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A B S T R A C T   

The COVID-19 virus has impacted all facets of our lives. As a global response to this threat, 
vaccination programmes have been initiated and administered in numerous nations. The question 
remains, however, as to whether mass vaccination programmes result in a decrease in the number 
of confirmed COVID-19 cases. In this study, we aim to predict the future number of COVID-19 
confirmed cases for the top ten countries with the highest number of vaccinations in the world. 
A well-known Deep Learning method for time series analysis, namely, the Long Short-Term 
Memory (LSTM) networks, is applied as the prediction method. Using three evaluation metrics, 
i.e., Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and Mean Absolute Percentage 
Error (MAPE), we found that the model built by using LSTM networks could give a good pre
diction of the future number and trend of COVID-19 confirmed cases in the considered countries. 
Two different scenarios are employed, namely: ‘All Time’, which includes all historical data; and 
‘Before Vaccination’, which excludes data collected after the mass vaccination programme began. 
The average MAPE scores for the ‘All Time’ and ‘Before Vaccination’ scenarios are 5.977% and 
10.388%, respectively. Overall, the results show that the mass vaccination programme has a 
positive impact on decreasing and controlling the spread of the COVID-19 disease in those 
countries, as evidenced by decreasing future trends after the programme was implemented.   

1. Introduction 

The coronavirus disease (COVID-19) has undoubtedly become one of the most memorable events of the year 2020. A major public 
health issue, COVID-19 is believed to have been first detected in late 2019 in China [1–4]. Due to its massive and progressive spread, in 
the early 2020 the disease was declared a global pandemic by the World Health Organization [5,6]. The latest updates on COVID-19, 
dated February 14, 2022, show that there are more than 410 million people around the world who have been infected by this disease, 
with almost 5.9 million of them having died [7]. 

To combat the pandemic, a mass vaccination programme has been started globally since 2020. The United Kingdom (UK) has 
become the first country in the world to administer its citizens a fully tested COVID-19 vaccine on December 8, 2020 [8]. Soon enough, 
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many other countries followed the UK’s lead to approve and administer COVID-19 vaccines to their people. As reported by BBC [9] 
from its ‘Our World in Data’ source [10], the top ten countries with the highest total number of vaccinations carried out to date 
(February 2022) are China (~3 billion/B doses), India (~1.695 B), the United States (~543 million/M), Brazil (~369 M), Indonesia 
(~323 M), Japan (~208 M), Pakistan (~186 M), Vietnam (~181 M), Mexico (~169 M), and Germany (~166 M). 

The World Health Organization (WHO) together with Gavi and the Coalition for Epidemic Preparedness Innovations (CEPI), has 
also promoted the COVAX initiative. As one of the three pillars of the Access to COVID-19 Tools Accelerator – diagnostics, treatments, 
and vaccines – COVAX has focused on the third one [11,12]. It aims to accelerate the development and manufacture of COVID-19 
vaccines and ensure that they are equitably distributed around the world [12,13]. Therefore, with the mass vaccination pro
gramme and the COVAX initiative, we may have higher hopes of ending the COVID-19 pandemic sooner and returning to our normal 
lives before the pandemic occurred. 

Despite the future prospects, one simple question remains: Will the mass COVID-19 vaccination programme result in a decrease in 
confirmed COVID-19 cases? The successful distribution and administration of COVID-19 vaccines across the Globe should decrease the 
number of COVID-19 confirmed cases. Therefore, to get an insight into this question, in this study we aim to predict and analyse the 
COVID-19 confirmed cases before and after the mass vaccination programme rolled out. A Deep Learning method, known as the Long 
Short-Term Memory (LSTM) networks, will be employed as the main prediction method. LSTM was developed to tackle the limitations 
found in the Recurrent Neural Network (RNN) method, which suffers from short-term memory, vanishing and exploding gradient [14]. 
As one of the advanced forecasting methods commonly used in time series analysis and other applications with astounding results [15], 
it could be classified as a black-box model [16]. 

Various Deep Learning methods, such as Generative Adversarial Networks (GANs), Extreme Learning Machine (ELM), and LSTM, 
have been employed in COVID-19 research [17] and in spread forecasting for epidemiology [18]. In particular, the LSTM method has 
been used to predict the COVID-19 epidemic transmission and trends. Chimmula and Zhang [19], for example, developed a forecasting 
model for the COVID-19 outbreak in Canada by using LSTM networks. With a relatively small amount of data, they predicted that the 
ending point of COVID-19 outbreak in Canada would be around June 2020 [19]. Wang et al. [20] also used the LSTM method, which 
was further improved by using a rolling update mechanism and Diffusion Index to predict the COVID-19 epidemic trends in Russia, 
Peru, and Iran. They predicted that the epidemic in Peru would peak around early December 2020, while the number of positive cases 
per day in Iran would fall below 1000 by mid-November 2020, in contrast to Russia, which was predicted to have an increment of more 
than 2000 cases per day by early December 2020 [20]. Another implementation of the LSTM model has been introduced by Pathan 

Table 1 
Studies on COVID-19 prediction using Machine and Deep Learning.  

Author(s) Aim(s) Method(s) Results 

Ribeiro et al. 
(2020) 
[22] 

To conduct short-term forecasting of COVID-19 
cumulative confirmed cases in ten Brazilian 
states with a high daily incidence. 

AutoRegressive Integrated Moving Average 
(ARIMA), Cubist Regression (CUBIST), Random 
Forest (RF), Ridge Regression (RIDGE), Support 
Vector Regression (SVR), Stacking-ensemble 
Learning 

SVR and stacking ensemble are the most 
suitable tools to forecast COVID-19 cases 
in the evaluated scenarios. 

da Silva 
et al. 
(2020) 
[23] 

To forecast the number of COVID-19 new cases 
in the Brazilian and USA context. 

Bayesian Regression Neural Network, Cubist 
Regression, k-Nearest Neighbors, Quantile 
Random Forest, and Support Vector Regression 
+ Variational Mode Decomposition (VMD) 

VMD-based models are the most suitable 
tools to forecast COVID-19 cases six days 
ahead. 

Arora et al. 
(2020) 
[14] 

To predict the number of novel coronavirus 
(COVID-19) positive reported cases for 32 states 
and union territories of India. 

Deep LSTM, Convolutional LSTM, Bi-directional 
LSTM (Bi-LSTM) 

Based on prediction errors, bi- 
directional LSTM gives the best results, 
and convolutional LSTM gives the worst 
results. 

Sinha et al. 
(2021) 
[24] 

To predict the number of coronavirus confirmed 
cases for the five topmost affected countries 
(USA, India, Brazil, Russia, France) across the 
world. 

Artificial Neural Network (ANN), LSTM LSTM model outperformed the ANN 
model. 

Kuvvetli 
et al. 
(2021) 
[25] 

To design a predictive model based on Artificial 
Neural Network (ANN) model to predict the 
future number of daily cases and deaths caused 
by COVID-19 in a generalised way to fit 
different countries’ spreads. 

Artificial Neural Network (ANN) The proposed model could achieve 86% 
overall accuracy in predicting the 
mortality rate and 87% in predicting the 
number of cases. 

Verma et al. 
(2022) 
[26] 

To capture the complex trend of COVID-19 
outbreak and perform the forecasting of COVID- 
19 daily confirmed cases of 7, 14, 21 days for 
India and its four most affected states 
(Maharashtra, Kerala, Karnataka, and Tamil 
Nadu). 

Vanilla LSTM, Stacked LSTM, Encoder Decoder- 
LSTM (ED_LSTM), Bi-LSTM, Convolutional 
Neural Network (CNN), Hybrid CNN + LSTM 

The stacked LSTM and hybrid CNN +
LSTM models perform best relative to 
other models. 

Alassafi 
et al. 
(2022) 
[27] 

To develop a prediction model for the spread of 
the COVID-19 outbreak to and throughout 
Malaysia, Morocco and Saudi Arabia. 

RNN, LSTM The LSTM models showed a 98.58% 
precision accuracy while the RNN 
models showed a 93.45% precision 
accuracy. 

Xu et al. 
(2022) 
[28] 

To predict the number of COVID-19 cases for 
Brazil, India, and Russia. 

CNN, LSTM, CNN-LSTM The LSTM model had the highest 
performance.  
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et al. [21]. They used LSTM to predict the future mutation rate of SARS-CoV-2, the novel coronavirus that caused the COVID-19 
pandemic. They concluded that if more patient data had been made available in an updated time period, the proposed model could 
be used to predict the mutation rates of this virus on a daily basis [21]. Table 1 summarises several studies that used Machine and Deep 
Learning methods to predict COVID-19. 

Although LSTM has been widely used to predict COVID-19 future trends, to the best of our knowledge, this is the first study to apply 
LSTM networks in the prediction and analysis of COVID-19 confirmed cases before and after the mass vaccination programme was 
implemented, with a particular focus on the top ten countries with the highest total number of vaccination doses delivered. LSTM was 
chosen because it has been widely accepted and successfully applied in a variety of cases, particularly in the time series domain. The 
successful application of the proposed LSTM networks in predicting COVID-19 confirmed cases before and after the mass vaccination 
programme was implemented could aid decision-makers in devising better pandemic management strategies. 

Artificial intelligence (AI) is a new paradigm for healthcare systems, and it is important to note that intelligent machine learning 
algorithms can be used to analyse COVID-19 data and provide information for decision-making processes. This implies that tools 
powered by AI can aid in predicting the number of confirmed COVID-19 cases. A fundamental requirement is the availability of 
sufficient data to train the respective models. Earlier in the pandemic, the majority of AI-powered tools utilised by previous studies to 
forecast and predict the pandemic were limited to proof-of-concept models. However, as more and more data are generated every day, 
this presents the opportunity to reevaluate the robustness of existing algorithms. 

A large number of algorithms are created frequently. And while we recognise the importance of developing new and perhaps better 
algorithms, it is also important that we maintain a balance by utilising what we already have that has been proven effective. In this 
regard, then, our work contributes to the existing body of knowledge. The fact that we use a well-known method with a track record of 
proven robustness (i.e., LSTM) to predict the number of confirmed COVID-19 cases and the future trend is an advantage that helps to 
counteract the phenomenon known as COVID-19, which is still poorly understood. Overall, we were able to demonstrate that the mass 
vaccination programme contributes to reducing and controlling the spread of the COVID-19 disease in those countries, as indicated by 
the decreasing future trends after the mass vaccination programme was administered. This can help relevant decision-makers make 
better practical decisions and take appropriate actions or measures to contain or limit the coronavirus’s spread. 

2. Materials and methods 

In this section, we first describe the data source being used in this study. Next, we explain the basic concept of LSTM networks that 
are used as the main prediction method in this study, followed by a brief explanation of several evaluation metrics used. 

2.1. Data source 

The main data source of COVID-19 confirmed cases used in this study was collected from a GitHub data repository, which is 
operated and maintained by the Johns Hopkins University (JHU) Center for Systems Science and Engineering [29]. This repository is 
updated and curated by a team of scientists at JHU since the early time of COVID-19 outbreak, and the data visualisation is depicted in 
an online real-time interactive dashboard [30]. It can be accessed publicly and has been widely used in many publications [16,19,20]. 

We used the global time series data of COVID-19 confirmed cases, which was named as ‘time_series_covid19_confirmed_global.csv’ 
and taken on February 14, 2022 (last recorded data on February 12, 2022). The document consists of more than 280 regions’ data, but 
we will focus on the ten countries or regions with the highest total vaccinations volume up to date [9,10], namely China, India, the 
United States, Brazil, Indonesia, Japan, Pakistan, Vietnam, Mexico, and Germany. Table 2 presents the summary statistics of the 
dataset used in this study. 

2.2. LSTM networks 

Long Short-Term Memory (LSTM) is an advanced soft computing method, which was derived from the Recurrent Neural Network 
(RNN). RNN itself actually is one of the many types of Artificial Neural Networks (ANN) methods, which was proposed to overcome the 
ANN’s disadvantage in handling the time correlation in data sequence. It adds canonical connections to neurons in the networks, so 

Table 2 
Statistics summary for ten countries with the highest total vaccinations of COVID-19.  

Summary Count Mean Std Min 25% 50% 75% Max 

China 753 95455.5 17542.08 548 86,990 100,127 105,902 123,728 
India 753 15,902,771 14,156,129 0 1,531,669 10,766,245 31,969,954 42,631,421 
United States 753 23,837,230 20,024,848 1 4,346,567 26,470,178 35,905,164 77,707,349 
Brazil 753 10,816,879 8,614,708 0 2,503,681 9,237,011 20,169,989 27,434,286 
Indonesia 753 1,640,969 1,676,288 0 102,051 1,089,308 3,666,031 4,763,252 
Japan 753 647701.8 753700.2 2 32,092 392,533 1,033,214 3,842,551 
Pakistan 753 629330.3 467572.2 0 275,225 547,648 1,071,620 1,483,798 
Vietnam 753 301,036 596570.7 0 446 1850 215,560 2,484,481 
Mexico 753 1,826,320 1,479,265 0 402,697 1,869,708 2,971,817 5,283,852 
Germany 753 2,514,732 2,534,181 0 207,707 2,232,327 3,797,849 12,391,463  
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that the sequence-to-sequence mapping between input and output data can be built by RNN [31]. Unfortunately, classical RNN still 
struggles with the long-range dependencies, suffering from exploding gradient or, in contrast, from vanishing gradient, which limits its 
ability to learn the long-term temporal correlations [32]. Therefore, LSTM was introduced by Hochreiter and Schmidhuber (1997) to 
overcome this limitation by using memory cells [33]. These cells are self-connected and store the networks’ temporal state by using a 
three-gate mechanism, composed of the input gate, the output gate, and the forget gate [33]. Fig. 1 depicts an LSTM cell, which 
contains all those three gates and the cell state [34,35]. 

LSTM gates are simply used as a way to control how much information can be passed. Commonly, they are composed of a sigmoid 
neural network layer and a pointwise multiplication operation. Forget gate is used to forget the information in the cell state selectively, 
while the input gate is used to determine what new information will be stored in the current cell state. Lastly, the output gate is used to 
find what value we want to output [31]. 

The first part of the LSTM cell is the forget gate. It is used to control the magnitude to forget the hidden state of the previous cell and 
it can be expressed as shown in Eq 1: 

ft = σ
(
Wf ht− 1 +Uf xt + bf

)
, (1)  

where ft denotes the forget gate value at the current cell, which ranges from 0 (completely forget) to 1 (completely keep), and Wf ,Uf 
are the weights of the networks; bf is the bias variable value, ht− 1 is the prior hidden state value, and xt is the new input value at the 
current cell. 

Next, to update the cell state, we use the input gate. There are two actions that will be taken in this step. First, for the input gate, we 
pass the prior hidden state value (ht− 1) and the current input value (xt) into a sigmoid function as shown in Eq [2]. The resulting value 
of the input gate (it) decides the magnitude of the new information that will be kept in the current cell, where 0 means ‘completely 
ignore’ and 1 means ‘completely keep’. Second, we also pass the prior hidden state value (ht− 1) and the current input value (xt) into the 
tanh function to help regulate the network as shown in Eq [3]. Similarly, when it comes to the forget gate, there are some weights of the 
networks and bias values involved in this step, as denoted by Wi,WC,Ui,UC, bi, and bC. 

it = σ(Wiht− 1 +Uixt + bi), (2)  

C̃t = tanh(WCht− 1 +UCxt + bC). (3) 

At this point, we have enough information to calculate the (current) cell state (Ct). The previous cell state (Ct− 1) will be pointwise 
multiplied with the forget vector (ft). Then, we do a pointwise addition with the output from the input gate (it), which has been 
pointwise multiplied with the cell candidate value (C̃t), as shown in Eq [4].: 

Ct = ft ⨀ Ct− 1 + it ⨀ C̃t. (4) 

In the last step, we use the output gate to decide what the next hidden state should be (i.e., the current hidden state value, ht). First, 
we pass the prior hidden state value (ht− 1) and the current input value (xt) into the sigmoid function as shown in Eq [5]. Here, Wo,Uo,

and bo are the corresponding networks weights and bias values for the output gate. Then, we pass the newly found cell state (Ct) to the 
tanh function and pointwise multiply the output with the sigmoid output from the output gate (ot) as shown in Eq [6]. The output from 
this last process is the current hidden state value (ht), which will be passed together with the current cell state (Ct) to the next time step. 

ot = σ(Woht− 1 +Uoxt + bo) (5) 

Fig. 1. An LSTM cell and its gates [35].  
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ht = ot ⨀ tanh (Ct) (6)  

2.3. Evaluation metrics 

Three different prediction error criteria will be used as the evaluation metrics in this study. These are the Mean Absolute Error 
(MAE), the Root Mean Squared Error (RMSE), and the Mean Absolute Percentage Error (MAPE). The first two show the degree of error 
in a unit value, while the last one shows the degree of error in a percentage value. As described by Shahid et al. [33] and Hansun et al. 
[36,37], all those three criteria can be expressed as shown in Eq. [7], Eq. [8], and Eq. [9], respectively: 

MAE=
1
n
∑n

t=1
|Yt − Ft|, (7)  

RMSE=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

t=1
(Yt − Ft)

2

√

, (8)  

MAPE=

(
1
n
∑n

t=1

⃒
⃒
⃒
⃒
Yt − Ft

Yt

⃒
⃒
⃒
⃒

)

• 100%, (9)  

where n is the total number of data, Yt is the actual value, and Ft is the predicted value. Moreover, we will also use the popular Mean 
Squared Error (MSE) criterion in the calculation of the loss function during the LSTM networks training. The formula for MSE is shown 
in Eq10 [38]. 

MSE=(RMSE)2
=

1
n

∑n

t=1
(Yt − Ft)

2
. (10)  

3. Results and discussion 

In this section, first we explain the data splitting and the pre-processing of the ten countries considered in this study before we move 
to the implementation and prediction results of COVID-19 confirmed cases by using LSTM networks. The analysis and discussion of the 
effect of the mass vaccination programme in these countries will be provided in the last part of this section. 

Fig. 2. Confirmed COVID-19 cases in the top ten countries with the highest vaccination doses (shown in a log scale).  
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3.1. Data splitting, pre-processing, and model building 

There are ten countries considered in this study and these are those that have the highest total number of vaccinations [9,10]: 
China, India, the United States, Brazil, Indonesia, Japan, Pakistan, Vietnam, Mexico, and Germany. First, we will plot the number of 
COVID-19 confirmed cases in these countries from the first available data on January 22, 2020 to the last recorded data on February 
12, 2022 as shown in Fig. 2. We will consider those data as the ‘All Time’ data that show the number of COVID-19 confirmed cases for 
each country even after the mass vaccination programme started. Next, for simplicity, we assume that all countries considered have the 
same effective date for the mass vaccination programme having taken effect in controlling the disease, i.e., on February 1, 2021. 
Therefore, the available data for each country since January 22, 2020 until February 1, 2021 will be considered as the ‘Before 
Vaccination’ data that show the number of COVID-19 confirmed cases before the mass vaccination programme had taken effect in 
those countries. 

Next, for the data splitting process, we use the 80:20 ratio to split the data of each considered country into training and test set. 
Moreover, we also use 14 timestamps (span), meaning that the 14 last days will be used to consider the future number of COVID-19 
confirmed cases for each country. Table 3 shows the splitting numbers of each country’s data considered in this study. 

After the data splitting process, we conduct the data normalisation process (feature scaling) by using the MinMaxScaler trans
formation method. Then, to incorporate the defined timestamps, we create a new function called ‘create_dataset’. Lastly, we convert 
the data shape into a 3D array shape, which is the accepted data shape by the LSTM model in the Keras library. 

For the model building process, we use a well-known Deep Learning package for Python, namely Keras. It runs on top of the 
TensorFlow Machine Learning platform. Several modules from Keras are used to build the LSTM networks in this study, i.e., 
‘Sequential’ to initialise the neural networks, ‘Dense’ to add a densely connected neural network layer, ‘LSTM’ to add the Long Short- 
Term Memory layer, and ‘Dropout’ to add a dropout layer to prevent overfitting. In summary, we build five-layer neural networks 
comprised of two LSTM layers, two Dropout layers, and one Dense (output) layer. Interested readers may find the source code and data 
used in this study in the GitHub repository at https://github.com/senghansun/COVID-19-with-LSTM. 

3.2. Prediction results and analysis 

In this section, we describe the prediction results of COVID-19 confirmed cases for all the ten countries of interest by using a Deep 
Learning method, namely, the LSTM networks. We divide the prediction results into two categories, one for the ‘All Time’ data and 
another one for the ‘Before Vaccination’ data. ‘All Time’ results show the prediction results since the first available data to the last 
recorded data of each country after the mass vaccination programme started. Meanwhile, ‘Before Vaccination’ results show the 
prediction results since the first available data for each country to the cut date when we assumed the mass vaccination programme 
should have taken effect, i.e., on February 1, 2021. Figs. 3 and 4 show the prediction results for Indonesia of both categories, 
respectively. Meanwhile, the complete prediction results for all countries are provided in the supplementary file (S1). 

As previously stated, we also evaluate the prediction results of COVID-19 confirmed cases for each country by using three different 
evaluation metrics, namely, MAE, RMSE, and MAPE. Table 4 shows the corresponding evaluation metrics results on the test set for each 
country. 

As it can be inferred from Table 4 and from the prediction results plots in Figs. 3 and 4, LSTM networks could predict the number of 
COVID-19 confirmed cases quite well. LSTM networks work particularly well especially in the cases of Pakistan, Mexico, and Japan for 
‘All Time’ scenario, and India, Vietnam, and Brazil for ‘Before Vaccination’ scenario, for which the lowest prediction error results based 
on the evaluation metrics are achieved. In the regression task, lower MAE, RMSE, and MAPE values indicate higher prediction accuracy 
[39,40]. Furthermore, the average MAPE scores for ‘All Time’ versus ‘Before Vaccination’ are 5.977% and 10.388%. Hence, the 
prediction results using ‘All Time’ data scenario have better accuracy level, mostly impacted by higher number of time series data 
available to be used in the model development. 

We also compare the prediction results obtained with LSTM networks to those obtained with another Deep Learning method, the 
Vanilla Recurrent Neural Network (Vanilla RNN), which serves as the benchmark method. For the Vanilla RNN, a similar five-layer 
architecture was used, and the results were evaluated using MAE, RMSE, and MAPE. Table 5 displays the Vanilla RNN evaluation 

Table 3 
Data splitting for each country.  

No Country All Time Data (days) Before Vaccination Data (days) 

All Data Train Test All Data Train Test 

1 China 753 602 151 376 300 76 
2 India 745 595 150 368 294 74 
3 United States 753 602 151 376 300 76 
4 Brazil 718 574 144 341 272 69 
5 Indonesia 713 570 143 336 268 68 
6 Japan 753 602 151 376 300 76 
7 Pakistan 719 575 144 342 273 69 
8 Vietnam 752 601 151 375 299 76 
9 Mexico 716 572 144 339 271 68 
10 Germany 748 598 150 371 296 75  
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Fig. 3. Prediction results for Indonesia based on ‘All Time’ data (left panel shows the actual and predicted ‘training’ data, right panel shows the 
actual and predicted ‘test’ data). 

Fig. 4. Prediction results for Indonesia based on ‘Before Vaccination’ data (left panel shows the actual and predicted ‘training’ data, right panel 
shows the actual and predicted ‘test’ data). 
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results using the same dataset. 
In general, Vanilla RNN may provide lower MAE and RMSE scores than LSTM in both the ‘All Time’ and ‘Before Vaccination’ 

scenarios. It does, however, provide a much higher MAPE score than LSTM networks. Using Vanilla RNN, the average MAPE scores for 
‘All Time’ and ‘Before Vaccination’ are 7.772% and 19.305%, respectively. Again, the prediction results based on ‘All Time’ data have 
better accuracy level than the ‘Before Vaccination’ scenario. When the average MAPE scores for LSTM and Vanilla RNN are compared, 
it is clear that LSTM has lower MAPE scores for both the ‘All Time’ and ‘Before Vaccination’ scenarios than Vanilla RNN (5.977% vs 
7.772% and 10.388% vs 19.305%, respectively). As a result, it is possible to conclude that the proposed LSTM networks outperform the 
Vanilla RNN in terms of MAPE. 

Moreover, we also tried to find the future trend projection of COVID-19 confirmed cases in each country considered by comparing 
the future prediction result with the last known data record (one period ahead). Table 6 shows the future prediction as well as the trend 
percentage for each country both for the ‘All Time’ and ‘Before Vaccination’ data using the proposed LSTM networks. 

Based on the prediction results, most countries in both categories have a downward trend for the number of COVID-19 confirmed 
cases. The only two exceptions are posed by India with an upward trend of +0.243% and Mexico of +0.079% for the ‘All Time’ data; 
while for the ‘Before Vaccination’ data, the only exception is posed by Germany (+32.697%). However, as we can see from the results, 
the mass vaccination programme could help in controlling the pandemic, even for those countries that have increased trend pro
jections. The prediction is that Germany, for example, will have quite a big increasing number of confirmed cases in the future if they 
do not start the mass vaccination programme (#16, 443, 102, +32.697%), while they are projected to have a downward trend when 
they have started the mass vaccination programme (#10, 336, 484, − 16.584%). 

In general, the mass vaccination programme has a positive effect in terms of contributing to decreasing and controlling the spread 
of the COVID-19 disease in most countries considered. We can easily see that by comparing the future trend results for each country, 
both for ‘All Time’ (when the mass vaccination programme has been started and considered to have taken effect) and ‘Before 
Vaccination’ data. However, out of the ten countries considered, two of them have shown slightly different results. Both India and 
Mexico have a greater decreasing trend for ‘Before Vaccination’ than for ‘All Time’ data, which means that the mass vaccination 
programme seems not to be showing any better effect than if the programme had not been administered. This finding might be rooted 
in several causes, such as the slow government response to handle the pandemic on the early date, the improper handling of the mass 
vaccination programme by related stakeholders, the increasing in testing capacity on the recent date, and even the lack of community 
support for the success of the mass vaccination programme. Moreover, it is worth noticing that a new COVID-19 variant, named 
Omicron, has emerged since November 2021 [41] and affected a great number of people worldwide. It even predicted to be the root of 
the next wave of COVID-19 outbreak in several countries [42,43]. Without the mass vaccination program, a more severe catastrophe 
caused by the disease may happen. 

Table 4 
Evaluation metrics results for the proposed LSTM networks.  

No Country MAE RMSE MAPE (%) MAE RMSE MAPE (%) 

All Time Before Vaccination 

1 China 5481.892 5888.154 4.776 3968.679 4039.007 4.109 
2 India 2534234.563 2797838.637 7.322 54341.213 58747.140 0.537 
3 United States 4967555.618 5516520.691 8.720 2937303.661 3185617.821 13.782 
4 Brazil 1597245.739 1643210.711 6.958 267944.556 303655.959 3.263 
5 Indonesia 180809.188 186428.061 4.200 75618.777 88394.719 8.767 
6 Japan 74402.208 174840.944 2.646 58662.687 69678.143 20.722 
7 Pakistan 19910.454 20466.925 1.518 28230.114 28386.097 5.748 
8 Vietnam 261791.011 360565.827 15.083 43.566 63.216 2.809 
9 Mexico 79458.387 84013.698 1.987 157632.919 169329.206 10.178 
10 Germany 440082.578 569720.458 6.558 614326.058 661147.047 33.965  

Table 5 
Evaluation metrics results for Vanilla RNN.  

No Country MAE RMSE MAPE (%) MAE RMSE MAPE (%) 

All Time Before Vaccination 

1 China 4269.936 5160.330 3.681 8207.455 8314.650 8.560 
2 India 1701323.469 1867145.899 4.911 1379079.409 1387292.461 13.401 
3 United States 5306281.659 6194355.225 9.095 7834138.913 8156805.251 37.718 
4 Brazil 931029.183 1067898.511 3.978 885525.878 931792.401 10.976 
5 Indonesia 130267.288 133373.318 3.055 106484.409 127270.603 12.224 
6 Japan 145128.987 218623.615 6.439 126724.599 138050.298 47.809 
7 Pakistan 8763.209 15148.221 0.631 64313.161 65504.417 12.999 
8 Vietnam 552050.702 681562.949 33.234 167.299 171.886 11.220 
9 Mexico 74985.719 96466.140 1.715 358630.341 364609.578 23.762 
10 Germany 900887.739 1310741.397 10.985 269397.174 309302.287 14.385  
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4. Conclusions 

The Coronavirus Disease 2019 (COVID-19) has struck us for more than two years since it was declared a global pandemic by the 
World Health Organization (WHO) in March 2020 [5]. It has affected every aspect of our lives, with more than 410 million people 
around the world having been infected by this disease and almost 5.9 million of them having died (as of February 14, 2022). As a 
response to this major public health threat, the mass vaccination programme has been started and administered in many countries 
around the world since the end of 2020. 

In this study, we have aimed to investigate whether the COVID-19 mass vaccination programme really works in terms of 
contributing to decreasing and controlling the spread of the COVID-19 disease. Therefore, we tried to predict the future number and 
trend of COVID-19 confirmed cases for the ten countries with the highest number of vaccinations to date, namely, China, India, the 
United States, Brazil, Indonesia, Japan, Pakistan, Vietnam, Mexico, and Germany. We grouped the recorded data into two categories, i. 
e., the ‘All Time’ data and the ‘Before Vaccination’ data. Then, by using a well-known Deep Learning algorithm, i.e., the Long Short- 
Term Memory (LSTM) networks, we built a model for each category of data and used them to predict the future number and trend of 
COVID-19 confirmed cases for each country. 

Based on the experimental results, we found that the LSTM networks model could be used to predict the future number and trend of 
COVID-19 confirmed cases quite well in most countries considered. The average MAPE scores for ‘All Time’ versus ‘Before Vaccination’ 
scenarios are 5.977% and 10.388% respectively. We also found that the mass vaccination programme has a positive effect in terms of 
contributing to decreasing and controlling the spread of COVID-19 disease in those countries. The only exception is represented by 
India and Mexico, with both countries having a greater decreasing trend when we predicted the data using the ‘Before Vaccination’ 
model. Some factors might cause this finding, such as the slow government response, the improper handling and administration of the 
mass vaccination programme, the increasing tracing number, the lack of community support for the success of this programme, and 
even the impact of the new COVID-19 variant named Omicron. Future studies on the barriers to the mass vaccination programme could 
be taken to answer this question and correlate this finding in more detail. 

There are several limitations in our study. Firstly, we applied relatively simple five-layers LSTM networks in predicting the future 
confirmed cases of COVID-19. We did not put our focus in the optimization and introduction of a new and better prediction model, but 
rather on the applicability of a well-known Deep Learning method, i.e., the LSTM networks, in predicting confirmed cases ‘before’ and 
‘after’ the mass vaccination programme rollout. Another limitation is on performance metrics used in this study. We only use three 
popular error measurement criteria, namely MAE, RMSE, and MAPE, which could not directly measure the trend movement from the 
prediction results. Directional Statistics (DS) as has been used in several studies [39,40] can be used to assess this trend more 
accurately. 

Given that the future is unpredictable, present predictions must be viewed critically. Nonetheless, a more precise estimate of the 
number of confirmed COVID-19 cases is essential for optimising available resources and slowing or stopping the pandemic’s pro
gression. In addition, our findings can be used to encourage the general public to consider and adhere to the vaccination measures 
mandated by local and national authorities to halt the pandemic’s spread. In this regard, we hope that the present paper can aid a 
variety of stakeholders in their decision-making processes, thereby facilitating the implementation of appropriate measures to prevent 
the spread of COVID-19. Overall, this has significant implications for practice, as it would allow policymakers and healthcare providers 
to plan and determine where to deploy resources. 
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