus three or four letters from the species, e.g. 
Bom jap  = Bombus lapidarius. Full species names are listed in Appendix VI.
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In the ordination diagram describing the response of bumblebees in Session 2 

(Figure 5.4) the first axis is positively correlated with an increasing area of land 

categorised as broadleaved woodland (BLW) and negatively correlated with 

'improved grassland' (IG), whilst the second is also positively correlated with an 

increasing area of BLW and negatively correlated with 'arable and horticulture'

(AH). The first axis explains 27% of the variation in the bumblebees observed (F = 

3.26, P — 0.05). The sum of all canonical axes (including those not shown) explains 

59% of variation (F = 1.82, P = 0.02). Bumblebee abundance in early summer is 

positively correlated with increased broadleaved woodland and the number of plant 

genera available, as well as responding negatively to both improved and low 

productivity grassland. As arable and horticulture' land use increases, some 

species of bumblebee show an increased presence in gardens.

In Figure 5.5 (bumblebees in Session 4), the first axis is positively correlated with 

an increase in the number of plant genera available in the sampled area, whilst the 

second is positively correlated with an increase in 'arable and horticulture' (AH) and 

negatively correlated with 'broadleaved woodland' (BLW). The first axis explains 

48% of the variation in the bumblebees observed (F = 8.26, P = 0.03). The sum of 

all canonical axes (including those not shown) explains 71% of variation (F = 3.07,

P = 0.008). Bumblebee abundance in late summer is positively correlated with an 

increase in the number of plant genera (Plt_gen) available and responds negatively 

to increasing amounts of AH and BLW.
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Figure 5.5 Ordination diagram created after redundancy analysis using the 2010 
Session 4 bumblebee data at a 1,500m spatial scale. Red arrows indicate 
environmental variables, blue indicate individual species. Species names are 
composed of Bom (Bombus) plus three or four letters of the species, e.g. Bom Ja p  
= Bombus lapidarius. Full species names are listed in Appendix VI.

For butterflies and day-flying moths in Session 3 (Figure 5.6), the first axis is 

positively correlated with an increase in the landscape variable 'improved 

grassland' (IG) and negatively correlated with land categorised as 'arable and 

horticulture' (AH), whilst the second is positively correlated with an increasing area 

of'fresh water' (FW) and negatively correlated with 'broadleaved woodland' (BLW). 

The first axis explains 23% of the variation in the butterflies and day-flying moths 

observed (F = 2.69, P = 0.01). The sum of all canonical axes (including those not 

shown) explains 55% of variation (F = 1.59, P = 0.01). Butterfly and day-flying 

moth abundance in summer is positively correlated with an increase in grassland 

(improved and low productivity) and increasing amounts of broadleaved woodland. 

Some species are negatively affected by, or invariant to, an increase in the area of 

land described as arable and horticulture.
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Figure 5.6 Ordination diagram created after redundancy analysis using the 2010
Session 3 butterfly and day-flying moth data at a 750m spatial scale. Red arrows
indicate environmental variables, blue indicate individual species. Species names
are composed of the first three letters of the genus followed by the first three or
four of the species, e.g. Pie_rap = Pieris rapae. Full species names are listed in 
Appendix VI.

Figure 5.7 shows the response of hoverflies in Session 3 to landscape variables.

The first axis is positively correlated with an increase in the landscape variable 

'improved grassland' (IG) and negatively correlated with the land category 'arable 

and horticulture' (AH), whilst the second is positively correlated with an increasing 

area of IG and negatively correlated with the number of plant genera in the area 

sampled (Plt_gen). The first axis explains 39% of the variation in the hoverflies 

observed (F = 5.72, P = 0.03). The sum of all canonical axes (including those not 

shown) explains 58% of variation (F = 1.75, P = 0.05). The presence and 

abundance of some hoverfly species in summer is positively correlated with an 

increase in land categorised as arable and horticulture as well as the number of 

plant genera in the sampled area. An increase in the amount of improved grassland

and nearby built areas and gardens negatively affects the presence of certain 

species.
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Figure 5.7 Ordination after redundancy analysis using the 2010 Session 3 hoverfly 
data at a 750m spatial scale. Red arrows indicate environmental variables, blue 
indicate individual species. Species names are composed of the first three letters of 
the genus followed by the first three or four of the species, e.g. Mya_flo = 
Myathropa florea. Full species names are listed in Appendix VI.
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Chapter 5

Variance partitioning

The results of the variance partitioning procedures for each of the significant RDAs

(plus Session 3 for bumblebees for comparison) are given in Figure 5.8. The shared

variance fraction (C) is negative for all groups in Session 3. Leps and Smilauer

(2003) state negative values are not unusual and that they simply indicate the

joint explanatory effect of the two groups of variables is stronger than the sum of 
their marginal effects.

Figure 5.8 Results of variance partitioning (Borcard et a!., 1992) for each of the 
five significant RDAs plus Session 3 for bumblebees.
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The response of ground and cavity-nesting solitary bees to environmental 
factors

The variability in the number of ground and cavity-nesting bees recorded at each 

property during Sessions 1 and 2 in 2011 is shown in Figures 5.9 and 5.10. A total 

of 256 individuals from six species were recorded in Session l, versus 132 

individuals from seven species in Session 2.
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Figure 5.9 Number of solitary bee individuals recorded in Session 1 at each walled 
garden categorised according to whether they are ground nesting (dark grey) or 
cavity nesting (light grey).

16

BOU CA CHALL EN FAR HOL KEL LAM LW

Figure 5.10 Number of solitary bee individuals recorded in Session 2 at each 
walled garden categorised according to whether they are ground nesting (dark 
grey) or cavity nesting (light grey).
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The results of four multiple regressions showing significant environmental factors 

linked to the number of solitary bees in each nesting category for each session are 

given in Table 5.5. In Session 1 the percentage area of beds and borders in a 

walled garden was a significant variable explaining the abundance of cavity-nesting

bees (P — 0.04), whilst in Session 2, the number of plant genera available 

explained the abundance of ground nesters (P = 0.02).

Table 5.5 Results of stepwise forward multiple regressions for the log-transformed 
number of solitary bees in walled gardens for Sessions 1 and 2. Only significant 
explanatory variables (P < 0.05) are shown. Degrees of freedom = 1,7 in all cases.

Nesting
type___

Cavity
nesting

Session 1

Significant 
factor (R:

Ground N.S. 
nesting

Area of
beds
(0.48)

F P 
value value

6.49 0.04

ion 2

Number of 
plant 
genera 
(0.58)

N.S.

Significant F
factor (R2) value

8.81 0.02

Discussion

The response of insect groups according to different landscape scales

As predicted, bumblebees consistently responded to landscape variables within 

circles of greater radii than other groups. The results in Table 5.3 show that the 

highest variance explained for Sessions 1 - 4 for bumblebees was in the landscape 

scales measured at radii of 1,500m and 3,000m. Bumblebees may be either: (a) 

nesting beyond the gardens and visiting to forage at flowers, or (b) nesting within 

the gardens and making use of the available resources. Whilst sampling, several 

nest locations were directly observed in transects, with their presence in other 

areas of the gardens highlighted by gardeners. Goulson et al. (2010) note that 

bumblebees favour garden settings for nest creation and that nests within gardens 

are likely to experience higher levels of survival. What is not clear is whether this 

preference for gardens is a direct response to the perceived suitability of sites for 

nest creation and foraging, or a measure of the potential inhospitality of the 

landscape beyond them (Goulson et al., 2010). As the aim of this study was not to
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establish the suitability of gardens or the surrounding area for nests, this remains 

un-assessed in the context of large rural gardens. Hedgerows provide good nesting 

opportunities for bumblebees (Osborne etal., 2008b); therefore quantifying the 

presence of these linear features would be one way to establish whether 

landscapes around some properties are more favourable than others.

In the current study bumblebees were considered as a single group to gain

maximum statistical power with respect to assessing the influence of spatial scales.

This allowed generalizations to be made about the group (c.f. the weakness

highlighted by Jauker et at. (2009) when all pollinators are considered together),

but ignored any differences between species. Pursuing the species-level approach

of Kreyer et al. (2004), who noted that different bumblebee species respond to the

landscape in different ways, would allow for tighter interpretation at a species 

level.

Of the four insect groups considered, two (butterflies and day-flying moths, and 

hoverflies) showed no discernible pattern in their landscape-scale response (Table 

5.3). This was not unexpected when the life history of these groups is taken into 

account, i.e. they are not centra! place foragers and some migrate over large 

distances (Jauker et al., 2009).

Solitary bees exhibited the weakest response to landscape-scale factors. Only 

Session 4 linked to a scale explaining a significant landscape factor (Table 5.3, 

3,000m radius, broadleaved woodland, P < 0.04). Taking the known flight ranges 

of sixteen European species of solitary bee into account - up to 600m (Gathmann 

and Tscharntke, 2002), no obvious explanation is apparent for this result.

Temporal patterns

Clear temporal patterns were not discernible across groups. In part, this was due 

to only one group (the bumblebees) having three sampling sessions containing 

significant variables. Depending on the sampling session considered, different 

variables took on increasing importance; a fact reflected by the composition of the 

two main ordination axes. In the first sampling session two bumblebee species 

Bombus pratorum and B. rupestris responded positively to the number of plant 

genera available (axis 1, Figure 5.3). However many more species appeared to 

respond to the landscape variable 'arable and horticulture' (axis 2, Figure 5.3) with 

more bumblebees from more species observed as the area of this land category 

increased. This is a surprising result in spring when flower-rich hedgerows in the 

landscape are suggested to provide abundant resources (Hannon and Sisk, 2009).
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The reality however is that most hedgerows are not managed to allow regular and 

abundant flowenng. More than 90% of hedgerows bordering agricultural land in a 

1,000m radius around one of the properties (Lois Weedon) were severely cut back 

using flails during the winter of 2010/2011 (pers. obs.), meaning few flowers were 

produced. Although this observation relates to only one of the 17 properties, there 

is no reason to assume that other hedgerows are being managed differently. As a

result, bumblebees may be attracted into gardens in spring because of a dearth of 

flower resources in the wider landscape.

In Session 2 bumblebees appeared to primarily respond to the percentage of

broadleaved woodland and improved grassland in the wider landscape (axis 1,

Figure 5.4) and the percentage of arable land (axis 2, Figure 5.4 and Table 5.4).

Greater numbers of bumblebees from a range of species appeared in gardens as

the percentage of broadleaved woodland and arable land increased. To a lesser

extent, the variable 'number of plant genera' also influenced the diversity of

bumblebees observed in gardens. A plentiful supply of flowering plants may act as

a focus for workers visiting from nests beyond the garden (Osborne eta/., 1999),

or may signify that nest occupants within gardens are making use of resources 

available.

In Session 4 the strongest influence to emerge was that of the number of plant 

genera available (axis 1, Figure 5.5, which explains 48% of variation). This result 

reinforces the importance of forage resources being available throughout the 

season and extending into late summer, as described in Goulson eta/. (2010).

The temporal influence of monocultures such as the mass-flowering crop, oilseed 

rape (OSR) is not directly obvious from these results. For example, there is no 

strong response (positive or negative) to arable land in Session 2 which is when 

this crop is in flower, yet OSR is known to influence bumblebee foraging behaviour 

(Knight et a/., 2009, Goulson et a/., 2010). Visual inspection of photographs for the 

seventeen sites show OSR growing within 1,500m of the gardens in 2009 - the 

year before sampling took place (GetMapping PLC). However ground truthing to 

ascertain the type of crops within the category 'arable and horticulture' was beyond 

the scope of the 2010 and 2011 field seasons. A useful follow-up to this work 

would be to repeat the assessment, focussing on bumblebees and quantifying the 

area planted with OSR.
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The response of insect groups to landscape-scale variables

Whilst a seasonal pattern was not discernible, some groups appear to be 

consistently influenced by certain landscape features regardless of spatial scale. An 

example of this is the response of the group butterflies and day-flying moths and 

that of hoverflies to the landscape variables 'arable and horticultural land' and 

improved grassland (Figures 5.6 and 5.7). In both instances, there was a negative 

association with the amount of improved grassland in the landscape, and more 

species observed as the amount of arable land increased. This broadly agrees with 

Ockinger et at. (2009) who found butterfly species richness and abundance was not 

significantly related to flower abundance per se. Notwithstanding this, some 

species did respond to the number of plant genera available. This effect was 

stronger for hoverflies than it was for butterflies and day-flying moths (Figures 5.6 

and 5.7), possibly reflecting their documented habit of preferentially selecting 

flower-rich patches (Haenke et a!., 2009). This agrees with the observations of 

Schweiger et at. (2007), who noted that hoverfly richness was less affected by 

landscape-scale factors and more greatly influenced by flower patches.

Solitary bees were notably unresponsive to landscape variables (Tables 5.3 and 

5.4), probably due to their shorter foraging ranges (Gathmann and Tscharntke, 

2002, Greenleaf et a!., 2007).

Which better explains flower-visitor presence: plant richness or 
landscape-scale factors?

All groups with significant results from the redundancy analysis showed higher 

levels of overall explained variance than unexplained variance (Figure 5.8).

The variance explained due to landscape factors alone (excluding bumblebees 

Session 3 - BBS3, which is included in Figure 5.8 for comparison purposes) ranged 

between 46.7% (bumblebees Session 1 - BBS1) and 50.8% (butterflies and day-

flying moths Session 3 - BDMS3). Plant genera on the other hand explained much 

lower variance, ranging from 0.6% (bumblebees Session 4 - BBS4) to 15.5% 

(hoverflies Session 3 - HFS3). The low variance due to plant genera for 

bumblebees in Session 4 (despite being an important component of the ordination 

diagram Figure 5.5), is countered by the shared effect of landscape variables and 

plant genera together (accounting for 36.2% of variance, Figure 5.8). This 

interacting effect of both within and beyond-garden variables only becomes 

apparent when this procedure is used, highlighting its value.
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The resp°nse of ground and cavity-nesting bees to within and beyond 
walled garden environmental factors

The sampling in early spring of 2011 (Session 1) revealed a higher number of 

solitary bees (256) than in Session 2 (132), (Figures 5.9 and 5.10). Splitting these 

bees into two groups according to whether they were ground or cavity nesting 

allowed an additional assessment to be made of whether proximal environmental 

factors were significant. The multiple regressions considering the landscape effects 

at 500m and 750m from the walls of the gardens were non-significant. This result 

was partially expected as solitary bees are central place foragers and are known to 

have short foraging ranges (Gathmann and Tscharntke, 2002). As such they are 

restricted to collecting pollen and nectar reserves needed for their offspring in 

areas geographically close to their nests (Jauker et a!., 2009).

Of the four within-garden factors only two were significant. In Session 1 the 

percentage of walled gardens used as beds and borders was the significant variable 

explaining the abundance of cavity-nesting bees (P = 0.04, Table 5.5), whilst in 

Session 2 the number of plant genera was significantly related to the number of 

ground-nesting bees (P = 0.02, Table 5.5).

The link between cavity nesting bees and the area of beds and borders probably 

relates to the requirement for soil for nest construction by some species. Of all the 

bees recorded in Session 1, 49% were from a single species, Osmia bicornis (data 

not presented). This species uses soil to create partitions between individual cells 

(Raw, 1972). The importance of this resource was noted by Westrich (1998) who 

stated that even in the event that abundant nesting space and forage resources 

are available, without a supply of soil, female bees cannot successfully reproduce.

By Session 2 (which occurred between 11 June and 4 July 2011) few O. bicornis 

females were on the wing (pers. obs.) and they accounted for only 3% of the bees 

recorded. As such, the variable 'beds and borders' was no longer significant for 

cavity-nesting bees. Ground-nesting bees, on the other hand, showed a significant 

positive relationship with the number of plant genera available. The ground-nesting 

bees recorded were from three genera (Andrena, Lasioglossum and Nomada) and 

represented approximately 45% of all the bees observed in Session 2.

In summary, the splitting of a single insect group into two based on their nesting 

biology appears to offer new insights into responses to local-scale variables where 

wholesale treatment fails.
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Conclusions

The findings of this chapter can be summarised as follows:

• Bumblebees responded to landscape-scale factors within circles of greater 
radii than all other groups. The typical radius was 1,500 - 3,000m.

• Butterflies and day-flying moths and hoverflies showed no consistent scale- 
dependent responses to environmental factors. This is not surprising when 
their life history traits are taken into account.

• Solitary bees were invariant to landscape-scale factors.

• Temporal patterns were weak, due in part to only a few groups and sessions 
containing significant variables. Assessing the seasonal effect of mass-
flowering crops such as oilseed rape on bumblebee presence would be a 
useful complement to the current findings.

• Bumblebees showed a strong response to the availability of flowering plants 
late in the season, highlighting the important role gardens play in providing 
forage over an extended period.

• Butterflies and day-flying moths and hoverflies both responded to the
landscape variables 'arable and horticultural land' and 'improved grassland' 
in similar ways.

• As the percentage of arable land increased in the landscape, more hoverflies 
were observed in gardens.

• Hoverflies, which are noted for their preference for flower-rich patches, 
were also influenced by the number of plant genera available.

• For the three groups, bumblebees, butterflies and day-flying moths and 
hoverflies, landscape-scale factors rather than within-garden factors best 
explained the number of individuals observed.

• Bumblebees were most strongly influenced by a combination of landscape- 
scale and within-garden scale factors late in the summer.

• Splitting solitary bees according to their nesting biology revealed that 
cavity-nesting bees respond to the area of beds and borders in spring, 
whilst ground-nesting bees respond to the number of plant genera in 
summer.

The next chapter examines the nesting behaviour and reproductive success of the 

most ubiquitous solitary bee species observed in walled gardens, Osmia bicornis.
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Chapter overview
In this chapter, the potential of walled kitchen gardens to support populations of 
cavity-nesting bees is explored. Commercial trap-nests are used to establish the 
range of species present and to permit an in-depth look at the causes of mortality 
for Osmia bicornis, the most ubiquitous species present. By using k values, different 
mortality factors are compared in a consistent way across sites. The primary causes 
of mortality (developmental failure and parasitism) are considered in the light of 
their disproportionate effects on female bees.

Introduction
Understanding how landscape resources and natural enemies shape local populations 

is a fundamental area of ecological enquiry (Kareiva, 1990). For bioindicators such 

as flower-visiting insects, i.e. species that indicate changes in ecosystem-service 

functioning or success, this takes on even greater importance (Christensen eta/., 

1996, Tscharntke eta/., 1998).

An important aspect of understanding how species are affected by factors at a 

variety of scales is to ensure that mortality losses of juveniles are taken into account 

(Steffan-Dewenter and Leschke, 2003, Carre eta/., 2009).

Nest and food requirements of solitary bees

Wild bee reproductive success is dependent on both adequate food resources and 

suitable nesting sites (Westrich, 1998). Healthy wild bee offspring are the product of 

an area fulfilling three basic criteria: (a) physical space for nest sites; (b) materials 

for nest construction and (c) food plants that support both adults and larvae 

(Westrich, 1998, Figure 6.1).
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Resources

below ground

suitable soil

rodent nests

above ground

cavities

dead wood or 
stems

exposed nests

empty snail 
shells

nectar

floral oils

Figure 6.1 Nesting and foraging resources required by bees in temperate locations 
(after Westrich, 1998).

In temperate climates approximately 70% of bees and wasps are ground-nesters 

(Westrich, 1998). The initial occupancy and persistence of ground-nesting bees is 

believed to be more closely linked to the abundance of suitable floral rewards than 

nest sites per se, as suitable nest areas are rarely limited (Holzschuh et a/., 2010). 

Aerial nesters, on the other hand, are more likely to be affected by limited nest 

materials and sites than food resources (Tscharntke et at., 1998, Potts eta/., 2003, 

Holzschuh et a!., 2010).

The availability of suitable nesting areas is an example of a resource-driven, bottom- 

up effect. In general, nest site availability is density-independent, but can limit 

population growth in a density-dependent fashion when organisms are spatially 

aggregated (Gillman, 2009). In contrast to this, natural enemies such as predators 

and parasites can have a top-down regulatory effect and act in a density-dependent 

way (Steffan-Dewenter and Schiele, 2008). Efforts to understand the relative 

importance and contribution of both top-down and bottom-up effects on various taxa 

have involved a variety of methods including manipulation experiments, time-series
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analyses and life-tables (Raw, 1972, Preszler and Price 1988, Hunter eta/., 1997,

Hunter, 2001). To date, herbivores have been the main focus of this research, but 

see Steffan-Dewenter and Schiele (2008).

The interest in native aerial-nesters comes as concerns about global honey bee

losses escalate (vanEngelsdorp and Meixner, 2010, Breeze eta/., 2011). The major

causes for the decline of the western honey bee are discussed extensively in

vanEngelsdorp and Meixner (2010) and include a range of diseases and parasites

e.g. Nosema spp. and Varroa destructor, unresolved disorders' such as Colony

Collapse Disorder (Watanabe, 2008), together with direct and indirect poisoning by 
pesticides.

A study using a simulation model to explore the potential of native bees to facilitate 

pollination of a commercial crop in North America found these insects had the 

capacity to buffer reductions in crop yields incurred as a result of honey bee losses 

(Winfree et al.t 2007). How to capitalise on this potential is an area that has started 

to receive increasing attention, with several species of solitary bee now managed for 

commercial crop pollination (Bosch, 1994, Bosch and Kemp, 2002, Gruber eta/., 

2011, Table 6.1).
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Table 6.1 Examples of solitary bee species used as pollinators of commercial crops.

Bee species Crop Location and effect on 

pollination 

if known

Source

Meg a chile rotundata 

Fabricius, 1787 

(Megachilidae)

alfalfa USA

Tripled seed 

production in the 

second half of the 20th 

century

Pitts-Singer and 

Cane (2011)

Osmia cornuta 

Latrielle, 1805 

(Megachilidae)

apples Europe Bosch (1994), 

Vicens and Bosch 

(2000)

Osmia cornifrons 

Radoszkowski, 1887 

(Megachilidae)

apples Japan Maeta and 

Kitamura (1974)

Osmia lignaria 

Say, 1837 

(Megachilidae)

sweet cherry USA

Doubled sweet cherry 

yield in a 

5-year period

Bosch et al. (2006)

Trap-nesting bees and artificial nests

Suitable solitary bee species for management comprise those that readily nest in 

pre-existing cavities and are termed trap-nesting bees (Raw, 1972). In a natural 

setting these bees utilise dead wood, plant stems, beetle borings and holes in 

vertical landscape features to construct their nests, but when managed they occupy 

artificial nests (O'Toole, 2011).
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Although a range of artificial nest materials have been used for experimental 

purposes - including bundles of paper drinking straws, plant stems and drilled 

wooden blocks (Free and Williams, 1970, Bosch and Kemp, 2002), the majority of 

studies mimic nest cavities by using internodes of the common reed Phragmites 

australis (Cav.) Trin. ex Steud, (Poaceae). The reeds are tied together and are used 

to encourage females to establish cells within them. This method is inexpensive and 

convenient, but has disadvantages. For example female bees, in the absence of 

standard reed-widths, may create greater numbers of cells containing eggs of a

particular sex (Raw, 1972), and parasites may respond differently depending on reed 

length and size of opening (Krunic et at., 2005).

Alternatives to reed-based trap-nests are available commercially. Although primarily 

aimed at meeting the needs of individuals wishing to increase biodiversity in their 

gardens, their design and uniformity makes them ideal for experimental use. The 

nests comprise plastic hexagonal structures that are open at one end (Figure 6.2A- 

C) and contain 30 individual cardboard tubes, each lined with a paper cylinder. The 

outer plastic casing affords protection from inclement weather, whilst the cardboard 

tubes and paper liners allow easy examination of the contents (Bates et a!., 2011a). 

In addition to their value for experimental work, these nests serve as important 

educational tools. The bees using them are considered safe near children and pets 

and can be used to help raise the public's understanding of the importance of native 

bees as pollinators of crops and wild flowers (OToole, 2002, Bates et a!., 2011a, 

Everaars et a\., 2011).

There are several advantages associated with using trap nests, regardless of type. 

They provide abundant nesting resources when a species is used at high densities for 

a specific pollination purpose (Wilkaniec and Giejdasz, 2003); they act as effective 

monitoring tools to assess Hymenoptera diversity in fragmented areas (Jenkins and 

Matthews, 2004) and they can be used experimentally to explore the top-down 

regulatory effects of parasites and predators (Seidelmann, 2006, Pitts-Singer and 

Cane, 2011), progeny sex-ratios (Bosch and Vicens, 2005, Seidelmann et at., 2010), 

and the effects of habitat management on bee species richness (Steffan-Dewenter 

and Leschke, 2003, Holzschuh eta!., 2010, Schueepp etal., 2011).
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0  * -
r-  w

Figure 6.2 Commercial trap-nests for solitary bees: A) Placement in Lamport Hall 
walled garden in early spring 2011, B) Plastic grill protecting tubes from 
birds/squirrels, C) Public information label attached to nest, D) Contents of two O. 
bicornis brood cells (pollen and nectar resources plus eggs). Images: Erenler (2011)

Past research has shown that, regardless of the type of artificial nest offered, 

occupancy by solitary bees is common, even in the centre of urban areas (Wilkaniec 

and Giejdasz, 2003, Gaston et a!., 2005). Although bundles of reeds help augment 

numbers of potential pollinators, they are less useful to assess parasitism levels and 

the ratio of female to male offspring. Instead, a more standardised approach is 

necessary. By controlling for differences in tube lengths and widths (through the use 

of pre-prepared tubes rather than reed stems), other variables that may explain 

levels of occupancy, parasitism and reproductive success may be more accurately 

explored. These variables include, but are not limited to, the abundance of pre-

existing cavities in the area, floral species richness and landscape composition 

(Steffan-Dewenter and Schiele, 2008, Holzschuh et a!., 2010).
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The red mason bee

Life history

The red mason bee, Osmia bicornis, syn. O. rufa, is a solitary, univoltine, trap-

nesting species with a Palaearctic distribution. It is common in England and Wales 

and regularly occurs in rural and urban gardens (Edwards, 1998). This ubiquitous 

bee is polylectic, visiting a variety of plants for both pollen and nectar (Edwards, 

1998). Males commence their flight period in mid to late March in England (females 

appear approximately one week later), and continue through to early July. Males 

are 6 - 11mm in length; females are larger at 10 - 16mm (Edwards, 1998). The 

flight period for this species coincides with the flowering time of a wide range of 

commercially grown mass-flowering rosaceous fruit in the UK such as apples, pears 

and strawberries, as well as spring and early summer native flowers (Edwards,

1998, Roberts and Dean, 2012). The red mason bee's ability to warm up at a faster 

rate than expected for its body size enables it to visit flowers in high numbers at a 

time when other pollinators such as bumblebees (Bombus spp.) are yet to build their 

colonies to full-strength (Stone and Willmer, 1989, OToole, 2002). Despite these 

qualities, O. bicornis has not yet been used as a managed pollinator in the United 

Kingdom by commercial growers and farmers (Dean, pers. comm.).

A red mason bee nest consists of a linear set of brood cells. Each cell is provisioned 

with a quantity of pollen and nectar, with a single egg laid atop (Figure 6.2D and 

Figure 6.3A). Individual cells are separated by soil partitions and eventually sealed 

with a textured mud capping, often beyond a final empty gap or vestibulum 

(Seidelmann, 1999) (Figure 6.3B, C).

In common with other Hymenoptera, sex-determination is through haplodiploidy.

This occurs by means of facultative fertilization of the egg at the point of laying, 

using sperm stored in the spermatheca (Gerber and Klostermeyer, 1970). Daughters 

occur when fertilization takes place (diploidy) with sons the product of unfertilised 

eggs (haploidy) (Bosch and Vicens, 2005). Females decide the sex of the egg they 

will lay at the onset of cell construction by using a mud partition-like structure 

known as Fabre's threshold (Raw, 1972). This delimits the size of the cell and the 

extent of provisions that will be stored in it. Male O. bicornis are smaller than 

females and are allocated less food reserves. This is similar to many other 

megachilid bees, e.g. male Megachile rotundata receive 17% less provisions than 

females (Pitts-Singer and Cane, 2011).
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Female red mason bees collect dry pollen in their abdominal scopae (pollen carrying 

hairs, Figure 6.3A) for transport back to the nest. This is in contrast to bumblebees 

and honey bees which orally wet their pollen, transporting it in corbiculae (pollen 

baskets) on their hind tibiae (O'Toole, 2002). The transport of a dry pollen-mass 

means more loose pollen may be available for pollination when the bee visits 

successive flower heads, and the absence of oral moistening means stigma- 

deposited pollen is unlikely to experience inhibited germination from enzymes 

transferred to it during the wetting process, (OToole, pers. comm.). Based on this 

(and the ubiquity of the species) it seems reasonable to suggest that the red mason 

bee is likely to be making an important, but as yet unquantified, contribution to the 

pollination of commercially grown fruit and native plants early in the season.

Figure 6.3 Red mason bee cell provisioning and cell parasitism: A) female with 
pollen in abdominal scopae entering nest tube, B) female bringing in mud to create 
anterior wall of vestibulum, C) female sealing a tube (note Cacoxenus indagator top 
left on cardboard outer), D) exoskeleton remains of a red mason bee - all soft 
tissues consumed by Monodontomerus obscurus larvae whilst within the cocoon, E) 
C. indagator larvae and frass within a single cell (O. bicornis cell provisions and 
possibly egg/larva consumed). Images: Erenler (2011).
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Several authors have recorded the red mason bee as the most abundant cavity-

nesting species, making it ideal for experimental purposes (Table 6.2). Another 

advantage of O. bicorms is that its taxonomy, biology and associated parasites and 

predators are well documented. These include the drosophilid fly Cacoxenus 

indagator Loew (Diptera: Drosophilidae) which is host-specific and is known to affect 

O. bicorn is cells in great numbers, and Monodontomerus obscurus Westwood 

(Hymenoptera: Torymidae), a chalcid wasp whose larvae feed on pre-emerged adult 

bees (Raw 1972, Krunic et al., 2005), (Figure 6.3C, D and E). Combined mortality 

losses at the larval stage due to developmental failure and the presence of the 

specialist C. indagator can occur in more than a third of all O. bicornis brood cells 

(Steffan-Dewenter and Schiele, 2008, Jauker et a/.f 2012a).

Table 6.2 Studies highlighting the dominant use of trap-nests by the red mason 
bee.

Location of study Total 

number of 

bee brood 

cells

Percentage of total 

bee brood cells 

created by 

O. bicornis

Source

Orchard meadows in 

Germany

17 278 84% Steffan-Dewenter 

and Leschke (2003)

Conventional and 

organic wheat fields 

in Germany

8644 96% Holzschuh et al. 

(2010)

Farmland sites in 

Switzerland

1003 71% Schueepp et al. 

(2011)

In common with other Osmia species, female red mason bee progeny are 

preferentially located at the innermost part of each nest (Bosch and Kemp, 2002).

As a consequence, mortality losses occurring in anything other than a random 

fashion throughout the nest have the potential to disproportionally affect the survival 

of each sex. In the event that females are more adversely affected, this may have 

important implications for flower visitation and pollination. This arises for two 

reasons; first, females are the sole nest provisioners and therefore visit more flowers
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than males and second, reduced female numbers could eventually lead to a smaller 

contribution to overall population size (Bosch and Kemp, 2002).

Previous research using O. bicornis has focussed on methods for augmenting

population numbers (Krunic and Stanisavljevic, 2006, Gruber eta/., 2011), as well

as attempting to understand the drivers for the sex ratios observed (Bosch and

Vicens, 2005, Seidelmann, 2006, Seidelmann eta/., 2010). The former emphasises

the need for supplying sufficient bees for commercial pollination purposes, whilst the

latter tests ideas about adaptive strategies used by females to alleviate the effects of 
open-cell parasitism.

Although parasitism losses in relation to brood cell position within the nest have 

been reported (Strohm, 2011), losses due to developmental failure do not appear to 

have been assessed. To my knowledge no studies have explored broad causes of 

mortality in relation to both cell position and gender. In gaining an understanding of 

the mortality differences experienced by males and females, the timing and control 

methods needed to mitigate against these losses can be developed.

The red mason bee in gardens

The red mason bee is known to frequent both rural and urban gardens, and freely 

utilises existing holes in walls and mortar (pers. obs., Figure 6.4) as well as 

occupying artificial nests placed in sunny locations (Gaston eta/., 2005). During 

2010, the red mason bee was recorded at fifteen of the seventeen sampling sites 

(Chapter 2 - 2010 field season).
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Figure 6.4 Existing cavities in the mortar between bricks in the walled garden at
Lamport Hall. These holes are used by O. bicornis and other cavity nesting bees. 
Image: Erenler (2012).

Analysing bee life-cycles using stage-dependent life tables

Stage-dependent life tables document the key mortality events during the life of an 

insect. Events are expressed in their natural order without reference to calendar 

time (Varley et a!., 1975, Hunter, 2001).The term 'mortality' is used in the broadest 

sense, encapsulating losses regardless of whether death occurs, e.g. when males are 

discounted from a population or lost through dispersal (Yamamura, 1999). 

Calculating mortality rates at each stage allows populations to be compared across 

space or time. Each stage is ascribed a k value (the 'killing power'), with all stages 

considered independent. The k value is calculated as the negative logarithm of 

survival, with individual k values summed to give a total mortality value, expressed 

as K (Yamamura, 1999). An important difference between the commonly used 

mortality percentages and k survival values is that the latter are additive (Varley et 

a!., 1975, Yamamura, 1999).
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As the red mason bee completes its life-cycle in a single year, is without overlapping

generations and has distinct developmental and predation stages (Table 6.3), it 
lends itself well to this type of analysis.

Jesbchbed3inDeRSaCwiP(1972)0f ^  '°SS faCt°rS f°r biCOmis USing the stages

btage Description Mortality/loss factor k value

1 constructed cells developmental failure 
(cell inadequately provisioned, sub- 
optimal egg laid, egg dies before 
hatching). Result = no live larvae

k l

2 provisioned cells parasitism by Cacoxenus indagator 
causing death of pre-pupae

k2

3 provisioned cells parasitism by vector other than C. 
indagator causing death of pre-
pupae

k3

4 cocoons parasitism by Monodontomerus 
obscurus causing death of 
pupae/adult

k4

5 cocoons containing 
male and female 
adults

males discounted as females are 
main contributors to the number of 
offspring in the next generation

kS

6 cocoons containing 
female adults

death during the overwintering, 
quiescent phase

k6

Overall 'mortality' 
from egg to 
reproductive female

K
(sum of 

all k 
values)

Despite the potential commercial importance of understanding the point(s) at which 

losses occur in the developmental phase of O. bicornis, life tables with k values do 

not appear to have been used (but see Sekita and Yamada, 1993).
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Walled kitchen gardens 

Historic use

Walled kitchen' or 'productive' gardens have been an integral part of the English

country-house estate for centuries. Up until the 1930s these 'rooms', bounded by

walls, hedges or simple fences, provided the household with its fruit and vegetable

needs throughout the year. The walls provided a microclimate conducive for

vegetable growing whilst keeping out unwelcome animal and human visitors (Wilson, 
2003, Musgrave, 2009, Campbell, 2010).

Up until the end of the seventeenth century most walled gardens were square, with 

their internal space divided into four distinct sections or'quarters' (Campbell, 2005). 

The design mimicked ancient classical gardens and the partitions (comprised of 

pathways) afforded country-house owners the possibility of taking visitors and family 

on strolls through the highly managed garden environment (Campbell, 2010).

With a greater appreciation of the heat retention properties of certain building 

materials, the design of rectangular gardens (built with brick walls) became popular 

(Campbell, 2005). These allowed fruit to ripen early on espalier-grown trees trained 

against the longest walls (Campbell, 2005, 2010).

The size of kitchen gardens often ranged between one acre to 20 or 30 acres 

according to taste and resources, with a one acre walled garden able to supply 

sufficient produce for 12 people (Campbell, 2010).

The fashions of the day usually dictated what was grown. The experimental practices 

involved in raising exotic fruit and vegetable specimens led to new innovations within 

walled gardens. This saw the introduction of heated glass houses, often with the aid 

of hotbeds (Musgrave, 2009). In addition to growing exotics and traditional 

vegetables, aromatic plants and flowers were cultivated. The popularity of preparing 

herbal remedies meant these plants were needed for homemade tinctures, salves 

and tonics; a practice that continued until the late 18th century. The flowers of these 

aromatic shrubs, many of which originated from the Mediterranean, offered pleasing 

olfactory and visual distractions from the often less pleasant muck heaps that were 

needed to fuel the hotbeds (Musgrave, 2009, Campbell, 2010).

As well as their medicinal and aesthetic properties, aromatic plants would have 

attracted pollinating insects. It is known that the Romans grew thyme, rosemary 

and marjoram for the bees in their gardens, but it is believed this was to ensure 

fragrant honey was produced rather than actively encourage bees to visit and 

pollinate nearby crops (Campbell, 2005).



Chapter 6

Honey bees have actively been kept in walled gardens for centuries (Campbell, 

2005). Early hives took the form of straw skeps, with some garden walls designed 

specifically to incorporate recesses (or bee boles) for colonies (Campbell, 2005). As 

in Roman times, the focus was purely on obtaining products from bees, e.g. honey 

and beeswax (Ebert, 2011). Some early writers on the subject of apiculture were 

keen to emphasize other advantages of bees, citing how bee behaviour (hard work 

and a clearly demarked organisational structure) was a positive role-model for 

human society (Warder, 1720). Others, meanwhile, extolled the virtues of

beekeeping as a cottage activity offering financial gain to the rural poor as well as a 

stimulating intellectual hobby for the rich (Keys, 1780).

The earliest understanding of the structure of social bee colonies came with Charles 

Butler's The Feminine Monarchic in 1609 (Butler, 1609), but it was not until the late 

eighteenth century that observations about the inhumane methods of obtaining 

honey, which required the majority of bees to be immobilised and killed with smoke 

and brimstone, led to hive design moving away from skeps to formal bee hives. The 

latter were both functional and decorative and were placed in walled gardens for the 

amusement of owners and house guests (Campbell, 2005). The role of bees as 

pollinators was only appreciated in the 18th century; with the naturalist Joseph 

Kolreuter establishing that the purpose of nectar was to reward insects (Proctor et 

al., 1996).

Today, few walled gardens contain hives. The gardens themselves are often shadows 

of their former selves, with a minority in ruins and some with only a fraction of the 

original area cultivated for fruit and vegetables (Campbell, 2010). The shift away 

from high productivity came with the increased availability of cheap foodstuffs from 

around the world and escalating labour costs for maintaining kitchen gardens 

(Campbell, 2010). Tennis courts and swimming pools are frequently found in walled 

gardens in place of land that would previously have given a continuous supply of 

fresh vegetables. Examples from the present study include Courteenhall, Easton 

Neston and Lois Weedon House. Another feature of today's walled gardens is the 

extensive area laid to turf. Often closely mown, lawns offer few flower resources for 

insects.

Despite the change in use of walled gardens, the walls themselves remain as 

potential nest sites for cavity-nesting bees. The situation is helped, in part, by the 

many holes remaining from the habit of driving metal pins into mortar to anchor 

wires needed to support wall-grown fruit trees (Campbell, 2010).
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Aims

The aims of this chapter are to quantify nest site occupancy, cell parasitism and 

reproductive success in nine walled gardens, with a strong focus on the most

ubiquitous species, Osmia bicornis. Specifically, the work seeks to answer the 
following questions:

1. Does tube usage by a) a range of trap-nesting bees and b) the red mason 
bee differ across the nine properties?

2. Is there a relationship between the abundance of O. bicornis cells created and 
those of other bee species, and is O. bicornis abundance correlated with the 
number of pre-existing cavities in the walls?

3. Do the k values relating to developmental and parasitism losses (kl-4) differ 
between properties?

4. Is there a relationship between the number of cells parasitized by Cacoxenus 
indagator and the number of cells present?

5. Do rates of developmental and parasitism loss vary according to brood cell
location in the nest and, if so, do these losses affect equal numbers of males 
and females?

6. Is the sex ratio of O. bicornis observed in the current study consistent with 
other locations and other trap-nest species?

7. Is there a difference in mortality rates for overwintering male and female 
bees within and between properties?

Methods

Sampling

Nine walled gardens were used for the study (Chapter 2 - 2011 field season, Table 

6.4). Commercial trap-nests were placed at study sites in spring 2011, with the 

experimental work completed in the spring of 2012.

The trap-nests (Vivara brand) were purchased from CJ Wildbird Food, Upton Magna, 

Shrewsbury, England. Nests consisted of a green plastic casing containing thirty 

cardboard tubes together with a protective grill (Figure 6.2B). Each tube contained a 

paper liner measuring 150mm in length and 0.7mm in diameter that could be 

withdrawn using a plastic stopper at one end. Three nests were affixed to south or 

east facing walls in each garden between 15th and 24th March 2011. The nests were 

attached to mortar between bricks or stone at a height of 1.6m - 1.8m in areas free 

of vegetation, and separated by a minimum horizontal distance of 5m.
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Between the 24“  August and 15“  September 2011 the cardboard tubes were

removed, leaving just the nest casings in place. Each tube was marked with a unique

property, nest and tube number and stored in dry conditions (temperature range 12 

- 16°C, relative humidity 40 - 45%) until it was opened.

Examination of the nest contents

To ensure the fly larvae of the specialist cleptoparasite Cacoxenus indagator were

found in situ (they are known to migrate towards nest entrances - Strohm, 2011),

the tubes were examined within three months of collection (between 11th and 23rd of 
November 2011).

Paper liners were removed from their tubes and opened by making a small incision 

at the end opposite the stopper. The paper was then unravelled in a spiral fashion 

(Bates et a!., 2011a). The contents were recorded according to the categories 

described in Figure 6.5. In addition, a random subset of ten nests had their cell

contents recorded according to their exact location within each tube. The innermost 

cell in each tube was designated as cell one.

Where a cell contained a cocoon, this was examined by slicing open the nipple-like 

structure at one end. The sex of the occupant was determined by noting the 

presence or absence of female clypeal horns on the head (Raw, 1972). In opening 

the cocoons, instances where larvae of the solitary parasitic wasp Monodontomerus 

obscurus had consumed the non-chitinous parts of the adult bee within were 

revealed (Figure 6.3D).

For the subset of ten nests, the sex of a failed individual (resulting from 

developmental failure or parasitism, Figure 6.5 categories D, E and F) was inferred 

from the sex of occupants in adjacent cells. This was possible as cells are aggregated 

according to sex in this species (Seidelmann eta/., 2010). As a precautionary 

measure, any failed cell with a female as one neighbour and a male as another was 

excluded from analyses as the occupant's sex could not reliably be inferred.

Overwintering storage and survival

After examination the cocoons were bulked according to nest and placed in plastic 

disposable food containers between two layers of paper kitchen-towel. The 

containers were pierced to prevent the build-up of CC^and placed in cold storage at 

4°C (Sekita and Yamada, 1993, Bates et al., 2011a). Between 21st and 23rd March 

2012 the overwintered cocoons were returned to their nests. In late May 2012 the 

gardens were re-visited to establish the number of bees of each sex within each nest 

that had failed to emerge.
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Chapter 6

Pre-existing wall cavities

The mean density of pre-existing cavities in the mortar was calculated by randomly 

assigning six 50cm x 50cm quadrats to the south-facing wall in each garden,

counting the number of holes present in each, and generating a mean hole-density 
value.

Statistical analyses

In order to take account of one nest containing twenty-nine rather than thirty tubes

(Canons Ashby, Nest 3), the fraction of tubes colonised rather than the absolute 

number of tubes colonised was used for analysis.

Life tables were created and k values calculated following the protocols of Varley et 

al. (1975) and Yamamura (1999), Appendix VIII. The k values for Lois Weedon (LW) 

were not calculated as cell numbers were low or non-existent in two of the three 

nests, meaning reliable values could not be obtained. Differences between properties 

were examined using Kruskal-Wallis tests on k values 1 - 4 .

Linear regression was used to examine the total number of deaths due to 

developmental failure in relation to brood cell position in a tube, and also for total 

deaths due to the presence of C. indagator against brood cell position.

To establish whether female or male progeny were more likely to be affected by the 

mortality factors a three-step approach was taken:

Step 1: Using the subset of ten nests and only those cells where the sex of the 

occupant could reliably be inferred, the actual number of females and males 

recorded at each brood cell position was used to calculate the relative proportion of 

each sex at each position.

Step 2: The relative proportions were multiplied by the number dying at each 

position to estimate the number of females and males dying from each mortality 

event at each location.

Step 3: The fraction of each sex at each location was calculated using the estimated 

number dying (step 2) divided by the total number across all cells

The difference in estimated numbers of females and males dying at each location

(step 2) was analysed with a G-test for independence using the methods described 

in Sokal and Rohlf (1981). As the observed values for the four outer cells (cells 7, 8, 

9 and 10) were 1 or less for females, these were bulked with the nearest cell, (cell 

).
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A two-sample Kolmogorov-Smirnov test was used to examine differences in the 

distribution of male and female overwintering losses. This test allows the comparison 

of two sets of distribution data from a population (Dytham, 2011).

Results

Use of nests and tubes by solitary bees

All twenty-seven artificial nests were occupied by solitary bees. Of the 809 available

tubes across all sites, 490 (61%) were used by a range of bees. Usage was defined

as either a) initiation of a cell(s) within a tube, b) provisioning of cells, whether

completed or not, or c) outer end of tube sealed, regardless of whether it was later

found to contain cells. Only one property, Lamport (LAM), had all thirty tubes in each 

of its three nests fully used (Figure 6.6).

Figure 6.6 Median fraction of tubes used at each property, ranked highest to 
lowest, with range as error bars.

As the tube-usage data violated Levene's test for homogeneity of variance, both as a 

fraction and when arcsine transformed (P = 0.01), the non-parametric Kruskal-Wallis 

test was used. Tube usage (by all species) differed significantly between the nine 

gardens, H (8) = 22.12, P = 0.005. This result was followed up with post hoc tests 

as described by Siegel and Castellan (1988), (Appendix IX, Table 6.5).
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Kruskat-WShs testncfnn L "  ° C mean rankS °f fraction of tubes used after aKRjskal Wallis test using the procedure described in Siegel and Castellan (1988).
Di erences in mean ranks > 10.53 are significant (P < 0.05) and shown in bold.

BOU

BOU CA CHALL EN FAR HOL
I -

CA 7.17 .

CHALL 15.17 8.00

EN 0.47 6.70 14.70
FAR 12.5 5.33 2.67 11.50
HOL 1.66 8.83 16.83 2.66 14.16
KEL 9.0 1.83 6.17 18.00 3.50 10.66
LAM 3.83 11.00 19.00 4.83 16.33 2.17
LW 16.17 9.00 1.00 15.17 3.67 17.83

KEL LAM

12.30

7.17 20.00

Cell creation

Of the 490 used tubes, 467 (95.3%) contained fully provisioned cells. A total of 

2,657 cells representing all bee species (Category A, Figure 6.5, Table 6.6), were 

recorded from across the nine properties. Lamport Hall had the highest mean 

number of cells across all three nests (174.7 ± 19.4 SD), but the nest with the

highest overall number of cells was at Easton Neston - 214 cells (nest EN3, Table

6 . 6) .

Of the 2,657 cells recorded 2,521 (94.9%) were those of O. bicornis (Category C, 

Figure 6.5, Table 6.6). A one-way ANOVA revealed the mean number of cells for this 

species was significantly different between properties F8/18 = 5.90, P = 0.001. Post 

hoc tests (REGWQ) showed that Lois Weedon, Courteenhall and Farnborough had 

significantly fewer cells than Holdenby and Lamport (Figure 6.7).
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Chapter 6

Property

Figure 6̂ 7 Mean number of O. bicornis cells per nest for each property (arithmetic 
mean ± SE). Identical letters show homogeneous groups (REGWQ post hoc tests).

Red mason bee cells and cells of other trap-nesting bee species

The absolute number of O. bicornis cells and those of other species (Appendix X) is 

given in Figure 6.8. Three walled gardens (Canons Ashby, Easton Neston and 

Lamport) only had O. bicornis cells present. For the six gardens with both O. bicornis 

and other species present there was no relationship between the number of cells of 

other species and those of O. bicornis, Pearson's r = 0.42, P (two-tailed) > 0.05.
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A A

Property

Figure 6.8 Total number of O. bicornis (light grey) and cells of other species 
(Appendix X), (dark grey) at properties where they co-occurred.

Pre-existing wall cavities and the creation of cells

No significant relationship was found between the mean number of holes in a 0.25m2 

area of south-facing wall and the number of O. bicornis cells (Spearman's r, one- 

tailed, 0.26, d.f. = 26, P  = 0.12).

Failure and parasitism of O. bicornis cells

From the original 2,521 O. bicornis cells, only 1,700 (67.4%) individuals reached the 

quiescent adult stage, hereafter called cocoons, (category G Figure 6.5, Table 6.6). 

The loss of the remaining 821 cells was accounted for by: developmental failure 

(639), the presence of Cacoxenus indagator (172), and the presence of other 

parasites and cleptoparasites (10) - categories D, E and F (Table 6.6). Larvae of C. 

indagator were present in 101 of the 468 tubes used by the red mason bee (21.6%) 

and occurred in 221 (8.8%) O. bicornis cells. In general, the presence of C. 

indagator usually resulted in the death of the bee larva (»78% mortality, Table 6.6).
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The results of the four Kruskal-Wallis tests to consider the differences in k l - kA life-

table values revealed that developmental failure of cells (Arl) was not significantly

different between properties, but that parasitism (K2) did vary significantly, (Table 
6.7).

Table 6.7 Results of Kruskal-Wallis tests for differences in O. bicornis k values 
between eight properties (LW excluded). P < 0.05, degrees of freedom = 7 for each
test.

k value Description Test statistic 

(H)

P value

k l developmental

failure

8.16 0.34

k 2 cell parasitism by 15.72

Cacoxenus

indagator

< 0.01

cell parasitism by 17.08 

others
< 0.01

cocoon parasitism 14.23 

by Monodontomerus 

obscurus

< 0.02

The significant result for k2 (parasitism by C. indagator) was followed up with post 

hoc tests as described by Siegel and Castellan (1988), (Appendix IX, Table 6.8).
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Table 6.8 Results of post hoc tests on mean ranks of k2 after a Kruskal-Wallis test 
using the procedure described in Siegel and Castellan (1988). Differences in mean 
ranks > 9.38 are significant {P < 0.05) and are given in bold.

BOU CA CHALL EN FAR HOL KEL LAM
BOU :
CA 1.33

CHALL 10.67 12.00
EN 12.67 15.00 2.00
FAR 14.34 15.67 4.33 2.33 _

HOL 5.00 6.33 5.67 7.67 9.34
KEL 4.00 5.33 6.67 8.67 10.34 1.00
LAM 12.00 13.33 2.67 0.67 2.34 7.67 8 .0 0

To consider the density-dependent nature of C. indagator parasitism, the k2 values 

were regressed over the number of O. bicornis cells created. There was a significant 

non-linear relationship between the two variables (F2,23 = 5.22, R2 = 0.31, P = 0.01, 

Figure 6.9).
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k2

Figure 6.9 k2 values regressed over the starting number of O. bicornis cells.

The significant test result seen for k3 (parasitism by species other than C. indagator) 

was not pursued as only 10 out of a possible 1710 cells were found to be affected.

Fourteen nests at six of the eight properties were affected by M. obscurus (kA in 

analysis). Post hoc tests (Siegel and Castellan, 1988) showed significant differences 

between six pairs of properties (Table 6.9).

Table 6.9 Results of post hoc tests on mean ranks of kA after a Kruskal-Wallis test 
using the procedure described in Siegel and Castellan (1988). Differences in mean 
ranks > 9.38 are significant (P < 0.05) and are given in bold.

BOU CA CHALL EN FAR HOL KEL LAM

BOU - - - - - - - -

CA 13.83 - - - - —
- -

CHALL 9.00 4.83 - - - - - —

EN 0.00 13.83 9.00 - - - - —

FAR 5.17 8.66 3.83 5.17 - - - -

HOL 14.50 0.67 5.50 14.50 9.33 - - -

KEL 4.33 9.50 4.67 4.33 0.84 10.17 - -

LAM 9.17 4.66 0.17 9.17 4.00 5.33 4.84
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Position of failed and parasitized cells within tubes

The subset of ten nests examined to record brood cell category and position 

consisted of 248 used tubes and 1,404 cells. The total number of cells at each 

position and the relative number for each of the categories (spun cocoon, 

developmental failure and mortality due to the presence of C. indagator) are given in 

Table 6.10. The level of developmental failure did not differ significantly between the 

subset o ften  nests (one-way ANOVA, F3,6 = 1.91, P > 0.05), nor did mortality as a 

result of C. indagator (Kruskal-Wallis H (3) = 6.34, P > 0.05).

Table 6.10 Number of cells per category at each brood cell position (n = 1,404).

Brood cell (1 = innermost cell)

Fate of cell 1 2 3 4 5 6 7 8 9 10

Cocoon spun 130 123 119 109 108 98 99 75 44 17

Developmental
failure 105 82 55 50 33 30 17 8 5 1

Failure due to
C. indagator 1 ? 13 10 12 13 11 7 11 4 2

Total cells 248 218 184 171 154 139 123 94 53 20

The proportion of cells failing due to developmental reasons showed a significant 

relationship with position in the tube (FlfQ = 279, R2 = 0.97, P < 0.001), with a 

higher proportion affected at the innermost part (Figure 6.10A). Cells failing due to 

the presence of C. indagator showed the opposite effect (F18 = 7.73, R2 = 0.49, P = 

0.024 - Figure 6.10B). When combined, higher mortality rates occurred at the inner 

rather than the outermost part of each tube (F18 = 191.6, R2 = 0.96, P < 0.001, 

Figure 6 .10C).
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* * « * i i i ------------ 1------------1

0 1 2 3 4 5 6 7 8 9  10
Brood cell position (1 = innermost brood cell)

Figure 6.10 Proportion of failed cells at each brood cell position (1 = innermost cell) 
due to: A) mortality at the developmental stage, B) the presence of C. indagator and 
C) combined mortality factors. Total number of cells across all positions = 1,404.
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Position of female and male cells within the tubes

The relative proportion of males and females at each brood cell position is given in 
Figure 6.11 (n = 1,080).

Figure 6.11 Proportion of males (squares) and females (triangles) at each brood 
cell position.

Proportion of male and female deaths

Using the female to male ratios, the predicted sex-specific mortality rates and the 

fraction lost per sex were calculated for the two mortality factors (Table 6.11). 

Despite similar numbers of males and females being predicted to die from 

developmental failure, the sex-specific fractions reveal a large difference between 

female and male losses. In the case of C. indagator, almost double the number of 

males are estimated to die compared to females. On this occasion however, identical 

sex-specific fractions were lost to this mortality cause (Table 6.11).
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7 ?cb l« ^n1i1 nPQrnd'Ĉ ed n̂U7lber ° f males and females (ar|d fraction) lost to two causes 
based on 1,080 individuals of known sex (Figure 6.1 1 ).

Females Males

Total in cells 342 738

Mortality due to developmental 
failure
Predicted number lost 185.48 200.52
Fraction lost 0.54 0.27

Mortality due to the presence of 
C. indagator
Predicted number lost 29.35 66.65
Fraction lost 0.09 0.09

Proportion of fem ale and male deaths at each brood cell position

The proportion of males and females lost to developmental failure was significantly 

different across the cell positions examined (G = 159.03, d.f. = 5, P < 0.001), as 

were those lost as a result of the presence of C. indagator (G = 46.73, d.f. = 5, P < 

0.001, Figure 6.12A-B). A greater proportion of females in brood cell positions one 

and two was lost to the two combined mortality factors. In these two inner positions 

160 female cells out of 342 (47%) died (Figure 6.12C).
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Figure 6.12 Fraction of female (triangles) and male (squares) individuals lost at 
each brood cell position (1 = innermost cell) as a result of: A) developmental failure 
B) the presence of C. indagator and C) the two mortality factors combined.
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Number of overw intering adults

During the examination to establish the sex of each bee, fifty cocoons were found to

contain Monodontomerus obscurus larvae. The remaining 1,650 cocoons (containing

live adults) were significantly differently distributed across the gardens (one-way

ANOVA, F8rl8= 5.19, P = 0.002). Post hoc tests (REGWQ) revealed a significant

difference between cocoon numbers at Lois Weedon, Courteenhall, Farnborough and 

Canons Ashby and those at Lamport (Figure 6.13).

Figure 6.13 Difference in mean number of adult O. bicornis after losses to M. 
obscurus (Arithmetic mean ± SE).

O. bicornis male and female overwintering losses

The mortality rates between male and female overwintering bees (measured as the 

proportion of deaths per number of live bees in cocoons pre-winter) differed 

significantly, with a greater proportion of males failing to emerge (two-sample 

Kolmogorov-Smirnov D24 = 1-59, P = 0.02).
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k6 life-table values -  fem ale overwintering mortality

Analysis of the k6 values, representing losses due to female mortality during the 

overwintering phase, revealed that there was no significant difference in female 

mortality between properties (Kruskal-Wallis H (7) = 11.88, P > 0.05).

Sum m ary of k value losses

The losses experienced at each stage of the life-cycle for the red mason bee, from 

developmental failure at the start of the process (Arl) to losses due to female 

mortality (£6), are presented in Figure 6.14.
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Male and female sex ratios

The sex ratio for the subset of nests examined was 2.16:1 (males to females), n = 

1,080. The pre-winter ratio for cocoons from all nests was 2.35:1 (n = 1,650).

Discussion

Nest occupancy

All species

All 27 of the commercial trap-nests were used by solitary bees (Table 6.6). This high 

occupancy rate contrasts with the study by Everaars et al. (2011), who found only 

46% of Phragmites nests were used in an urban location. Although all nests in the 

current study contained used tubes, tube usage differed significantly between 

properties (P = 0.005), (Figure 6.6, Table 6.5).

The choice of where to locate nests and the preferred light regime appears to be a 

major factor affecting occupancy. Gaston et al. (2005) found nests placed in full sun 

were more likely to be used than those in shade. In the present study only south 

and east-facing walls were used for nest placement, taking care to avoid 

overhanging vegetation. In contrast, Everaars et al. (2011) placed nests in a range 

of light conditions, recording the lowest occupancy rates in nests attached to trees in 

shade, and the highest occupancy on walls in full sunlight. The current study 

confirms that sunny, unencumbered walls make ideal locations for artificial trap- 

nests.

The red mason bee

O. bicornis is a ubiquitous species, and was present in all nine gardens in 2010. In 

2011, red mason bee cells occurred in 26 of the 27 nests (Table 6.6). As with other 

trap-nest studies this was the dominant species. It accounted for 95% of the created 

cells in the present study, a figure similar to that found by Holzschuh et al. (2010), 

(Table 6.2). Although other solitary bee species used the trap-nests provided, their 

abundance was low and there was little congruence across properties. No 

relationship was observed between the number of O. bicornis cells and those of 

other species (P > 0.05, Figure 6.8). The number of O. bicornis cells differed 

significantly between properties (P = 0.001, Figure 6.7).

High numbers of O. bicornis may be found nesting together for a number of reasons 

Wilkaniec and Giejdasz (2003) noted that females aggregate if suitable cavities are 

present, however the method by which bees locate suitable sites is not fully 

understood. Mandibular gland secretions are believed to act as pheromone
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aggregation cues, despite the solitary nesting habits of this species (Bosch and

Kemp, 2004). A problem of nesting in close proximity to other females is that

increased parasitism and predation may occur; a cost which must be balanced with

that of searching for a more isolated nesting habitat (Rosenheim, 1990). Bischoff

(2003) suggested that for one ground-nesting species (Andrena vaga Panzer, 1799)

the high costs associated with searching for nest sites in early spring, when

provision-collecting days are limited by weather constraints, act as a strong selective

force for gregarious nesting behaviour. As red mason bees face similar weather-

imposed down-time', it is possible that newly emerged females behave like A. vaga,

i.e. they preferentially establish nests close to where they originally developed 
(philopatry).

The current study did not seek to establish the source of foundress populations, but

the lack of any obvious relationship between the density of wall cavities and the

number of cells created does not lend support to the idea that philopatry causes 
gregarious nesting.

Developmental failure and losses to parasitism
Developmental failure

Developmental failure accounted for the greatest loss of O. bicornis cells at the pre- 

pupal stage (Table 6.6, Figure 6.14). In the current study the mean developmental 

failure rate across all nests was 26.3% ± 14.8, n = 26. This was higher than the 

12.1% failure rate recorded by Bosch and Vicens (2005) for O. cornuta, and 16.2% 

for O. bicornis by Gruber et al. (2011), but similar to that reported by Danks (1971), 

who found an average developmental failure rate of 23.6% for seventeen stem-

nesting species. Of significance for the current study was the absence of any 

statistical difference in developmental mortality between the eight sites analyzed and 

also between the subset of properties examined (P > 0.05, Table 6.7). This suggests 

a consistent background failure rate may be occurring. This observation would 

benefit from further testing using additional gardens and/or greater nest density at 

some properties.

Mortality from developmental failure disproportionately affected cells located towards 

the innermost part of the tubes (Figure 6.10A). Although parasitism has been 

recorded according to cell position (Strohm, 2011), to my knowledge this is the first 

study to report on developmental failure according to cell position. The causes for 

cell failure at this stage include: fungal pathogens, inadequate cell provisioning and 

sub-optimal eggs (Danks, 1971, Steffan-Dewenter and Schiele, 2008). Methods to 

mitigate losses have been explored for other solitary bee species include avoiding
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the re-use of nest tubes and observing good hygiene to reduce the spread of 

pathogens at the nest preparation stage (Sekita and Yamada, 1993, Bosch and 

Kemp, 2002). As new nests and tubes were purchased for the present study, 

hygiene is unlikely to have been an issue. The observed high rate of developmental 

failure demonstrates one of several important challenges that need to be overcome 

if this species is to be considered a candidate for managed-pollinator use.

Losses to Cacoxenus indagator

After developmental mortality, loss to the specialist fly C. indagator was the second 

highest cause of death (Table 6.6, Figure 6.14). Levels of parasitism (k2 values) 

were significantly different between properties (P < 0.01, Table 6.7). Post hoc tests 

showed that Boughton House and Canons Ashby had significantly higher levels of 

parasitism than the other seven properties (Table 6.8). A common factor linking 

these two gardens and a third, Holdenby, is that the walls in these gardens are

constructed from stone (Table 6.4). Further work exploring whether wall materials 

influence rates of parasitism is needed.

Many studies have found C. indagator to be the main nest associate of the red 

mason bee, and it is often cited as the primary cause of larval mortality (Krunic et 

al., 2005, and Strohm, 2011). These flies are frequently observed at the entrance of 

nest tubes waiting for female bees to depart, thereby allowing them access to the 

pollen and nectar reserves gathered by the host. When a female leaves to collect 

more larval food the fly enters and lays her own eggs on the pollen/nectar mass 

(pers. obs.). In the current study the presence of fly larvae did not always result in 

the death of the developing bee (22.2% of affected cells contained both fly larvae 

and cocoons containing live bees), but in the majority of cases mortality ensued.

This result is similar to that found by Raw (1972) who noted that some bees were 

able to develop normally alongside C. indagator.

Management techniques to prevent the build-up of large populations of these flies 

when Osmia spp. are used as managed pollinators include the removal of infected 

bee cells by hand during the winter months, and successive-year removal of flies by 

aspirators during their flight period (Krunic et a!., 2005, Gruber et a!., 2011).

In contrast to the position of cells affected by developmental failure, mortality from 

C. indagator was more likely to occur towards the outermost part of the nesting 

tubes (Figure 6.10B). This pattern of increasing parasitism towards nest entrances 

has also been noted by Seidelmann (2006). Strohm (2011) found no relationship 

between brood cell position and parasitism rate, although the sample size was low 

(total cells = 189).
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Parasitism and the density of O. bicornis

An unexpected result from the current work was that C. indagator-induced mortality

(measured as k2 values) was significantly related (in a non-linear way) to the

density of O. bicornis cells, with reduced mortality observed at both low and high cell 
densities (Figure 6.9).

The absence of a relationship between the hole-density of walls and both the mean 

number of cells created and those parasitized (P > 0.05, n = 8), suggests C. 

indagator may be able to locate nests independently of the presence of bees from 

previous years. A possible explanation is that at low bee densities, host nests might 

be patchily distributed, whilst at high densities, fly numbers may lag behind those of 

nesting females; a commonly observed feature of predator-prey systems (Maynard 

Smith, 1977). An alternative for the observed inverse density-dependence (where 

bee abundance is high) has been proposed by Steffan-Dewenter and Schiele (2008). 

These authors suggest that in areas where nests are frequented by many O. bicornis 

females, increased activity may serve to disturb patrolling flies, thereby reducing the 

incidence of parasitism. Observations of O. cornuta by Krunic et al. (2005)

corroborate this. The authors note that female bees proactively dispel flies and 'dive 

frequently' on C. indagator females.

Differential mortality losses for males and females

Evidence from the current study shows a strong shift from predominantly female 

cells in the innermost positions (brood cell position one; 82% females, 18% males), 

to a more equitable distribution at position three (46% females, 54% males), 

followed by increased male cell dominance towards the outer part of the tube (Figure

6.11) . The observed differences in the numbers of females and males at specific 

locations within tubes, combined with differential mortality factors, make females 

particularly vulnerable to the two mortality factors examined (Figure 6.10C, Figure

6.11) . Although the estimated number of females and males perishing as a result of 

developmental failure did not differ greatly (185 versus 201), the fraction of females 

dying was notably high (0.54, Table 6.11, Figure 6.12A). This results from the strong 

male bias associated with this genus (Bosch and Vicens, 2005).

The position of O. bicornis females at the rear of the nest and males towards the 

front has been attributed to protandry (Raw, 1972), but is also considered a 

response to an increased risk of parasitism towards the outer part of nests 

(Seidelmann, 2006). According to the hypothesis of Seidelmann (2006), open-cell 

parasitism is believed to act as a selection pressure, causing females to 

preferentially switch from provisioning cells for females, to creating cells for males
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As males are smaller than females they require less food, resulting in fewer foraging 

trips of shorter duration by the mother bee. Reduced time away from the nest 

therefore reduces the incidence of parasitism (Bosch and Vicens, 2005, Seidelmann, 

2006, Seidelmann et a/., 2010). In contrast to this view, others have argued that a 

reduction in floral quantity and quality as the season progresses leads to reduced 

provisioning and therefore an increase in male offspring (Torchio and Tepedino, 

1980). In some of the gardens sampled for the present study, both the number of 

genera and floral area available increased as the season progressed (data not 

presented), suggesting that limited floral resources are unlikely to have caused a 

switch to a higher number of male offspring. Whilst offering no evidence of causality, 

these results lend support to the hypothesis of Seidelmann (2006).

Male : female sex ratio

The diameter of nest materials influences the sex ratio of Osmia spp., with higher 

female to male ratios reported when wider reed stems are available (Krombein,

1967, Raw, 1972, Bosch and Kemp, 2002, Seidelmann et al., 2010). Tube length 

also affects sex ratios, with shorter lengths giving a more even ratio (Gruber et al., 

2011). Together, these findings highlight the importance of using nest materials of 

standard widths and lengths. Despite this, to my knowledge no studies have adopted 

the use of commercial trap-nests to explore male to female sex ratios and 

parasitism. The use of standardised tubes with paper inners in the current study 

allows confidence to be placed in the sex ratios observed. This ratio is reasonably 

high (2.16 : 1), but still within the limits of other published accounts (Table 6.12).
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tThaeb!urfem2s?ubdv and JSlf t0 rati°S f°r blcornis and cornuta from
and then H n o r d t r  n f  Publ,sh,ed work- Studies are listed according to species

are for the subset of tenrneJtns9eJraam1nedfemale rati°S' f°r the CUrTent StUdy

Species M : F sex ratio n Vear(s) Source

O. bicornis 1.35 - 2.68 : 1 range 200 
-1,200

1996-99 Krunic and
Stanisavljevic (2006)

O. bicornis 2.16 : 1 1,080 2011-12 This study 
(subset of 10 nests)

O. bicornis 1.59 : 1 411 1997-99 Seidelmann et at. 
(2010)

O. bicornis 1.11 : 1 236 1967/68 Raw(1972)

O. bicornis 0.91 - 1.53 : 1 range 2,850 
- 22,633

2007-9 Gruber et al. (2011)

O. cornuta 1.46 - 3 22 : 1 range 400 
- 2,500

1994-99 Krunic and
Stanisavljevic (2006)

0. cornuta 1.78 : 1 998 1995 Vicens and Bosch 
(2000)

Overwintering losses

Overwintering losses have not previously been reported for this species, and the 

return of cocoons to their natal sites is rarely reported. To my knowledge, this is the 

first time that cocoons have been returned to sites to establish if male and female 

overwintering survival rates are similar. Results show that a significantly greater 

proportion of males than females failed to emerge after being returned to their nests 

(P < 0.02). Female overwintering mortality (/c6 in life-table analysis, Table 6.3) did 

not differ between properties (P > 0.05).

Linking male : female sex ratios and the causes of larval mortality

In accordance with Fisher's theory of sex allocation, parental investment should be 

equally distributed between male and female offspring (Fisher, 1930). Where an 

organism is sexually dimorphic in terms of size - such as O. bicornis, where females
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are approximately 1.6 times heavier than males, (Raw, 1972), the cost to female

fitness of producing daughters is higher, and therefore a lower number of this sex

should be produced. An addendum to this is Trivers and Willard's hypothesis that

varying maternal condition results in deviations from a 50:50 investment in the two

sexes (Trivers and Willard, 1973). Seidelmann (2006) demonstrated that for O.

bicornis, body size is a good measure of maternal condition and that smaller females

overcome the disadvantage of reduced ability to forage economically (measured as

mass of reserves collected and time taken to acquire them), by shifting the sex ratio 
of their offspring towards smaller male progeny.

Combining these theories with Seidelmann's hypothesis that open-cell parasitism 

leads to increased numbers of males (Seidelmann, 2006) suggests that multi-

faceted and sometimes competing forces operate to alter progeny sex ratios. This is 

evidenced in the current study in three ways: (i) nests typically had more male than 

female progeny, (Table 6.6), (ii) females experienced higher overall mortality than 

males due to the combined factors of developmental failure and parasitism (Figure

6.12C), and (iii) higher proportions of males were lost during the overwintering 

phase.

Teasing out whether position within the nest (and therefore incidence of parasitism 

and developmental failure), maternal condition (which determines the level of food 

reserves collected and therefore the sex and size of offspring) or the top-down effect 

of parasitism (C. indagator shaping maternal investment as per Seidelmann, 2006), 

work together or differentially to drive observed sex ratios is an area requiring 

further study.

Conclusions
The findings of this chapter can be summarised as follows:

• The standardised nature of commercial trap-nests makes them ideal for 
exploring the differential effects of mortality on male and female progeny of 
cavity-nesting bees.

• Commercial trap-nests placed in walled kitchen gardens were readily used by 
bees. Osmia bicornis was the most frequent occupant of these nests.

• No relationship exists between pre-existing hole density in wall mortar and 
the number of O. bicornis cells created and parasitized.

• The calculation of k values is a useful way of allowing O. bicornis mortality 
factors to be compared across sites.
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Lh,eJ ? 1T h k m 'T  ,°/ °f bicornis progeny was observed at the developmental 
stage. This mortality factor disproportionately affected cells at the rear of the

The specialist parasite Cacoxenus indagator was the second highest cause of
larval mortality. This mortality factor disproportionately affected cells towards 
the front of the nest.

• Due to the strong male bias associated with this species, fewer female cells 
were created than male cells.

• Female cells were preferentially located at the rear of nests, making them 
particularly vulnerable to losses arising from developmental failure. More than 
half of all female cells were predicted to fail.

• As females are the main flower visitors, high losses have implications for the 
development of this species as a managed pollinator.

• C. indagator mortality was found to be related in a non-linear way to O. 
bicornis cell density. Density independence was observed when both low and 
high bee-cell densities occurred. High densities of bees may deter C. 
indagator from entering nests, thereby reducing parasitism.

• A significantly greater number of males did not emerge after the 
overwintering period than females.

In summary, walled gardens have the potential to support populations of cavity-

nesting bees. The dominance of O. bicornis, which is known to visit a wide range of 

flowers in spring and early summer, has been recorded at these locations for the 

first time. The importance of this species (and other solitary bees) as a backup for 

commercial pollination in the face of honey bee declines is increasingly 

acknowledged (Bosch and Kemp, 2002). By using commercial trap nests this work 

has shown (for the first time) the differential effects of mortality on male and female 

bees. If O. bicornis is to be used as a managed pollinator, suitable methods to 

control for these effects will be needed.

The next chapter summarizes the findings of the study, offers a critique of the 

methods and highlights areas for further investigation.
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Chapter overview
In this chapter, the key findings of the study are re-visited and a critique of the
methods is given. Areas for further work are suggested in the context of the 
study s findings.

Key findings of the study
The results from this work offer new insights into the role that large rural gardens 

play in supporting insects regarded as potential pollinators.

The key findings are presented in two parts. Firstly the diversity of insects in

gardens is discussed in relation to local and landscape-scale factors, and secondly

the knowledge gained from the experimental use of commercial trap nests is 
considered.

The value of gardens

Insect diversity and community structure

English country houses have long been appreciated for their cultural heritage, but 

until now there has been limited focus on their natural-heritage value. This is the 

first study of its kind to provide base-line data on the species richness and 

abundance of a suite of flower visitors across the season in a significant sample of 

country-house gardens.

The results show that rural-garden habitats support a wide range of flower-visiting 

insects. In the 2010 field season almost 10,000 flower visitors, from 174 species, 

were recorded in 17 gardens (Appendix VI, Chapter 3), whilst in 2011, almost 

2,500 individuals were recorded from 136 species in nine walled gardens (Appendix 

VI, abundance data not presented). Overall, 189 flower-visiting insect species were 

identified across the 17 gardens over a two-year period (Appendix VI).

The study found that, despite gardens containing different habitat components, the 

diversity they supported was highly similar, comparing favourably to vice-county 

data (Chapter 3). For example, 14 of the potential 17 species of bumblebee known 

from the region were found in the surveyed gardens.

By considering flower-visiting insects on a group basis it was possible to make 

comparisons across the whole community. Hoverfly species richness differed
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significantly between properties; a result not seen for bumblebees, solitary bees or 
butterflies and day-flying moths (Table 3.3).

As a result of incorporating information on the flowers that insects visit, this study

has revealed, for the first time, how floral resources in novel ecosystems are used 
by insects.

Flower diversity

High flower diversity emerged as a common theme across the properties surveyed, 

with more than a fifth of the world's plant families recorded from just 17 sites. 

Despite this high richness, only a subset of these plants were visited by insects. A 

higher proportion of flowering plants were visited in spring than at any other time, 

suggesting that gardens help to support populations of insects when floral 

resources in the landscape may be patchy or inadequate.

A strong positive link between the floral resources present and the diversity of 

insects observed was noted. Both the number and abundance of flower visitors 

increased as flowering plant resources increased.

The study also revealed, for the first time, the composition of floral resources in 

rural gardens in terms of their native or alien status. Approximately 68% were 

alien, a remarkably similar percentage to that found in urban gardens in the UK 

and Mexico (Smith et al.f 2006a, Loram et al., 2008b).

Another novel finding was that the insects recorded showed no preference for 

native over alien plants, and that certain families (exhibiting different colours and 

morphology) were preferred in different seasons. These findings suggest that, 

regardless of the domination of gardens by alien plant species, the presence of 

these non-native floral resources does not act as a barrier for insects visiting 

flowers for food.

Although the complexity of plant-flower interactions were considered in terms of a 

number of metrics, including connectivity and nestedness, the study found that 

inherent weaknesses with these meant meaningful interpretation of the results was 

limited.
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Despite floral resources partially explaining the diversity of insects observed, they

were only one factor driving insect presence at a site. Landscape-scale factors were 
also important.

Wider landscape-scale effects

The study revealed that across the four insect groups, different landscape scales 

and factors played a role in explaining species richness to a greater or lesser 

extent. Bumblebees were affected by landscape factors within larger areas than 

other groups, and solitary bees were invariant to landscape-scale factors; instead 

being more influenced by within-garden effects. The response of bumblebees to 

plant richness late in the season (a local-scale effect) provides further evidence 

that the availability of resources in gardens across the whole season is an 

important attribute within agriculture-dominated landscapes.

The study also revealed that splitting a group of insects according to their nesting 

biology could reveal previously unappreciated responses to local-scale effects. 

Ground-nesting solitary bees showed a positive response to floral diversity whilst 

cavity-nesting bees responded to the area of beds and borders available. These 

results highlight the value of not only identifying insects to species level, but also 

incorporating an understanding of their life-history traits into interpretations about 

their presence.

Trap-nest bees

This study has shown for the first time that the deployment of commercial trap- 

nests can reveal new and important insights into the mortality factors affecting 

males and females of a single solitary bee species, Osmia bicornis. As honey bees 

are known to be suffering global declines (vanEngelsdorp and Meixner, 2010) these 

results take on increasing significance as the potential for new commercially- 

managed pollinators is explored.

The study found that the greatest mortality loss for O. bicornis was at the juvenile 

developmental stage and that this disproportionately affected cells at the rear of 

nests. Parasitism by a specialist fly, Cacoxenus indagator, was the second highest 

cause for mortality; this time affecting cells at the front of the nest. Due to the 

strong male bias associated with the species, and the preferential occurrence of 

females at the rear of nests, this resulted in females being disproportionately 

affected by these combined mortality causes. As a result, more than half of all 

female cells were deemed unlikely to produce healthy bees, with potential
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consequences for future pollination effectiveness. Although offering no solutions for 

this, the study has drawn attention to the fact that the issue of losses needs to be 

addressed if this species is to be developed as a managed pollinator.

Summary

The main aim of this project, as described in Chapter 1, was to explore the 

structure and composition of plant-pollinator assemblages in English country-house 

gardens. The work addressed four broad research questions and found that these 

novel ecosystems supported a diverse array of flower-visiting insects, with some 

groups such as bumblebees particularly well represented. Flower resources and 

their use were categorized, revealing the dominance of alien plants with no obvious 

preference for natives by the insects present. Bumblebees were affected by 

landscape factors at large spatial scales throughout the season, whilst solitary bees 

were influenced by within-garden factors. The use of commercial trap-nests offered 

new insights into the differing effects of mortality on male and female offspring of 

the red mason bee. Overall, English country-house gardens emerged as previously

unappreciated novel ecosystems that can be classed as important sites for flower- 

visiting insects.

Critique of methods
The methods employed at the planning, data gathering and analysis stages are 

reviewed here in turn.

Project planning

As described in Chapter 2, a Ph.D. project is necessarily limited by both time and 

resources. This project is no exception. The decision to focus on a single 

geographic area delivered advantages through the amelioration of potential 

differences in the distribution of species, as well as allowing more time to be spent 

sampling at properties.

Despite a range of country houses being selected, a possible criticism of an early 

planning decision was that sufficient replicates of similar types of property were not 

made. Kirby Hall is a good example. Described in the past as having 'Ye finest 

garden in England7 (Burton, 1994), it was one of only two English Heritage 

properties within the seventeen sites chosen. Additionally, Kirby Hall was the only 

site not to possess a fully inhabitable house. Results from the study consistently 

found this garden to be an outlier in terms of both insect and plant species 

richness. The absence of similar sites to Kirby Hall makes it difficult to draw 

conclusions about why this garden was so species poor. Was it simply because the
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gardens did not support a wide range of flowering plants, or were management 

practices (consistently tightly mown lawns and strimmed grass banks) the

underlying cause? The percentage of land categorized as 'arable and horticulture' 

within a 750m radius of Kirby Hall was relatively low compared to many others 

(data not presented), but it had a moderately high percentage of improved 

grassland in the same area. Could the effect of these landscape-scale 

characteristics have interacted with the floristically-poor gardens to reduce the

number of flower visitors observed at Kirby Hall? Without the availability of similar 

sites for comparison, it is difficult to gauge the true cause.

Another possible issue is the lack of direct comparison between the gardens

sampled and areas beyond the property boundaries. This was partly solved by

comparing the results obtained with other studies (albeit not on a like-for-like

basis) as well as to vice-county data (Chapter 3). This is considered further in the 

section 'areas for further work' below.

Data gathering

The methods used at the data gathering stage allowed standardised sampling to 

take place. The observation and netting of individuals by a single person (the 

author) reduced recorder variation but the introduction of recorder bias cannot be 

ruled out (UKBMS, 2010a).

Despite some anticipated visits to gardens being cancelled and rescheduled for 

later dates (some of which occurred during the following sampling session), this did 

not appear to impact on the robustness of the methods used (Figure 4.6).

A possible drawback of the method chosen to assess flower-visitors in the 2010 

field season was the restriction of observations to only those where an insect was 

in contact with flower reproductive structures. This decision served to limit direct 

comparisons with other studies where a full inventory of all insects was made (e.g. 

Edwards, 2003). In spite of this, it also yielded benefits by providing hitherto 

unpublished data on the interactions between flower visitors and the many alien 

plants found in rural gardens.

Data analysis
The use of standard techniques for analyzing data and the employment of null 

models where appropriate (e.g. for WNODF and redundancy analysis in CANOCO) 

allowed the robust testing of research questions and confidence to be placed in the 

results obtained. Limitations arising from the nestedness procedures manifested
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themselves in the form of data interpretation issues rather than the analyses
themselves.

Areas for further work
The suggested areas for further work are discussed at scales ranging from

individual gardens to the wider-landscape, and incorporate interactions between 

English country-house gardens and the visiting public.

Within-garden management

In addition to the floral resources available within gardens, the management of 

these habitats is likely to influence the diversity of insects found there. The 

suggestion by Galluzzi et al. (2010) that gardens are 'resilient ecosystems' that are 

shaped by the close interactions between humans and nature, has not been 

explicitly tested and would benefit from an assessment of the impacts of different 

management approaches. Whilst a laissez-faire approach to gardening is known to 

be beneficial for biodiversity (Head, 2012), this is rarely adopted at country- 

houses. Instead, the management of flower-rich areas close to the house is usually 

deemed a vital component of the overall appearance of a property.

To assess the effects of different management styles, the tilling and mowing 

regimes adopted in individual gardens could be considered. The hoeing of soil on 

flower beds and borders allows areas to be kept free of weeds, whilst at the same 

time creating habitat for solitary bees that prefer vegetation-free areas for nest 

sites (Roubik, 1992). The requirement for most gardens to be maintained to a high 

visual standard (i.e. completely weed free), in combination with numerous 

volunteer gardeners at some sites means, however, that some beds receive 

continual soil disturbance, thereby reducing nesting opportunities and success. 

Identifying whether continual hoeing and weeding limits the occurrence of ground-

nesting species is an area that could be investigated.

Similarly, mowing regimes (in particular the methods and frequency of mowing) 

could be assessed. Enquiries at many of the sites where sampling took place 

revealed external mowing contracts were in place. As a result, lawns were being 

mowed on a weekly basis regardless of their growth state, resulting in flower 

patches (such as red and white clover and dandelions) that were favoured by 

insects being continually removed. Added to this was the mechanical destruction of 

bees whilst they nectared on flowers present in lawns. This occurred due to the use 

of fast-moving ride-on lawn mowers which gave insufficient time for bees to fly off

214



Chapter 7

and escape the mowers' blades. Bumblebees were observed to be the most 

frequent victims of this practice (Figure 7 .1 ).

Figure 7.1 Selection of bumblebees killed as a result of ride-on mowers. These 
individuals were collected along a 10m stretch of newly mown grass at one of the 
study sites and were still alive at the time the image was taken. Image: Erenler, 
(2010).

Comparisons with other sites
The decision about whether to use pesticides and herbicides at a property clearly 

rests with the head gardener or estate manager. The extent to which these 

chemicals are used, and the conditions and seasons in which they are applied may 

affect the health of flower-visiting insects (Whitehorn et at., 2012). In the current 

study a mismatch between the responses recorded from head gardeners in a 

questionnaire about the use of spray-applied pesticides and herbicides and their 

actual application by gardeners was observed on a number of occasions. Pairing
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properties where sprays are known to be used with gardens that reject the

application of chemicals may reveal differences in insect species richness and/or

abundance. The pairing of sites with reference sites is an established method of 

assessing the biodiversity value of a habitat (Tarrant etal., 2012).

Wider landscape effects

The results presented in Chapter 5 of this thesis reveal that landscape-scale 

processes have the potential to affect flower-visitor richness and abundance but 

that this may vary according to the group of interest (Table 5.4 and Jauker et a/., 

2009). The United Kingdom, and particularly Central England, is currently seeing 

an expansion of the area planted with oilseed rape (OSR) - up 9.8% in 2011 from 

the previous year (Defra, 2011). Assessing the effect of this mass-flowering crop 

on insect pollinators both within and beyond garden boundaries is a subject 

demanding further attention. Whilst a range of pollinators is known to visit OSR 

and enhance yields (Bommarco et aI., 2012, Jauker et a/., 2012b), it has also been 

shown to distort plant-pollinator interactions (Diekotter eta/., 2010). Building on 

the results of Chapter 5, and specifically addressing questions about seasonality, 

the temporary (or otherwise) movement of beneficial insects beyond gardens into 

the wider landscape to forage on OSR could be examined.

Assessing the influence of country-house gardens on the public

As the number of people living in urban environments continues to rise, people's 

own gardens and those they choose to visit take on increasing importance for 

human wellbeing (Davies et al., 2009). The extent to which country-house gardens 

influence attitudes to biodiversity, garden design and plant purchasing decisions 

remains unknown. What is not in question, however, is that visiting culturally 

important sites remains a popular activity. As noted in Chapter 1, the National 

Trust alone had more than 19 million paid visits to their sites in 2011 (The National 

Trust, 2012b). A qualitative assessment of how these sites influence the general 

public may reveal both the positive and negative aspects of highly managed and 

maintained garden areas.

Whilst an increasing awareness of the importance of biodiversity is broadly 

acknowledged by owners and managers of country-house gardens, this does not 

always translate into a realistic appreciation of the true diversity of some groups. 

Native bees are a good example of this. Improving the awareness of the habitat 

requirements of a range of solitary and social bees in addition to the needs of 

honey bees requires knowledge to be shared about this important group of 

pollinators.
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Concluding remarks

The decline and potential extinction of charismatic species make headlines, whilst 

cumulative losses of biodiversity rightfully raise concern (WWF, 2012, Natural

England, 2010). Less appreciated, and less easy to observe however, is the erosion

of ecological interactions (Kearns and Inouye, 1997). As the unprecedented threat

to the ecosystem service of pollination continues, English country-house gardens

emerge as important novel ecosystems capable of supporting biodiversity and 
ecological webs.

Humankind did not weave the web of life -

We are but one thread within it.

Whatever we do to the web we do to ourselves

All things are bound together

All things connect.

Adapted from an original version created in 1972 by Ted Perry for the 
film Home (Berkes, 1999).
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Appendix I

Hiafaihc ™ 17 Properties used for the study. Garden descriptions and access
details correct as at January 2013.

ALTHORP

Address: Althorp House, Althorp, Northamptonshire, NN7 4HQ 

House original build date: 1508

Architect: Unknown. Remodelled in 1650 by Dorothy, the widow of the 1st Earl of 
Sunderland. Additions by Henry Holland in 17861

Original owner: Sir John Spencer

Garden designer/Landscape architect: Andre Le Notre2 

Notable events in the garden's history:

1707 Britannia Illustrata engraving shows that part of Althorp's formal 
gardens were given over to vegetables, fruit trees and grass, and that formal 
tree-lined avenues radiated from it1
Brownian' alterations, including the filling in of the moat, proposed by Henry 
Holland following the 1787 plans of Samuel Lapidge ('Capability' Brown's chief 
assistant)
'Capability' Brown believed to have visited Althorp in 1780 to offer advice 
about future changes to the landscape1

* W.M. Teulon added terraces in the 1860s1
’ Lake known as 'Round Oval' refilled in 1868 with summerhouse, later to be 

dedicated to the memory of Diana, Princess of Wales, moved there in 19262
* Late 1990s planting work by Dan Pearson1

Current garden:

Description

Mowl and Hickman (2008) describe the present-day garden at Althorp as 'gently 
elegant, but essentially bland'. The gardens are dominated by tightly mown grass 
and there is limited floral variety in the few beds and borders present.

During the 2010 sampling season, major restoration work was taking place. As a 
result the borders to the west of the main house were not fully maintained. The 
borders to the north-west of the Stable Block (containing Buddleja sp., Digitalis 
ferruginea and Rosa rugosa) were particularly popular with flower-visiting insects.

Public access

Private house. The gardens are open each day during the months of July and 
August.

Present owner: The Right Honourable Charles Spencer (9th Earl Spencer)

Website: http://www.althorp.com/

1 Mowl and Hickman (2008)
2 Hall (1994)

246



Appendices

BOUGHTON

Address: Boughton House, Kettering, Northamptonshire, NN14 1BJ

House original build date: Late 17th century house built on Tudor foundations1

Architect/design: The design ideas of Ralph, the 1st Duke of Buccleuch, gained
during his ambassadorial duties at the court of Louis XIV, heavily influenced the 
design of Boughton House2

Original owner: 1st Duke of Montagu (Montagu ancestors owned the Estate from 
1528)1

Garden designer/Landscape architect: Ralph Montagu employed Leonard van 
der Meulan as a gardener early in the eighteenth century. The garden design is 
attributed to Charles Bridgeman1

Notable events in the garden's history:

• Design of garden influenced by Duke Ralph3. Series of canals, lakes and
avenues laid out over 100 acres. The design included parterres, fountains and 
woodland

• After the death of the 2nd Duke in 1749 the estate passed through the female 
line. For almost 200 years 'benign neglect became the norm' as nature 
reclaimed the terraces and waterways silted up.4

• Management plan drawn up at the end of the twentieth century to restore 
areas of the estate, clean up silted ponds and re-plant lime avenues

• 'Orpheus', commissioned by the present Duke of Buccleuch and created 
between 2007-2009 is the first new landscape feature at the estate for 300 
years1

Current garden:

Description

The garden consists of a mix of components including an extensive walled garden 
with a sensory area that is open to the public, ponds fringed with native plants, a 
dower garden (previously the private woodland garden of David Scott and Valerie 
Finnis) and the Duke's own garden. All areas were accessed for sampling during the 
current project.

Public access

Private house. Gardens open daily throughout August.

Present owner: The 10th Duke of Buccleuch, Richard Walter John Montagu Douglas 
Scott

Website: http://www.bouqhtonhouse.orq.uk

1 The Dicamillo Companion
2 Burton (1994)
3 Heward and Taylor (1996)
4 Boughton House website
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CANONS ASHBY

Address: Canons Ashby, Daventry, Northamptonshire, NN11 3SD 

House original build date: 15501

Architect/design: The Dryden family built the current house on the site originally
used by Sir John Cope. (Cope's original house reportedly used masonry from the
nearby fallen priory ). In the mid-seventeenth century Sir John Dryden re-did much 
of the house in the Jacobean style3

Original owner(s): The Dryden family

Garden designer/Landscape architect: Edward Dryden3 

Notable events in the garden's history:

• Edward Dryden laid out the formal garden in the 18th century3
• Plans of the garden were published in an 1885 book History of Gardening 

written by Alice Amherst and in H. Inigo Triggs' Formal Gardens in England
and Scotland (1902). This publication went on to have significant influence on 
Edwardian garden design3

• After 1948 the house became unoccupied and the garden overgrown
• The house was gifted to the National Trust by the Dryden family in 1980 and 

was eventually reopened in 19842
• Canons Ashby received > 50,000 visitors in 2011/124

Current garden:

Description

A compact garden comprising formal flower beds with annual bedding, a herb 
border, and semi-wild area. The 2010 sampling took place prior to the major 2011 
restoration project in the lower garden.

Public access

Open several days a week depending on season.

Present owner: The National Trust

Website: http://www.nationaltrust.orq.uk/canons-ashbv-house/

1 The Dicamillo Companion
2 The National Trust (Canons Ashby) website
3 Hall (1994)
4 The National Trust website
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COTON MANOR

Address: Coton Manor, Coton, Northamptonshire, NN6 8RQ 

House original build date: 17th century1 

Architect: unknown

Original owner: unknown

Garden designer/Landscape architect:

The current design reflects the work, skill and knowledge of the present owners, Ian 
and Susie Pasley-Tyler

Notable events in the garden's history:

• Prior to WWII when Ian Pasley-Tyler's parents moved into the property there
were no formal gardens. The area surrounding the house was used for cattle 
grazing2

• In 1990 Ian and Susie Pasley-Tyler started creating the garden
• The wildflower meadow was sown in 19943

Current garden:

Description

This compact garden contains many elements including beds, borders, water 
gardens, a beech wood (with bluebells in spring), a herb garden, a fruit area and 
semi-wild patches, including a wildflower meadow.

Public access

Tuesday to Saturday from March to September 

Present owners: Ian and Susie Pasley-Tyler 

Website: http://www.cotonmanor.co.uk/

1 The Dicamillo Companion 
z Alexander-Sinclair (2011)
2 Coton Manor website
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COURTEENHALL

Address: The Estate Office, Courteenhall, Northamptonshire, NN7 2QD 

House original build date: 17931 

Architect: Samuel Saxon1

Original owner: Sir William Wake2

Garden designer/Landscape architect: Humphry Repton 1790s2 

Notable events in the garden's history:

• Gardens designed by Humphry Repton, the last great landscape architect of 
the 18th century2

• In 2008 an area of the garden was sown with wildflowers3 

Current garden:

Description

This garden is comprised of many smaller components that include an arboretum, a 
pond and a wildflower area. Additionally there is a traditional walled garden which 
contains perennial borders, fruit trees and a large vegetable growing area.

Public access

Private house and garden. The gardens are not open to the public although private 
weddings occasionally take place there.

Present owners: Charles and Joan Wake

Website: http://www.courteenhall.co.uk/

1 The Dicamillo Companion
2 Courteenhall website
3 D. Wilkes (pers. comm.)
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EASTON NESTON

Address: Easton Neston, Towcester, Northamptonshire 

House original build date: 1699-17021

Architect: Possibly William Talman or Nicholas Hawksmoor. Design executed and 
altered by Hawksmoor. Additions (including chimneys) by William Kent in 17352

Original owner: Sir William Fermor1

Garden designer/Landscape architect: John Raffield (entrance gate and screen 
to the park in 1820s)1

Notable events in the garden's history:

• Canal (known as the Long water) designed by Hawksmoor (date unknown) 

Current garden:

Description

The garden is comprised of formal areas with ponds, fountains and yew hedges 
which adjoin a very large walled kitchen garden containing an orchard, vegetable 
and soft fruit growing areas plus new beds and borders (planted in 2009). Large 
tree-lined avenues radiate out from the house. Nearby a less formal pond with 
native planting at its edge exists.

Public access

Private house and garden. Not open to the public.

Present owner: Mr Leon Max 

Website: None

1 Harris (1979)
2 The Dicamillo Companion
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FARNBOROUGH HALL

Address: Farnborough Hall, Farnborough, Warwickshire, 0X17 1DU 

House original build date: mid 18th century 

Architect: Sanderson Miller1

Original owner: Holbech family acquired the Farnborough Estate in 16841 

Garden designer/Landscape architect: Sanderson Miller in 18th century.

Notable events in the garden's history:

• William Holbech lead the design of the garden using ideas gained during his 
'grand tour' in the late 18th century

• Three quarters of a mile terrace walk created (date unknown). Terrace passes 
an ionic building and leads to an obelisk1

• The National Trust acquired the property in 1960, but it is still run and 
occupied by the Holbech family.

Current garden:

Description

The main garden is approached from a long drive leading up to the house. Two 
borders with mirrored planting extend to the door of the property. The long terrace 
walk is tightly mown and bordered on one side by tall trees. At a lower level, a series 
of borders, including a rose garden, lead down to a pool.

Public access

Wednesday and Saturday afternoons only (Apr - Sep.).

Present owner: The National Trust. The house continues to be occupied by the 
Holbech family.

Website: http://www.nationaltrust.orq.uk/farnborouQh-hall/

1 The National Trust (Farnborough) website
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HOLDENBY HOUSE

Address: Holdenby House, Estate Office, Holdenby, Northamptonshire, NN6 8DJ 

House original build date: 15831

Architect/designer: unknown, but the house was commissioned by Sir Christopher 
Hatton to be the largest private house at the time2

Original owner: Sir Christopher Hatton

Garden designer/Landscape architect: unknown

Notable events in the garden's history2 3:

• In 1647 Charles I was self-imprisoned for five months within the confines of 
the house and gardens following his defeat in the Civil War. King Charles' 
Walk, his favourite part of the Elizabethan garden, has been incorporated into 
the present-day garden

• Holdenby bought by Captain Adam Baynes in 1650 who demolished all but 
the kitchen wing (now the main house)

• House and gardens pass back to the Crown in 1660. Subsequently purchased 
by The Duke of Marlborough (1709). Passed down through the female line to 
the Lowthers (present owners)

• James Lowther initiates restoration and replanting of the garden from 1979 
onwards

Current garden:

Description

Several distinct areas make up this garden, which almost completely surrounds the 
house. There are formal beds and borders (including the silver border), a kitchen 
garden, an Elizabethan garden, a pond garden and nearby woodland. The original 
walled garden is now the site of a commercial falconry centre.

Public access

Private house. Access to gardens on Sundays (Apr. - Sep.) 

Present owners: James and Karen Lowther

Website: http://www.holdenbv.com/

1 The Dicamillo Companion
2 Holdenby website
2 Holdenby brochure
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KELMARSH HALL

Address: Kelmarsh Hall, Kelmarsh, Northamptonshire, NN6 9LY 

House original build date: 1728-321

Architect: Built by Francis Smith of Warwick to a James Gibb design. Additions 
(entrance lodges) made by James Wyatt in 17781'2

Original owner: House built for William Hanbury

Garden designer/Landscape architect: unknown

Notable events in the garden's history:

• Estate purchased by Richard Naylor in 1864 for its potential as a hunting 
ground2

• Nancy Lancaster laid out the gardens in the 1930s during the time she lived 
there as a lessee with Ronald Tree. Norah Lindsay and Geoffrey Jellicoe 
assisted Lancaster with designs2

Current garden:

Description

The current garden is a medley of herbaceous borders, rose gardens and beds. The 
walled garden (containing a huge array of flowers as well as extensive vegetable 
beds) is unusual in that it is triangular in shape.

Public access

Open Tuesdays, Wednesdays, Thursdays and Sundays from April to September 

Present owner: The Kelmarsh Trust (Charitable Trust)

Website: http://www.kelmarsh.com/

1 Mowl and Hickman (2008)
2 Kelmarsh website
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KIRBY HALL

Address: Kirby Hall, off Kirby Lane, Corby, Northamptonshire, NN17 3EN 

House original build date: 1570-751

Architect: Inigo Jones1

Original owner: Sir Humphrey Stafford

Garden designer/Landscape architect Principally designed by Christopher IV 

Notable events in the garden's history:

• During the 1680s Christopher IV, who was a noted horticulturalist, created 
what his brother later described as 'Ye finest garden in England'2

• At their peak in 1700 the gardens covered almost 15 acres. Parterres 
extended to a stream, and beyond that a 'wilderness' was visible3

• Following the death of Sir Christopher Hatton IV in 1706 the gardens fell into 
decline. His son felled areas of woodland to pay off his debts3

• By 1810 the gardens and house were described as 'unaccountably neglected 
and fast going to ruin and decay'3

• During the 1930s the property became the responsibility of the Office of 
Works. Photographs from the 1950s show extensive rose planting3

• In 1984 English Heritage took over the property and started a garden 
renovation programme

Current garden:

Description

Two borders (the last remaining flower beds) have been populated with plants 
befitting the time of the garden's heyday. However, the remainder of the garden 
comprises over-mown, grass-dominated areas. These include the area occupied by 
the original parterres as well as others that extend to the property boundary.

Public access

Mondays, Thursdays, Fridays, Saturdays and Sundays from April to November 

Present owner: English Heritage

Website: http://www.enQlish-heritaqe.orq.uk/davsout/properties/kirbv-hall/

1 The Dicamillo Companion
2 Burton (1994)
3 English Heritage (Kirby) Printed Information
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LAMPORT HALL

Address: Lamport Hall Preservation Trust Limited, Lamport Hall, Lamport, 
Northamptonshire, NN6 9HD

House original build date: 1655 

Architect: John Webb (1654)1

Original owner: Sir Justinian Isham (although Lamport manor had been in the 
family since 1560)2

Garden designer/Landscape architect: Gardens originally planned out by Gilbert 
Clerke in 16553 and laid out in 16771

Notable events in the garden's history:

• In 1857 Charles Isham planted Irish yews to make Eagle Walk (a trail leading 
to caged eagles) and created the rockery which represents the earliest alpine 
garden in the UK. He placed small figures on this rocky face which are 
recognised today as the world's first gnomes3

• In the early part of the twenty-first century the walled garden was replanted 
with wide blocks of herbaceous perennials

Current garden:

Description

Iron gates dating to 1700 remain in the garden, as does Eagle Walk and a very large 
walled garden. The latter contains an unusual layout of herbaceous perennials, many 
of which could be described as candidates for prairie planting. Other beds and 
borders contain an interesting mix of plants of various heights, colours and flowering 
times, most of which receive some shelter from nearby walls. A long south-west 
facing border of lavender adjoins grazing pasture. In 2010 the orchard had limited 
ground flora as a result continuous mowing and the application of herbicides around 
tree bases. This changed in 2011 when a more relaxed approach to management 
was taken.

Public

Wednesday and Thursday afternoons, April to October 

Present owner: Lamport Hall Preservation Trust (charitable trust)

Website: http://www.lamporthall.co.uk/

1 British History website
2 Heward and Taylor (1996)
3 Lamport website
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LOIS WEEDON HOUSE

Address: Lois Weedon House, Lois Weedon, Nr. Towcester, Northamptonshire

House original build date: Queen Anne style - but believed to have been built in 
1904 for the Speaker of the House of Commons1

Architect: unknown

Original owner: unconfirmed

Garden designer/Landscape architect: unknown

Notable events in the garden's history: None documented 

Current garden:

Description

This garden has a real cottage-garden feel to it. As well as possessing formal beds 
and borders, there are terraces that lead down to a large pond together with shady 
walks. A ha-ha separates the garden from grazing land on the estate. The walled 
garden has wide south and east facing flower borders within it, together with areas 
where soft fruit is grown.

Public access

This is a private house and garden. It opens twice a year to raise money for charity 
under the National Garden Scheme2

Present owners: Sir John and Lady Greenaway 

Website: None

1 South Northants website
2 National Garden Scheme website
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STEANE PARK

Address. Steane Park Garden, Brackley, Northamptonshire, NN13 6DP

House original build date: The late medieval and 16th century house no longer
ex|sts Only the service end survives. The complete building is known from a drawing 
by Tillemans dating to 17191

Architect: unknown

Original owner: Possibly built by Baron William Morley or his son Henry1 

Garden designer/Landscape architect: unknown 

Notable events in the garden's history:

• In 1752 the house was in ruins and is believed to have been dismantled soon 
after that date. Any existing garden areas are likely to have been abandoned

• The surviving part of the house was sold to a Captain Alcock in 1890. The 
remodelling and extensions are attributed to him. It is possible that parts of 
the garden came into existence at this time1

Current garden:

Description

The design of the current garden and the diversity of compartments and plants it 
contains can be attributed to the present owners, in particular Lady Connell. The 
garden has many beds and borders together with a vegetable patch, a large pond, a 
wildflower meadow and a bog garden. Semi-wild areas are allowed to flourish which 
encourages native plants to establish and flower.

Public access

This is a private house and garden. Group visits to the garden are possible by 
appointment.

Present owners: Sir Michael and Lady Connell

Website: http://www.steanepark.co.uk/

1 Heward and Taylor (1996)
258



Appendices

SULGRAVE MANOR

Address: Sulgrave Manor, Manor Road, Sulgrave, Northamptonshire, 0X17 2SD 

House original build date: 15401

Architect: unknown

Original owner: Lawrence Washington2

Garden designer/Landscape architect: Early garden designers unknown. In the 
1920s Sir Reginald Blomfeld designed the garden3

Notable events in the garden's history:

• From the late 18r century to 1914 Sulgrave was used as a farmstead and all 
traces of the previous garden were lost2

• Herbaceous borders, a knot garden with traditional herbs and the orchard 
were laid out in 19202

• Garden first opened to the public in 19213
• Garden became the National Garden of the Herb Society in 1997 and includes 

beds containing herbs both taken to and brought from the Americas4

Current garden:

Description

In addition to the area designated for the Herb Society, the garden has an orchard, 
several flower borders and a Tudor vegetable garden. Native flowering plants are 
plentiful in areas that are left as semi-wild, in particular where the composting takes 
place.

Public access

Weekends from noon and Tuesdays - Fridays from 2pm (April - Oct)

Present owner: Sulgrave Manor Trust (charitable trust)

Website: http://www.suloravemanor.orq.uk/

1 The Dicamillo Companion
2 Sulgrave website
3 Sulgrave brochure
4 The Herb Society
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UPTON HOUSE

Address: Upton House and Gardens, Nr. Banbury, Oxfordshire, 0X15 6HT

House original build date: Known to be a manor house in 1452, it was rebuilt in
the 20 years after that. Sir Rushout Cullen made extensive changes on purchasing it 
in 16951 y

Architect: House remodelled by Percy Morley-Horder in 1927-29 for the 2nd 
Viscount Bearsted

Original owner: Sir Rushout Cullen

Garden designer/Landscape architect: unknown

Notable events in the garden's history:

• Lord Bearsted bought the property in 1927. Lady Bearsted employed Kitty
Lloyd-Jones to re-design the gardens which included the creation of a bog 
garden2

Current garden:

Description

The gardens at Upton comprise a number of borders close to the house followed by a 
series of wide terraces, each supported by stone walls, which contain a range of 
woody plants, herbaceous perennials (including the National Collection of Asters) 
and edible plants. These terraces lead down to a large pond. There is a separate bog 
garden, a semi-wild area planted with hazel, a herb garden and woodland walks. The 
orchard is tightly mown, as are all the lawn areas.

Public access

Open every day 11am - 5pm (except Thursdays)

Present owner: The National Trust

Website: http://www.nationaltrust.orq.uk/upton-house/

1 The National Trust (Upton House) website
2 The National Trust (2009)
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WADDESDON MANOR

Address: Waddesdon Manor, Waddesdon, Buckinghamshire, HP18 OJH 

House original build date: 1874-89 

Architect: G.H. Destailleur1

Original owner: Baron Ferdinand de Rothschild

Garden designer/Landscape architect: Elie Laine (1870s)1 

Notable events in the garden's history:

• House built on a cleared and levelled hilltop. Trees hauled into position to 
create a mature setting in the shortest time possible1

• During the second World War potatoes were grown on the large parterre at 
the front of the house2

• James de Rothschild died without an heir in 1957 and the house and gardens 
were left to The National Trust.

• In 1995 the parterre was restored to its Victorian glory by the current Lord 
Rothschild's daughter, Beth Tommasini1

• The rose garden, planted with 600 roses, was created in 2000. It is a tribute 
to the rose garden originally laid out by Miss Alice de Rothschild who inherited 
the estate in 1898 from her brother

• Waddesdon Manor was The National Trust's fifth most visited property in 
2011/12, with more than 339 000 people touring the house and gardens3

Current garden:

Description

The gardens at Waddesdon are dominated by routes leading to and from the main 
house. Formal carpet bedding is a feature of the famous parterre (in 2010, five 
thousand Begonias were planted). Annuals are used on round beds along the drive 
leading to the house and there is an extensive collection of David Austin roses in the 
recently created rose garden. The woodland walks are extensively managed 
although some native ground flora is present.

Public access

Wednesday to Friday and weekends from March to December 

Present owner: The National Trust

Website: http://www.nationaltrust.orq.uk/waddesdon-manor/

1 Harris (1979)
2 Paul Farnell, Waddesdon Manor Head Gardener (pers. comm.)
3 The National Trust (2012)
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WREST PARK

Address: Wrest Park, Silsoe, Luton, Bedfordshire, MK45 4HR

House original build date: Present house is a re-build dating to 18391. The 
original house was demolished having been owned by the de Gray's since 12602

Architect: Thomas de Grey, 2nd Earl de Grey (amateur architect)2

Original owner: John De Grey first owned Wrest Park in the 1260s2

Garden designer/Landscape architect: de Grey family, Thomas Archer and 
'Capability' Brown2

Notable events in the garden's history:

• Creation of the 18r century canal with Baroque-style garden pavilion 
(designed by Thomas Archer and built 1709-11)3

• Henry, duke of Kent inherited the formal gardens and added a designed 
woodland around it between 1710 and 17402

• Jemima, marchioness Grey employed Capability' Brown to soften the formal 
lines created by her Grandfather2

• Old house demolished and a new house designed by Thomas, Earl de Grey 
built north of the original property in 1839. The gardens were redesigned at 
the same time using the French style of large parterres and benefited from 
the addition of an orangery and Italian garden2

• In 2006 Wrest Park passed into the hands of English Heritage1
• In 2011 a new restoration project started in the garden. The description 

below reflects the gardens as they were when sampled in 2010.

Current garden:

Description

A very formal garden. Few flower resources available in the Italian garden with the 
parterre dominated by red pelargoniums. The woodland walks are heavily managed 
and the lawn areas are tightly mown.

Public access

Open weekends only (Nov. to Apr.) then every day apart from Tuesdays and 
Wednesdays.

Present owner: English Heritage

Website: http://www.enQlish-heritaqe.orq.uk/daysout/properties/wrest-park/

1 English Heritage (Wrest Park) website
2 English Heritage Information Boards
3 Girouard (1984)
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Abbreviations used in the thesis

AL - Althorp Estate 

APG - Angiosperm Phylogeny Group 

BAP - Biodiversity Action Plan 

BB - Bumblebees

BBCT -  Bumblebee Conservation Trust

BDM - Butterflies and day-flying moths

Beds. - Bedfordshire

BOU -  Boughton House

BPG - Buckingham Palace Garden

Bucks. - Buckinghamshire

BWARS - Bees, Wasps and Ants Recording Society 

CA - Canons Ashby 

CHALL - Courteenhall 

CM - Coton Manor

DCA - Detrended correspondence analysis

Defra - Department of the Environment, Food and Rural Affairs

ECDF(s) - Empirical cumulative distribution function(s)

EN - Easton Neston

FAR - Farnborough Hall

F - Flies

HF - Hoverflies

HOL - Holdenby House

IPI - Insect Pollinator Initiative

KEL - Kelmarsh Hall

KIR - Kirby Hall

LAM - Lamport Hall

LW - Lois Weedon House

NBKA - Northamptonshire Beekeepers' Association 

NERC - Natural Environment Research Council 

NGO - Non-governmental organisation
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NGS - National Garden Scheme 

NHM - Natural History Museum

NODF - Nestedness Metric based on Overlap and Decreasing Fill

Northants. - Northamptonshire 

NT - National Trust 

OSR - Oilseed rape

Pers. comm. - Personal communication 

Pers. obs. - Personal observation 

RAD(s) - Rank abundance distribution(s)

RDA -  Redundancy analysis

REGWQ - Ryan, Einot, Gabriel, Welsch Q (post hoc test)

SAD(s) - Species abundance distribution(s)

SB - Solitary bees 

SOCW - Social wasps 

SOLW - Solitary wasps 

ST -  Steane Park

STEP - Status and Trends of European Pollinators

SUL - Sulgrave Manor

UK - United Kingdom

UKBMS -  UK Butterfly Monitoring Scheme

UKCIP - UK Climate Impacts Programme

UN -  United Nations

UNEP-WCMC - UN Environment Programme - World Conservation Monitoring Centre

UP - Upton House 

USA - United States of America 

WAD - Waddesdon Manor 

Warks. - Warwickshire

WINE - Weighted-Interaction Nestedness Estimator

WNODF - Weighted Nestedness Metric based on Overlap and Decreasing Fill 

WR - Wrest Park
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°f seven key non-parametric species richness estimators available. 
(20H) WG 3nd Coddjngton (1994)' Chazdon eta/. (1998) and Gotelli and Colwell

Name of estimator Suitable for 
abundance
(A) or
incidence (I) 
data

Description

ACE
Abundance-based
coverage estimator

A Estimator based on species with < 10 
individuals in a sample

ICE
Incidence-based 
coverage estimator

I Estimator based on species found in < 
10 samples

Chao 1 A Estimates the number of species in a 
sample based on the number of rare 
species present. Uses singletons and 
doubletons for abundance data

Chao 2 I Estimates the number of species in a 
sample based on the number of 
occurrences of rare species. Uses 
'uniques' or duplicates for incidence 
data

Jack 1
First-order jack knife

A Estimate based on the number of 
species that occur only in one sample.

Jack 2
Second-order jack 
knife

I Estimate based on the number of 
species that occur only in one sample 
and, in addition, those that occur only 
in two samples

Boot
Bootstrap

I Bootstrap method based on the 
proportion of samples containing each 
species
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Appendix IV

List of the 20 National Trust gardens surveyed by Edwards (2003).

National Trust Property Postcode County

Alfriston Clergy House BN26 5TL Sussex
Anglesey Abbey CB25 9EJ Cambridgeshire
Batemans TN19 7DS Sussex
Chartwell TN19 IPS Kent
Claremont KT10 9JG Surrey
Clivedon SL6 OJA Berkshire
Emmets TN14 6BA Kent
Ham House TW10 7RS Surrey
Hinton Ampner S024 OLA Hampshire
Ickworth IP29 5QE Surrey
Igtham Mote TNI5 0NT Kent
Nymans RH17 6EB Sussex
Polesden Lacey RH5 6BD Surrey
Scotney TN3 8JN Kent
Sheffield Park TN22 3QX Sussex
Sissinghurst TNI7 2AB Kent
Stowe MK185DG Buckinghamshire
Uppark GU31 5QR Hampshire
The Vynne RG24 9HL Hampshire
Wimpole SG80BW Cambridgeshire

Appendix V

Dunn-Sidak method for adjusting the significance level (a) when making multiple 
comparisons (Sokal and Rohlf, 1981).

a' = 1 - (1 - 0.05)1//f

where k = the number of comparisons

Example: 6 independent tests 

1 - (1 - 0.05)1/6 

1 - (0.95)0 1667 

1 - 0.9915 

a = 0.0085
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List of insect species recorded in 2010 and 2011.

Bumblebees 2010

Bombus barbutellus (Kirby, 1802) 1
Bom bus campestris (Panzer, 1801) 1
Bombus hortorum (Linnaeus, 1761) 1
Bombus hypnorum (Linnaeus, 1758) 1
Bombus /apidarius (Linnaeus, 1758) 1
Bombus lucorum senso latu 1
Bombus pascuorum (Scopoli, 1763) 1
Bombus pratorum (Linnaeus, 1761) 1
Bombus ruderarius (Muller, 1776) 1
Bombus ruderatus (Fabricius, 1775) 1
Bombus rupestris (Fabricius, 1793) 1
Bombus sylvestris (Lepeletier, 1832) 1
Bombus terrestris (Linnaeus, 1758) 1
Bombus vestalis (Geoffroy, 1785) 1

Solitary bees

Andrena bicolor Fabricius, 1775 1
Andrena bucephala Stephens, 1846 1
Andrena carantonica Perez, 1902 1
Andrena chrysosceles (Kirby, 1802) 1
Andrena cineraria (Linnaeus, 1758) 1
Andrena dorsata (Kirby, 1802) 1
Andrena flavipes Panzer, 1799 1
Andrena fulva (Muller, 1776) 1
Andrena haemorrhoa (Fabricius, 1781) 1
Andrena labialis (Kirby, 1802) 1
Andrena nigroaenea (Kirby, 1802) 1
Andrena nitida (Muller, 1776) 1
Andrena semilaevis Perez, 1903 1
Andrena subopaca Nylander, 1848 1
Andrena wilkella (Kirby, 1802) 1
Anthidium manicatum (Linnaeus, 1758) 1
Anthophora furcata (Panzer, 1798) 0
Anthophora plumipes (Pallas, 1772) 1
Anthophora quadrimaculata (Panzer, 1798) 1
Chelostoma campanularum (Kirby, 1802) 0
Colletes daviesanus Smith, 1846 1
Halictus rubicundus (Christ, 1791) 1
Halictus tumulorum (Linnaeus, 1758) 0
Hylaeus communis Nylander, 1852 1
Hylaeus hyalinatus Smith, 1842 1



Lasiog/ossum albipes (Fabricius, 1781) 
Lasioglossum calceatum (Scopoli, 1763) 
Lasioglossum lativentre (Schenck, 1853) 
Lasioglossum leucopus (Kirby, 1802) 
Lasioglossum malachurum (Kirby, 1802) 
Lasioglossum morio (Fabricius, 1793) 
Lasioglossum smeathmanellum (Kirby, 1802) 
Megachile centuncu/aris (Linnaeus, 1758) 
Megachile ligniseca (Kirby, 1802)
Megachile versicolor Smith, F. 1844 
Megachile willughbiel/a (Kirby, 1802)
Melecta albifrons (Forster, 1771)
Nomada fabriciana (Linnaeus, 1767)
Nomada flava Panzer, 1798 
Nomada goodeniana (Kirby, 1802)
Nomada marshamella (Kirby, 1802)
Nomada panzeri Lepeletier, 1841 
Nomada ruficornis (Linnaeus, 1758)
Osmia bicolor (Schrank, 1781)
Osmia bicornis (Linnaeus, 1758)
Osmia caerulescens (Linnaeus, 1758)
Osmia leaiana (Kirby, 1802)
Sphecodes ephippius (Linnaeus, 1787) 
Sphecodes geoffrellus (Kirby, 1802) 
Sphecodes monilicornis (Kirby, 1802)
Species A - K1

Social wasps

Dolichovespula media (Retzius, 1783) 
Dolichovespula norwegica (Fabricius, 1781) 
Dolichovespula saxonica (Fabricius, 1793) 
Dolichovespula sylvestris (Scopoli, 1763) 
Vespa crabro Linnaeus, 1758 
Vespula germanica (Fabricius, 1793)
Vespula vulgaris (Linnaeus, 1758)

Solitary wasps

Agrypon tenuitarsum Kiss, 1926 
Amblyteles armatorius (Forster, 1771) 
Ancistrocerus gaze I la (Panzer, 1798) 
Ancistrocerus nigricornis (Curtis, 1826) 
Ancistrocerus parietinus (Linnaeus, 1758) 
Ancistrocerus parietum (Linnaeus, 1758) 
Anoplius caviventris (Aurivillius, 1907) 
Cerceris rybyensis (Linnaeus, 1771)
Chrysis ignita (Linnaeus, 1758)
Crossocerus dimidiatus (Fabricius, 1781)



Crossocerus elongatulus (Vander Linden, 1829) 
Ectemnius continuus (Fabricius, 1804)
Gasteruption jaculator (Linnaeus, 1758)
Mellinus arvensis (Linnaeus, 1758)
Philanthus triangulum (Fabricius, 1775)
Probolus concinnus Wesmael, 1853 
Sapyga quinquepunctata (Fabricius, 1781) 
Symmorphus gracilis (Brulle, 1832)
Trypoxylon attenuatum Smith, 1851

Butterflies and day-flying moths

Adela rufimitrella Scopoli, 1763 
Aglais urticae (Linnaeus, 1758)
Anthocharis cardamines (Linnaeus, 1758)
Aphantopus hyperantus (Linnaeus, 1758)
Autographa gamma (Linnaeus, 1758)
Cacoecimorpha pronubana Hubner 1799 
Callistege mi Clerck, 1759 
Celastrina argiolus (Linnaeus, 1758)
Chrysoteuchia culmeUa (Linnaeus, 1758)
Gonepteryx rhamni (Linnaeus, 1758)
Inachis io (Linnaeus, 1758)
Lycaena phlaeas (Linnaeus, 1761)
Macroglossum stellatarum (Linnaeus, 1758)
Man iota jurtina (Linnaeus, 1758)
Ochlodes venata (Bremer & Grey, 1852) 
Oidaematophorus lithodactyla (Treitschke, 1833) 
Pammene regiana Zeller, 1849 
Pararge aegeria (Linnaeus, 1758)
Pieris brassicae (Linnaeus, 1758)
Pieris napi (Linnaeus, 1758)
Pieris rapae (Linnaeus, 1758)
Polygonia c-album (Linnaeus, 1758)
Polyommatus icarus (Rottemburg, 1758)
Pyrausta aurata (Scopoli, 1753)
Pyronia tithonus (Linnaeus, 1758)
Satyrium w-album (Knoch, 1782)
Thymelicus sylvestris (Poda, 1761)
Vanessa atalanta (Linnaeus, 1758)
Vanessa cardui (Linnaeus, 1758)
Xanthorhoe montanata (Denis & Schiffermuller, 1775) 
Zygaena filipendulae (Linnaeus, 1758)

Flies

Bombylius major Linnaeus, 1758 
Conops quadrifasciata De Greer, 1776 
Phasia hemiptera (Fabricius, 1794)



Sicus ferrugineus (Linnaeus, 1761) 
Tachina fera (Linnaeus, 1761)

Hoverflies

Anasimyia lineata (Fabricius, 1787)
Baccha elongata (Fabricius, 1775) 
Cheilosia albitarsis (Meigen, 1822) 
Cheilosia illustrata (Harris, 1780)
Cheilosia pagana (Meigen, 1822)
Cheilosia proxima (Zetterstedt, 1843) 
Cheilosia ranunculi Doczkal, 2000 
Cheilosia vulpina (Meigen, 1822) 
Chrysogaster solstitialis (Fallen, 1817)
Criorhina berberina (Fabricius, 1805) 
Dasysyrphus albostriatus (Fallen, 1817) 
Dasysyrphus tricinctus (Fallen, 1817) 
Epistrophe eligans (Harris, 1780) 
Epistrophe grossulariae (Meigen, 1822) 
Episyrphus balteatus (De Greer, 1776) 
Eristalis arbustorum (Linnaeus, 1758) 
Eristalis intricarius (Linnaeus, 1758) 
Eristalis nemorum (Linnaeus, 1758) 
Eristalis pertinax (Scopoli, 1763)
Eristalis tenax (Linnaeus, 1758)
Eumerus funeralis Meigen, 1822 
Eupeodes corollae (Fabricius, 1794) 
Eupeodes latifasciatus (Macquart, 1829) 
Eupeodes luniger (Meigen, 1822)
Eupeodes nielseni (Dusek & Laska, 1976) 
Ferdinandea cuprea (Scopoli, 1763) 
Helophilus pendulus (Linnaeus, 1758) 
Heringia vitripennis (Meigen, 1822) 
Leucozona latinaria (Muller, 1776) 
Leucozona lucorum (Linnaeus, 1758) 
Melangyna labiatarum (Verrall, 1901) 
Melangyna umbellatarum (Fabricius, 1794) 
Melanostoma mellinum (Linnaeus, 1758) 
Melanostoma scalare (Fabricius, 1794) 
Merodon equestris (Fabricius, 1794) 
Myathropa florea (Linnaeus, 1758) 
Neoascia podagrica (Fabricius, 1775) 
Parhelophilus frutetorum (Fabricius, 1775) 
Parasyrphus punctulatus (Verrall, 1873) 
Platycheirus albimanus (Fabricius, 1781) 
Platycheirus clypeatus (Meigen, 1822) 
Platycheirus manicatus (Meigen, 1822) 
Platycheirus peltatus (Meigen, 1822) 
Platycheirus scutatus (Meigen, 1822) 
Platycheirus splendidus Rotheray, 1998
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Platycheirus sticticus (Meigen, 1822) 
Platycheirus tarsalis (Schummel, 1837) 
Rhingia campestris (Meigen, 1822)
Rhingia rostrata (Linnaeus, 1758) 
Riponnensia splendens (Meigen, 1822) 
Scaeva pyrastri (Linnaeus, 1758) 
Sphaerophoria scripta (Linnaeus, 1758) 
Syritta pipiens (Linnaeus, 1758)
Syrphus rectus Osten Sacken, 1875 
Syrphus ribesii (Linnaeus, 1758)
Syrphus torvus Osten Sacken, 1875 
Syrphus vitripennis Meigen, 1822 
Volucella bombylans (Linnaeus, 1758) 
Volucella inanis (Linnaeus, 1758)
Volucella pelluscens (Linnaeus, 1758) 
Volucella zonaria (Poda, 1761)
Xanthandrus comtus (Harris, 1780) 
Xanthogramma pedissequum (Harris, 1776) 
Xylota segnis (Linnaeus, 1758)

1
1
1
1
1
1
1
1
1
1
1
1
1

1
0
0
1
1

0
0
1
0
0
1
1
1
0
1
0
1
1
0
1
1
1
1
1

Honeybee

Apis mellifera2 Linnaeus, 1758 1 1

Eleven solitary bee species (Species A - Species K) remained unidentified from the 2010 
sampling session (see explanation in Chapter 2 - Identification of species).
Apis mellifera mellifera may also have been present but this was not treated as a distinct 
species for the purposes of this study (see Chapter 2 - Hymenoptera, honey bees).
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Appendix VII

List of plant families and genera recorded from the 17 gardens in 2010

Plant families

Acanthaceae
Adoxaceae
Alstromeriaceae
Amaranthaceae
Amaryliidaceae
Anacardiaceae
Apiaceae
Apocynaceae
Aquifoliaceae
Araceae
Araliaceae
Aristolochiaceae
Asparagaceae
Asteraceae
Balsaminaceae
Begoniaceae
Berberidaceae
Betulaceae
Boraginaceae
Brassicaceae
Buxaceae
Calceolariaceae
Campanulaceae
Cannaceae
Caprifoliaceae
Caryophyllaceae
Celastraceae
Cistaceae
Cleomaceae
Colchicaceae
Commelinaceae
Convolvulaceae
Cornaceae
Crassulaceae
Cucurbitaceae
Cupressaceae
Cyperaceae
Dioscoreaceae
Eleagnaceae
Equisetaceae
Ericaceae
Escalloniaceae

Euphorbiaceae Sapindaceae
Fabaceae Saxifragaceae
Fagaceae Scrophulariaceae
Garryaceae Solanaceae
Geraniaceae Staphyleaceae
Grossulariaceae Tamaricaceae
Gunneraceae Taxaceae
Hydrangeaceae Thymelaeaceae
Hypericaceae Tropaeolaceae
Iridaceae Urticaceae
Juncaceae Verbenaceae
Lamiaceae Violaceae
Lauraceae Xanthorrhoeaceae
Liliaceae Zingiberaceae
Linaceae
Lythraceae
Magnoliaceae
Malvaceae TOTAL = 98 famili
Myrsinaceae
Myrtaceae
Oleaceae
Onagraceae
Orchidaceae
Orobanchaceae
Oxalidaceae
Paeoniaceae
Papaveraceae
Phrymaceae
Pittosporaceae
Plantaginaceae
Plumbaginaceae
Poaceae
Polemoniaceae
Polygonaceae
Portulacaceae
Primulaceae
Ranunculaceae
Rhamnaceae
Rosaceae
Rubiaceae
Rutaceae
Salicaceae
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Plant genera

Abelia
Abutilon
Acacia
Acanthus
Acer
Achillea
Acidanthera
Aconitum
Aegopodium
Agapanthus
Agastache
Agave
Agera turn
Agrimonia
Agrostemma
Ajuga
A Ice a
Alchemil/a
Alliaria
A Ilium
Alstroemeria
Alternathera
Althaea
Alyssum
Amaranthus
Amaryllis
Amsonia
Anagallis
Anaphalis
Anchusa
Anemone
Anethum
Angelica
Antenna ria
Anthem is
Anthriscus
Antirrhinum
Apium
Apocynum
Aquilegia
Aralia
Arbutus
Arctium
Argemone
Argyranthemum
Aristolochia

Armeria
Arnica
Artemisia
Arum
Aruncus
Asarina
Asclepias
Asparagus
Asphodeline
Asphodelus
Aster
Astilbe
Astra ntia
Aubretia
Aucuba
Aurinia
Ballota
Baptisia
Begonia
Beilis
Berberis
Bergenia
Borago
Brassica
Brunnera
Bryonia
Budd/eja
Bupleurum
Buxus
Calamintha
Calceolaria
Calendula
Caltha
Calystegia
Campanula
Canna
Capsella
Cardamine
Carex
Caryopteris
Ca tan ache
Ceanothus
Centaurea
Centranthus
Cephalaria
Cerastium

Ceratostigma
Cerinthe
Cestrum
Chaenomeles
Chamerion
Chelidonium
Chelone
Chenopodium
Choisya
Chrysanthemum
Cichorium
Cimicifuga
Circaea
Cirsium
Cistus
Clematis
Cleome
Clerodendron
Cnicus
Colchicum
Conium
Convallaria
Convolvulus
Coreopsis
Corn us
Corylus
Cosmos
Co tin us
Cotoneaster
Crambe
Crassula
Crataegus
Crocosmia
Curcubita
Cyclamen
Cymbalaria
Cynara
Cynoglossum
Cyperus
Cytisus
Dactylorhiza
Dahlia
Daphne
Dasiphora
Daucus
Delphinium
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Deutzia
Dia n th us
Dicentra
Digitalis
Dipsacus
Doronicum
Echinacea
Echinops
Echium
Elea gnus
Epilobium
Epimedium
Equisetum
Eremurus
Erica
Erigeron
Erodium
Eruca
Eryngium
Erysimum
Esea I Ionia
Eucomis
Euonymus
Eupatorium
Euphorbia
Exochorda
Felicia
Filipendula
Foeniculum
Forsythia
Frageria
Fremon to dendro n
Fritillaria
Fuchsia
Galega
Galium
Gaura
Gazania
Genista
Geranium
Gerbera
Geum
Gil tenia
Gladiolus
Glechoma
Glycyrrhiza

Gunnera
Hebe
Hedera
Hedychium
He/enium
Helianthemum
Helianthus
Helichrysum
Heliotropium
Helleborus
Hemerocallis
Heracleum
Hesperis
Heuchera
Hibiscus
Hieracium
Hosta
Hyacinthoides
Hyacinthus
Hydrangea
Hypericum
Hyssopus
Hex
Impatiens
Inula
Iochroma
Iris
Jasminum
Juncus
Juniperus
Kirengeshoma
Knautia
Kniphofia
Kolkwitzia
Laburnum
Lamia strum
Lamium
Lantana
Lapsana
Lathy rus
Lavandula
Lavatera
Leonurus
Leucanthemum
Levisticum
L ia tris

Ligularia
Ligu strum
L ilium
Limonium
Linaria
Linum
Lobelia
Lobularia
Lonicera
Lotus
Lunaria
Lupin us
L uzula
Lychnis
Lycopus
Lysimachia
Ly thrum
Macleaya
Magnolia
Mahonia
Mai us
Malva
Mandragora
Matricaria
Matthiola
Mecanopsis
Me lilotus
Melissa
Mentha
Mercurial is
Mi Ilium
Mim ulus
Monarda
Mona rdella
Mo n tia
Morin a
Muscari
My o sotis
Myrrh is
Myrtus
Narcissus
Nectaroscordum
Nemesia
Nepeta
Nica n dra
Nicotian a
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Nige/la
Oenothera
Olearia
Ompha/odes
Onopordum
Origanum
Ornithogalum
Osteospermum
Oxalis
Ozothamnus
Paeon ia
Pa paver
Parahebe
Pelargonium
Penstemon
Perovskia
Persicaria
Petasites
Petroselinum
Petunia
Phacelia
Phaseolus
Philadelphus
Phlomis
Phlox
Phygelius
Physalis
Picris
Pittosporum
Plantago
Poa
Polemonium
Polygonum
Portulaca
Po ten til la
Primula
Prunella
Prun us
Pseudofumaria
Pulicaria
Pulmonaria
Pu/sa tilla
Pycnanthemum
Pyrus
Ranunculus
Rhazya

Rheum
Rhinanthus
Rhodochiton
Rhododendron
Ribes
Ricinus
Rodgersia
Romneya
Rosa
Rosmarinus
Rub us
Rudbeckia
Ruta
Salix
Salvia
Sambucus
Sanguisorba
Santolina
San vita Ha
Saponaria
Satureja
Saxifraga
Scabiosa
S cilia
Scrophularia
Sedum
Sempervivum
Senecio
Sidalcea
Silene
Silphium
Silybum
Sisymbrium
Sisyrinchium
Skimmia
Solanum
Solidago
Sonchus
Spiraea
S ta ch ys
Staphylea
Stellaria
Stephanandra
Succisa
Symphoricarpos
Symphyotrichum

Symphytum
Syringa
Tagetes
Tamarix
Tamus
Tanacetum
Taraxacum
Taxus
Teucrium
Thalictrum
Therm op s is
Thymus
Tiarella
Tilia
Tithonia
Tori I is
Trachystemon
Tradescantia
Tricyrtis
Trifolium
Tripleurospermum
Triteleia
Tropaeolum
Tulipa
Urtica
Vaccinium
Valeriana
Verbascum
Verbena
Veronica
Veronicastrum
Vestia
Viburnum
Vicia
Vinca
Viola
Weigela
Wisteria
Yucca
Zantedeschia
Zinnia

TOTAL = 409 genera
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Appendices

Appendix IX

Post hoc test used to assess differences between mean ranks for eight properties 
(each with three nests) using the method of Siegel and Castellan (1988).

\RU - R V\ >
\N(N + 1) /  1 1

z a/k(k-1) I ~  ( ------1"
N

12 n n v

where:

K - r v \ is the magnitude of the differences between mean ranks of 
groups 1 and 2 (the groups being compared)

z a/kyk-1)
N(N+1) /  1 1 \

1:  ̂ ) is the critical difference\

Z a = 0.05

k = total number of samples

.Y= number of groups used in analysis

>i = number of nests in the first group being compared

k = number of nests in the second group being compared

Appendix X

Solitary bee families and genera other than O. bicornis found in occupied tubes

Property Nest
no.

Family, genus

BOU 3 Megachilidae, Osmia
CHALL 1, 2 Colletidae, Hylaeus
FAR 1 Megachilidae, Osmia
FAR 2,3 Colletidae, Hylaeus
KEL 1 Megachilidae, Osmia
KEL 2,3 Megachilidae, Megachile
LW 1 Megachilidae, Megachile, Colletidae, Hylaeus
LW 2 Meqachilidae, Meqachile, Osmia', Colletidae, Hylaeus
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