

Creating a Metric to Measure Software Flexibility in
Object-Oriented Programming

Submitted for the Degree of
Doctor pf Philosophy

At the University of Northampton

2020

Thomas Butler

© Thomas Butler 2020.

This thesis is copyright material and no quotation from it may be published
without proper acknowledgement.

ii Thomas Butler

Abstract

Business requirements inevitably change over time due to market shifts, law changes, new

product launches or any number of other factors. The software being used by these businesses

therefore also has to be adapted to meet the new requirements. How software is built has an

impact on how easily and quickly the software can be changed to meet these new requirements.

This thesis firstly identifies programming practices which make software difficult to adapt. To

establish that these practices are genuinely considered "bad practice" a metric was created for

grading the academic rigour of articles discussing a programming practice and this metric was

used to perform meta-analyses of each practice identified, this meta-analysis methodology is

based loosely on the methodology used for performing meta-analyses of clinical trials. The results

of these meta-analyses demonstrated that the identified practices were widely considered bad

practice by developers. Another metric was created to grade source code based on the frequency

these bad practices appear in the code and give an overview of how flexible the code is. The aim of

this metric is to facilitate learning for junior programmers while allowing more experienced

programmers to evaluate the flexibility of software. A software tool was launched to enable users

to evaluate and test the metric which was created. The metric was evaluated by comparison to

alternative metrics and through user feedback.

Thomas Butler iii

Table of Contents

1. Introduction 1 ..
1.1 Introduction 2 ...
1.2 What is a bad practice? 5 ...

1.2.1 Case study: The Singleton Pattern 7 ..
1.2.2 Anecdotal example 9 ...

1.3 Aims & Objectives 10 ...
1.4 Literature Review 11 ...

1.4.1 Code Smells 12 ..
1.4.2 Software Metrics 12 ...
1.4.2.1 Length of code 12 ...
1.4.2.2 Object-Oriented Metrics. 13 ..
1.4.3 How long is "too long"? 13 ...
1.4.4 Software Quality Metrics 14 ...
1.4.7 Academic vs Industry assessments of code quality 17 ..

1.5 Current Tools/Strageies 21 ...
1.5.1 List of tools for a single language 21 ...
1.5.2 Relevant tools 26 ...

1.6 Methodology 29 ..
1.7 Chapter Review 31 ...

2. Aggregation of Bad Practices 32 ..
2.1 Documentation of bad practices 33 ..
2.2 Aims & Objectives 35 ...
2.3 Methodology 36 ..

2.3.1 Documenting Bad Practices 36 ..
2.3.2 Storing bad practices and code samples 36 ...
2.3.3 Traits & Severity 41 ...

2.4 Results 43 ..
2.4.1 Using the new keyword in a constructor. 43 ..
2.4.2 Annotations for configuration 43 ..
2.4.3 Global/static variables 43 ...
2.4.4 Singletons 43 ...
2.4.5 Inheritance 43 ..
2.4.6 Service locators 43 ...
2.4.7 Setter Injection 44 ..
2.4.8 Static methods 44 ..
2.4.9 Negative Traits 44 ..
2.4.7 Table of bad practices 45 ...

2.5 Chapter Review 47 ...
3. Demonstrating the practices really are "bad". 48 ...

3.1 Introduction 49 ...
3.1.1 Background 49 ...
3.1.2 Rationale 50 ...

3.2 Aims and Objectives 52 ...
3.2.1 Aims 52 ..
3.2.2 Objectives 52 ...

3.3 Methodology 53 ..
3.3.1 Metric for comparing analytical rigour in programming articles 53
3.3.2. Meta-analysis 54 ...

iv Thomas Butler

3.3.3. Collecting data 56 ...
3.3.4 Additional considerations 57 ..
3.3.5 Test methodology 58 ...

3.4 Results 59 ..
3.4.1 Singleton 59 ...
3.4.2 Dependency Injection 61 ...
Key findings - Dependency Injection 61 ..

3.5 Conclusion 63 ..
3.5.1 Key findings 63 ..
3.5.2 Problems Encountered 63 ..
3.5.3 Evaluation 64 ...
3.5.4 Future Research 66 ..

3.6 Results for remaining bad practices 66 ..
3.6.1 Annotations 67 ...
3.6.2 Global Variables 70 ..
3.6.3 Inheritance 72 ..
3.6.4 new in constructor 75 ..
3.6.5 Service Locator 77 ...
3.6.6 Static Methods 79 ..
3.6.7 Setter Injection 81 ..

3.7 Meta-analyses overall conclusions 83 ..
3.7.1 Possible further research 84 ..

3.8 Chapter Review 85 ...
4. Creating a metric 86 ...

4.1 Introduction 87 ...
4.2 Aims and Objectives 88 ...

4.2.1 Aim 88 ..
4.2.3 Objectives 88 ...

4.3 Methodology 89 ..
4.3.1 Introduction 89 ...
4.3.2 Software Size 89 ..
4.3.3 Severity 90 ...
4.3.4 What to grade 91 ...
4.3.5 Grading range and visualisation 92 ...
4.3.6 Grade Calculation 92 ..
4.3.6 Model refinement 93 ..
4.3.7 Further refinement 95 ..
4.3.8 Project score 96 ...

4.4 Results 98 ..
4.4.1 Preliminary Evaluation 99 ..
4.4.2 Conclusion 101 ...

4.5 Chapter review 102 ..
5. Testing the metric by creating a tool 103 ...

5.1 Introduction 104 ...
5.2 Aims and Objectives 104 ...
5.3 Design 105 ...

5.3.1 Web based or application. 105 ...
5.3.2 Language choice 105 ...
5.3.3 Specification 107 ..
5.3.4 Report format 107 ..
5.3.5 Methodology 108 ...

Thomas Butler v

5.3.6 Unit 1 - Utility class 1: Navigating code 108 ..
5.3.7 Unit 2 - Utility class 2: Calculate namespace 109 ..
5.3.8 Unit 4 - Project 110 ..
5.3.9 Unit 5 - Scan for bad practices 111 ..
5.3.10 Unit 6 - Combining the rules 112 ...
5.3.11 Unit 7 - Metric 112 ...
5.3.12 Unit 8 - Class Issues 113 ..
5.3.13 Unit 9 - GUI 113 ...
5.3.14 Unit 10 - Automated corrections 113 ...

5.4 Implementation 113 ...
5.4.1 Technical challenges 121 ...
5.4.2 Known limitations 123 ..

6. Evaluation 125 ...
6.1 Introduction 126 ...
6.2 Evaluation techniques used by other software metrics 126 ...

6.2.1 Other academic approaches 127 ...
6.3 Evaluation techniques for this project. 129 ...
6.4 Real developer evaluations 129 ...
6.5 Compared to other metrics 130 ...

6.5.1 Methodology 131 ...
6.5.2 Results 132 ..
6.5.3 Conclusions 134 ...

6.6 Bad practice frequencies 135 ...
6.7 User evaluation 139 ...

6.7.1 Results 141 ..
6.7.2 Conclusions 159 ...
6.7.3 User comments 163 ...

6.8 Project outputs 164 ..
6.9 Project strengths 165 ..
6.10 Project weaknesses 166 ..
6.11 Research relevance and use-cases 166 ..
6.12 Future improvements and limitations 167 ...

6.11.1 Future improvements/Limitations - Chapter 2 - Aggregation 167
6.12.2 Future improvements/Limitations - Chapter 3 - Meta-analysis 167
6.12.3 Future improvements/Limitations - Chapter 4 - Metric 168 ..
6.12.4 Future improvements/Limitations - Chapter 5 - Tool 168 ...
6.12.5 Future improvements/Limitations - Chapter 6 - Evaluation 170

6.13 Chapter review 170 ..
7. References 173 ..
8. Appendices 189 ..

Appendix I: MarkDown extensions 189 ...
8.1.1 References 189 ..
references.json format 190 ...
8.1.2 Example code 191 ...

Appendix II. Raw JSON files describing bad practices 193 ...
8.2.3 Service Locator 193 ...
8.2.4 Singleton 193 ...
8.2.7 Object not initliased after constructor finishes (`initialize` and `set` methods)` 193
8.2.10 Annotations for configuration 194 ..
8.2.11 Use of static methods 194 ...
8.2.12 Using `new` in constructor 195 ...

vi Thomas Butler

8.2.13 Inheritance 195 ..
8.2.14 Global/Static variables 195 ..

Appendix III. Full explanations of bad practices 197 ..
8.3.1 Service Locator 198 ...
8.3.2 Singleton 200 ...
8.3.3 Object not initliased after constructor finishes (`initialize` and `set` methods)` 203
8.3.4 Annotations for configuration 208 ..
8.3.5 Use of static methods 213 ...
8.3.6 Using `new` in constructor 216 ...
8.3.7 Inheritance 219 ..
8.3.8 Global/Static variables 226 ..

Appendix IV. Full explanations of negative traits 230 ..
8.4.1 Broken encapsulation 230 ..
8.4.2 Single Responsibility Principle 233 ...
8.4.3 Unclear dependencies 234 ...
8.4.4 Temporal Coupling 234 ..
8.4.5 Law of Demeter 235 ...
8.4.6 Tight Coupling 237 ...
8.4.7 Global State 246 ..
8.4.8 Unnecessary Coupling 246 ...
8.4.9 Action at a Distance 247 ..

Appendix V. Paper: Seven Deadly Sins of Software Flxibility 249 ..
Appendix VI. Meta-Analysis Raw Data 257 ...

Singleton 257 ..
Dependency Injection 258 ..
Annotations for configuration 259 ...
Global Variables 260 ...
Inheritance 261 ...
Service Locator 263 ..
Static Methods 264 ...
Setter Injection 265 ...

Appendix VII. Paper: A Methodology for Performing Meta-analyses of Developers
Attitudes Towards Programming Practices 267 ..

Appendix VIII. Questionnnaire questions 279 ..
Appendix IX. Industry published article about the tool 282 ..
Appendix X. Questionnaire results raw data 292 ..

Thomas Butler vii

List of Figures

Figure 1.1 Overview of academic/industry literature 20 ...
Figure 2.1 Bad practice storage format 39 ..
Figure 2.2 Reference storage format 39 ..
Figure 3.1 Singleton results 59 ...
Figure 3.2 Dependency Injection results 61 ..
Figure 3.3 Singleton results 65 ...
Figure 3.4 Dependency Injection Results 65 ...
Figure 3.4 Meta-analysis results: Annotations 68 ..
Figure 3.5 Meta-analysis results: Global Variables 70 ..
Figure 3.6 Meta-analysis results: Inheritance 73 ...
Figure 3.7 Meta-analysis results: Dependency Injection 75 ...
Figure 3.8 Meta-analysis results: Service Locator 77 ..
Figure 3.9 Meta-analysis results: Static Methods 79 ..
Figure 3.10 Meta-analysis results: Setter Injection 81 ...
Figure 3.11 Depth of discussion about each practice 83 ..
Figure 4.1 Initial grade calculation 93 ...
Figure 4.2 Refined grade calcuation 95 ...
Figure 4.3 Initial inheritance calculation demonstration 95 ..
Figure 4.4 Refined class grade calculation 95 ..
Figure 4.5 Project score calculation 97 ..
Figure 4.6 Graph of results and number of classes 100 ..
Figure 5.1 Sample Tokenizer usage 108 ..
Figure 5.2 Sample Tokenizer usage (b) 109 ..
Figure 5.3 Sample local class aliasing in PHP 109 ...
Figure 5.4 Tool for resolving global class name 110 ...
Figure 5.5 Project class usage 111 ...
Figure 5.6 Rule interface 111 ...
Figure 5.7 Sample rule implementation 112 ...
Figure 5.8 Sample Insphpect instance 112 ..
Figure 5.8 Code for generating the grade of a project 113 ..
Figure 5.9 Screenshot of Insphpect home page 115 ..
Figure 5.10 Screenshot of sample report 116 ...
Figure 5.11 Screenshot of sample class 117 ...
Figure 5.12 Screenshot of sample class with issue expanded 118 ...
Figure 5.13 Screenshot of automated fix instructions 119 ...
Figure 5.14 Screenshot of generated patch 121 ..
Figure 5.14 Code prior to being rewritten 121 ...
Figure 5.15 Code after being rewritten by Insphpect 122 ..
Figure 5.16 Complex return statement 122 ..
Figure 5.17 Complex return statement after being rewritten by Insphpect 122
Figure 5.18 Alternative complex return statement 123 ..
Figure 5.19 Alternative complex return statement after being rewritten on the fly 123
Figure 6.1 Results of each tool, Normalised 132 ..

viii Thomas Butler

Figure 6.2 Normalised Root Mean Square Deviation of Insphpect and Scrutinizer-CI 135
Figure 6.3 Mean frequency of bad practices across all projects 138 ..
Figure 6.4 Question 1. How would you describe yourself as a programmer? 141
Figure 6.5 Question 2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply. 142 ..
Figure 6.6 Question 3. Do you use code reviews as part of your workflow? 143
Figure 6.7 Question 4. Do you use code review tools such as scruitinizer, phpmd, pmd,
etc? 144 ...
Figure 6.8 During code reviews, or when writing your own code, do you look for any of the
following? Please tick all that apply. 145 ..
Figure 6.9 Question 6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply. 146 ..
Figure 6.10 Question 7. Do you try to follow Object-Oriented best-practices when
developing software? 147 ...
Figure 6.11 Question 8. Do you actively try to avoid programming practices which go
against best practice principles? For example, do you actively avoid global variables and
singletons 148 ..
Figure 6.12 Which, if any, programming practices do you actively avoid using tick all that
apply, ignore any you are unfamiliar with 149 ...
Figure 6.13 Question 11. The insphpect site is intuitive and easy to use 151
Figure 6.14 Question 12. How much do you agree with the statement: 152
Figure 6.15 Question 13. Do you agree with the recommendations made by Insphpect? ...
153
Figure 6.16 Question 14. How much do you agree with the following statement: 153
Figure 6.17 Question 15. How much do you agree with the following statement: 154
Figure 6.18 Question 16. How much do you agree with the following statement: 156
Figure 6.19 Question 13. Do you agree with the recommendations made by Insphpect?
Senior Developers Only 160 ...
Figure 6.20 How much do you agree with the following statement: 161
Figure 6.21 Question 13. Do you agree with the recommendations made by Insphpect?
Senior Developers who use code reviews 162 ..
Figure 6.22 Question 12. How much do you agree with the statement: 162
Figure 6.23 Question 14. How much do you agree with the following statement: 163
Figure 8.1 Service locator example 1 198 ..
Figure 8.2 Inititialize methods 203 ...
Figure 8.3 Setter injection 204 ..
Figure 8.4 Setter injection problem demonstration (a) 205 ...
Figure 8.5 Setter injection problem demonstration (b) 205 ...
Figure 8.6 Setter injection problem demonstration (c) 205 ...
Figure 8.7 Setter injection solution 207 ...
Figure 8.8 Annotations example 208 ..
Figure 8.9 Annotations solution 209 ...
Figure 8.10 Annotations example 2 210 ..
Figure 8.11 Annotations example 210 ..
Figure 8.12 Static methods example 213 ..

Thomas Butler ix

Figure 8.13 Static methods solution 213 ...
Figure 8.14 Static methods solution 214 ...
Figure 8.15 Removal of static methods offers more flexibility 214 ...
Figure 8.16 New in constructor example 216 ..
Figure 8.17 New in constructor example 2 216 ..
Figure 8.18 New in constructor solution 217 ..
Figure 8.19 Dependency Injection 217 ...
Figure 8.20 Inheritance example 220 ...
Figure 8.21 Inheritance solution 220 ..
Figure 8.22 Benefits of removing inheritance 221 ...
Figure 8.23 Fragile base class example 222 ...
Figure 8.24 Fragile base class problem 223 ..
Figure 8.25 The diamond problem 224 ...
Figure 8.26 Global variables example 228 ...
Figure 8.27 Broken Encapsulation example 230 ...
Figure 8.28 Demonstration of Broken Encapsulation issue (a) 231 ..
Figure 8.29 Demonstration of Broken Encapsulation issue (b) 231 ..
Figure 8.30 Operating on data outside of the scope it is defined in 231
Figure 8.31 Alterantive approach using an interface 232 ...
Figure 8.32 Using the interface from figure 2.33 232 ...
Figure 8.33 Broken single responsibility principle 233 ...
Figure 8.34 Demonstrating the single responsibility principle 233 ..
Figure 8.35 Advantage of following the single responsibility principle 234
Figure 8.36 Temporal Coupling example 235 ..
Figure 8.37 Law of Demeter example 235 ...
Figure 8.38 Avoiding breaking the Law of Demter 236 ...
Figure 8.39 Digging deeper into the object graph 236 ...
Figure 8.40 Object graph required to test the code shown in figure 2.41 237
Figure 8.41 Example of Tight Coupling 238 ...
Figure 8.42 No dependencies are visible externally 238 ..
Figure 8.43 Example of loose coupling (a) 238 ...
Figure 8.44 Example of loose coupling (b) 239 ...
Figure 8.45 Real world example of tight coupling 240 ..
Figure 8.46 Enhanced Signup example class 240 ...
Figure 8.47 Enhanced Signup example class usage 240 ...
Figure 8.48 Signup class using loose coupling 241 ..
Figure 8.49 Signup class using loose coupling usage 241 ..
Figure 8.50 Tight coupling with inheritance 242 ..
Figure 8.51 The Signup class modeled using inheritance 242 ...
Figure 8.52 Tight coupling using static methods 243 ...
Figure 8.53 Using static methods to model the Signup class 243 ...
Figure 8.54 Loosely coupled Dave class 244 ...
Figure 8.55 Loosely coupled Signup class 245 ...
Figure 8.56 Unnecessary Coupling example 247 ..
Figure 8.57 Removing Unnecessary Coupling 247 ...

x Thomas Butler

Figure 8.58 Global state and action at a distance 248 ..

Thomas Butler xi

List of Tables

Table 1.1 QMOOD Metrics 15 ...
Table 1.2 QMOOD Quality Metrics 15 ...
Table 1.3 Review of static analysis tools 22 ...
Table 2.1 Bad practice file and folder structure 40 ...
Table 2.2 Trait file/folder structure 41 ...
Table 2.3 Table of bad practices 45 ..
Table 4.1 Bad practice severity ratings 91 ..
Table 4.2 Results table for 20 projects 98 ...
Table 5.1 Pros/Cons of a web-based tool 105 ...
Table 6.1 Frequency of bad practices 136 ...
Table 6.2 Frequency of bad practices (average per class) 136 ..
Table 6.3 Which bad practice caused grade reductions 138 ..

xii Thomas Butler

Thomas Butler i

1 Thomas Butler

1. Introduction

Thomas Butler 2

1.1 Introduction

This basis for this research can be summed up with two mundane observations:

Business requirements change over time.1.

Programmers are not clairvoyant.2.

Whether due to changes in the law like GDPR or VAT rates, new product launches, response to

competition, opening in new markets, etc, regardless of how large or small a business is, the

requirements will change over time.

From these observations it can be inferred that programmers know that business software will

need to be changed over time to fit new requirements but they have no way of knowing the

nature of those changes or when changes will be needed. Therefore programmers need to build

software that is capable of being modified in ways they may not have anticipated at the start of

the project.

A survey of 1,000 developers by Stripe (2018) found that half of a programmer's time is wasted

dealing with existing "bad code". This was extrapolated to estimate that "bad code" costs $300

billion USD every year worldwide. In addition, they concluded that if developers worked more

efficiently it could be worth 300 trillion dollars over the next decade.

Stripe did not define "bad code" when surveying the developers and it was left to the developer

being questioned what "bad code" meant to them. This research aims to document what "bad

code" is and explain how to identify and avoid it, before developing a metric to grade software on

its flexibility.

Like any engineering discipline, when developing software there are potentially hundreds or

thousands of ways writing code to achieve a particular outcome, even for a relatively small and

simple project. Each of these potential solutions is architecturally different and will come with its

own positives and negative aspects in relation to other solutions. Can these positives and

negatives be measured? And if they can be measured, can these positive/negative traits be

automatically detected and the two different projects compared?

There are many programming techniques which are considered "bad practice" and commonly

touted as the wrong way of programming. Two widely discussed and highly prominent examples

are global variables (Sayfan, n.d.; Koopman, 2010; Svennervberg, 2012; Zakas, 2006; Ferreira, 2013;

IBM, 2012; Crockford, 2006; Hevery, 2008) and the singleton pattern (Densmore, 2004; Radford,

2003; Yegge, 2004; Ronacher, 2009; Brown, 2013; Kofler, 2012; Hevery, 2008; Hevery, 2008; Sayfan,

n.d.; Weaver, 2010) which are regarded as bad practices and have many detractors who advocate

3 Thomas Butler

avoiding their use and using alternatives in their place.

Along with global state and singletons, there are numerous other bad practices which have

varying levels of discussion and documentation surrounding them. Books such as AntiPatterns:

Refactoring Software, Architectures, and Projects in Crisis (Brown et al, 1998), Refactoring: Improving the

Design of Existing Code (Object Technology Series) (Fowler et al, 1999) and Code Complete: A Practical

Handbook of Software Construction (McConnell, 2004) are dedicated to teaching software engineers

how to identify and avoid these bad practices and advice on what they should be doing instead

and why. Other books such as Design Patterns: Elements of Reusable Object-Oriented Software.

(Gamma et al, 1994) focus on best practices rather than highlighting bad practices.

From a programmer's point of view software is poorly written if it is difficult to work with.

Although "difficult to work with" may be subjective, in Object-Oriented Programming, the "bad

practices", "anti-patterns" and "code-smells" identified by authors are labeled "bad practice"

because they cause the code to be difficult to modify. A program that is difficult to change is

therefore labelled inflexible.

Flexibility is not a specific component of the software, there are no lines of code that can be

written to "add flexibility". However, some programming practices have been described as

"flexible" or "inflexible" (Eden et al, 2006; Hevery, 2008), flexibility is like the centre of gravity of a

car, there is no single component or line of code which conveys this property, but the flexibility,

like centre of gravity, is a function of all the parts of the system and how they are connected. There

are several ways flexibility can be inferred, for example:

Needing as few changes as possible to add new functionality.

If the software can easily have parts replaced entirely without modifying other parts of the

code. For example, replacing a gearbox in a car without needing to modify the engine.

If the existing parts can be taken and re-structured to make the program act differently. This

is the difference between a toy ship made of Lego and a ship in a bottle. The Lego ship can

be taken apart and turned into a house or a rocket. Doing the same with the ship in the

bottle is considerably more difficult.

Keeping everything self-contained. If a change in one place in the software accidentally

causes a change elsewhere, this can lead to subtle bugs and problems. This is informally

referred to as "Action-at-a-distance" (Wenger, 1995).

Thomas Butler 4

These metrics are imprecise, vague, nuanced and require a high level of understanding of both

the problems that cause inflexibility and the code being analysed. The primary goal of this

research is to create a new metric for measuring flexibility by analysing the number of bad

practices that exist in a piece of software. The more of these bad practices a piece of software has,

the less flexible it is. However, not all "bad practices" relate directly to flexibility. For the purposes

of this research, the term "bad practice" will be used to describe a programming practice that

hinders flexibility in some way. Other "bad practices" which relate to metrics other than flexibility

such as performance or user interface design are beyond the scope of this research.

Given any two pieces of software, it could be claimed that one is "better designed" from the

programmer's point of view by looking at how many bad practices it contains. Fowler et al (1999)

and Hevery (2008) have demonstrated that design patterns in code which cause side-effects and

negative consequences can be identified using a step-by-step process. With an adequate model, it

would be possible to construct a scoring system that could be applied to any piece of software and

allow the user to get an idea of how easy the software is to work with, extend or make changes to.

5 Thomas Butler

1.2 What is a bad practice?

"Bad practices" are defined as such because they make software difficult to maintain. Maintenance

issues are caused by a number of practical problems including:

Lack of documentation

Incorrect or insufficient unit tests

Poor or no code comments

Poorly structured code (flexibility)

Each of these points could be used to measure source code maintainability from the perspective of

a programmer. The first three are external to the code itself and can be identified fairly quickly by

anyone working on the project.

The last point, flexibility, is more nuanced as it is a property deeply embedded within the code. The

way the code is structured and the way that different parts of the code interact have a bearing on

how easy it is to change. This research is focused entirely on flexibility and other issues such as

documentation and unit test coverage are beyond its scope.

Flexibility has been defined as a desirable trait since the earliest days of software

engineering

Eden et al (2006)

There are different methods of defining a "bad practice". Slow or buggy code could be declared

"bad". However, when developers refer to "bad code" they are usually talking about code that is

difficult to maintain (Fowler et al, 1999; Martin, 2008). This research focuses entirely on flexibility

and any reference to "bad practice" will refer to a practice which makes the code more difficult to

modify or reuse than an alternative approach.

Flexibility is desirable because it helps with reuse and maintenence. If a component can be used in

multiple situations on different projects, it's better than a component that is specific to a project

and cannot be easily modified to work in a different way. The main reason, the flexible component

is "better" is because it saves developers time and can help lower the costs of software

development.

Making software flexible is a very difficult task and can have several repercussions on the project:

Increased design/development time, the flexibility has to be designed into the program and

the program built to follow the design (Although this upfront flexibility can often save time

Thomas Butler 6

later on (Fowler, 2015))

Increased complexity, if a piece of code can handle different use-cases it is often more

complex than a piece of software which can handle only one very rigid task.

Because of this, there is often a trade-off between time/complexity and flexibility. Discussions

around best practices often turn into discussions about when this trade-off is worthwhile (Sanders,

2013; Atwood, 2007; Funaro, 2009). This research does not attempt to weigh in on the discussion

about pros/cons of flexibility. The goal of this research is to provide a metric for measuring

flexibility in software, not to calculate whether the flexibility is required or not for any given

project.

Practices such as global variables have been widely identified as impacting the flexibility of code

going back at least as far as Wulf et al (1973). Others have highlighted problems with their use

since (Sayfan, n.d.; Koopman, 2010; Svennervberg, 2012; Zakas, 2006; Ferreira, 2013; IBM, 2012;

Crockford, 2006; Hevery, 2008), however there are many other bad practices which have been

identified as the complexity of programs and development methodology grows. For example

Hevery (2008) has identified several bad practices which have emerged due to a shift towards Test-

Driven-Development (TDD) among developers. These practices were still problematic before the

widespread use of TDD, however because TDD requires an extra level of flexibility, practices which

limit flexibility become apparent to the developer considerably faster than when using alternative

development methodologies.

As programming methods such as TDD and Agile programming have emerged and gained

popularity, the importance of flexibility of code has been magnified. For example, the use of mock

objects in TDD requires that code is separated and loosely coupled, making it easier to test.

Applications with loosely coupled components, on the other hand, are modular, flexible, and

easily tested with unit tests.

Weiskotten (2006)

Programming methodology trends like Test Driven Development have lead to requirements for

code to be loosely coupled so that it can be easily tested, which in turn has lead to practices that

make code tightly coupled being considered "bad practice" due to making tests more difficult to

write and produce less useful results. However, this flexibility affects more than just unit testing,

the same lack of flexibility exists in the program, it's often the case that unit tests are the first

situation that highlights it. Hevery (2008) wrote Guide: Writing Testable code. It is no coincidence

that all of the items in this guide relate to flexibility.

7 Thomas Butler

Along with tight coupling, there are other traits which have been identified as limiting to flexibility.

These include: action at a distance, breaking the Law of Demeter (also known as Digging into

collaborators (Hevery, 2008) and Tell, Don't ask (Fowler, 2013)), brittle code, breaking encapsulation

and breaking the single responsibility principle. These traits are not detectable in and of themselves

but the result of implementing a bad practice. Static methods introduce tight coupling but tight

coupling can also be introduced by inheritance and using the new keyword.

Bad practices are considered as "bad" because they introduce one or more of these negative traits

in the code and these traits limit flexibility. This can be confusing to developers, as it's not

immediately clear why the practice has been considered "bad practice" without understanding

why the underlying traits it introduces limit flexibility.

Some bad practices are easily discovered by junior developers while others only start to appear in

larger applications as complexity increases. For example, global variables are widely considered

"bad practice" and it's difficult to get far in a programming career without being informed of the

dangers of global variables or falling into some of the problems they cause (Wulf et al, 1973) and

working it out yourself.

This is down to several factors: Global variables are very easy to use/understand and the problems

they create become apparent very quickly, even to novice developers. This leads to a lot of

discussion around the topic and considerable awareness among developers.

A "bad practice" can be summed up as a practice which limits the flexibility of the code.

1.2.1 Case study: The Singleton Pattern

Bad practices become bad practices through experimentation. Developers use the practice in their

code and then run into problems it causes.

for it is true that global variables are often demonised and more recently the Singleton has

befallen the same fate.

Knack-Nielsen (2008)

After global variables, the most talked about and often identified bad practice is the Singleton

Pattern (Knack-Nielsen, 2008). This is likely because the pattern itself gained popularity after being

demonstrated in the popular book Patterns of Enterprise Application Architecture (Fowler, 2002). Since

then the pattern has been described as bad practice and an "anti-pattern" by numerous authors

(Densmore, 2004; Radford, 2003; Yegge, 2004; Ronacher, 2009; Brown, 2013; Kofler, 2012; Hevery,

2008; Hevery, 2008; Sayfan, n.d.; Weaver, 2010) and can be seen being discouraged within online

Thomas Butler 8

communities with them generally being discouraged when brought up: (Reddit, 2013; Adobe,

2013).

The singleton has become regarded as a a bad practice by most developers. This is for several

reasons that don't apply to many other bad practices:

The singleton was one of the patterns mentioned in two very popular and highly referenced

books: Design Patterns: Elements of Reusable Object-Oriented Software. (Gamma et al, 1994) and

Patterns of Enterprise Application Architecture (Fowler, 2002). This caused widespread

knowledge of the pattern and it took some time until the issues it causes were discovered

and documented.

The pattern was given a formal name and is easy to identify

The pattern has been considered bad practice for over a decade (Densmore, 2004)

The problems it causes are severe compared to other more subtle bad practices, making it

easier to demonstrate as there are multiple issues caused. This makes discovering the

problems a simpler task for people using the pattern. They only have to discover one of the

problems before realising the issues it introduces.

Because of the abundance of the pattern's usage, how long ago the pattern was recognised as

bad practice, formal name and the severity of the issues caused there is significantly more

discussion surrounding the Singleton Pattern compared to other bad practices.

On the other hand, the bad practice of "Digging into collaborators" (Hevery, 2008) is considerably

more subtle and difficult to understand. This limits the number of people talking about it, as only

experienced developers will understand the implications, this is further complicated because the

same bad practice can have multiple names. For example "Digging into collaborators" has also

been called "Law Of Demeter violation" (Brock, 2000) and "Tell, Don't ask" (Fowler, 2013).

Another problem surrounding discussion of these practices is that several people such as Seeman

(2010) and Hevery (2008) have identified Service Locators as a bad practice, however a service

locator is a specific implementation of "digging into collaborators" that has been named and

become widespread.

How much these bad practices are talked about will depend on how often they are used and how

easy they are to implement. These bad practices are seldom analysed in academia because they

9 Thomas Butler

tend to affect large scale software projects and contain nuances that are only relevant to people

working on code daily. Because of this, most of the analysis of these practices has been done by

leading industry experts such as Misko Hevery,a programming coach at Google, and consultants

such as Martin Fowler who have written prominent books in the area.

1.2.2 Anecdotal example

A web development agency, Media-Web Solutions, had developed a website for a recruitment

agency and had been maintaining it for several years when the client asked for a change to the

website:

We have just taken over another smaller recruitment agency and so we've inherited their

website. We want to keep their brand and website as it's well known in their niche.

Some of the jobs we post would be useful on both websites. Can you make it so that when a

job is posted on the new companies website there is a checkbox that also posts the job to

our site? And visa versa?

The same change was needed on both sites: When posting a job, add a checkbox to cross-post the

job on the other website.

On the site that Media-Web had created for the client initially this was a simple task: the developer

created a new database connection instance to connect to the other website and insert the job as

a record into both databases.

However, the site that had been inherited used a singleton for the database connection because

the original author of the website had assumed that only one database connection would ever be

needed.

Two sets of code with the same modification needed, on one website the change was simple, on

the other it was made needlessly difficult because of a design decision made that impeded the

flexibility of the code.

Thomas Butler 10

1.3 Aims & Objectives

Publish an extensible list of bad practices in a format that can be easily extended by other1.

academics or developers and embedded in third party documentation/applications.

Demonstrate that "bad practices" are "bad" on more than just a subjective level. E.g.2.

practical examples and/or show that different developers independently come to the same

conclusions.

Create a metric that can be used to analyse and grade the quality of source code based on3.

the frequency of known bad practices.

Develop a proof of concept software tool that implements the metric and can analyse source4.

code for bad practices.

Evaluate the metric by asking developers their opinion on the results and compare results to5.

results of other similar tools.

Explore the possibility of extending the tool to allow automated source code correction of6.

identified bad practices.

11 Thomas Butler

1.4 Literature Review

In the seminal book Refactoring: Improving the Design of Existing Code (Object Technology Series)

(Fowler et al, 1999), Fowler et al (1999) coined the term "code smell" to refer to a piece of code that

"stinks" and exhibits characteristics of "bad design". A specific definition of "code smell" is not

given, only several examples. For example, the first "smell" described is duplicated code. Even a

junior developer will see duplicated code and understand that it causes maintainability problems.

If the logic has to change, it must be changed in (and the developer must remember to change)

multiple locations.

Fowler et al (1999) go on to define dozens of other code smells including Long Method, Large Class,

Long Parameter List, Shotgun Surgery, Switch Statements and Inappropriate Intimacy. The "smells"

defined are based on the authors own industry experience and do not have any academic citations

to back them up, only example code. However, Refactoring: Improving the Design of Existing Code

(Object Technology Series) (Fowler et al, 1999) has been cited over 9,000 times in academic works

(Google Scholar, n.d.).

One of the limitations of the definitions given by Fowler is that they are nebulous. It is up to the

reader to decide where the lines are drawn. For example, the Large Class smell is defined as:

When a class is trying to do too much, it often shows up as too many instance variables.

When a class has too many instance variables, duplicated code cannot be far behind.

And Inappropriate Intimacy as:

Sometimes classes become far too intimate and spend too much time delving in each others'

private parts. We may not be prudes when it comes to people, but we think our classes

should follow strict, puritan rules

A reader may be left with two questions that Fowler et al (1999) does not attempt to answer:

How is "length" measured? If number of lines is used, does that include comments and1.

whitespace? Does brace position affect line count?

How long is "too long"? How much is "too much" and "too intimate"?2.

Although Fowler et al (1999) alludes to these answers, the descriptions are generally vague. For

example:

Thomas Butler 12

As with a class with too many instance variables, a class with too much code is prime

breeding ground for duplicated code, chaos, and death. The simplest solution (have we

mentioned that we like simple solutions?) is to eliminate redundancy in the class itself. If you

have five hundred-line methods with lots of code in common, you may be able to turn them

into five ten-line methods with another ten two-line methods extracted from the original.

Which suggests somewhere between ten and 100 lines is too long and that lines is the metric to

use for measurement, is that counting whitespace and comments or not? How does brace position

affect this count?

While Fowler et al (1999) provides a good starting point for "code smells", the vague definitions

alone are not suitable for metrics that assess software quality as any such metric would need to

define "too long" in a quantifiable way.

Fowler et al (1999) states that:

One thing we won't try to do here is give you precise criteria for when a refactoring is

overdue. In our experience no set of metrics rivals informed human intuition.

1.4.1 Code Smells

A systematic literature review of code smells, anti-patterns and bad practices by Sabir et al (2018)

that looked at 78 papers (filtered by relevance from 13,769 total papers) identify that a total of 56

smells that have been reported in academic literature.

Despite the widespread labelling of the singleton pattern as a bad practice by industry developers,

it is a notable omission from this list. One of the current issues with the literature is a disconnect

beween academia and industry.

1.4.2 Software Metrics

There are many different metrics which can be used to measure various aspects of source code.

These are often used as indicators for software quality. Several relevant metrics are outlined

below.

1.4.2.1 Length of code

Several attempts have been made to provide metrics for size of source code. The most crude

metric is Source Lines of Code (SLOC). Although there are attempts (Nguyen et al, 2007) to define a

standard, there is no widely adopted definition of SLOC.

For use in assessing software quality and answering "how long is too long?" SLOC is poor choice as

13 Thomas Butler

different programming and commenting styles could result in the same logic being significantly

different numbers of lines even using the same programming language. For example, brace

position, whitespace, comments can all affect the number of lines in a file.

A more consistent metric is Cyclomatic Complexity, the total number of independent linear paths

within a block of code (McCabe et al, 1976). A block of code with no control structures has a

complexity of one, a block of code with a single of statement has a complexity of two. Unlike SLOC,

code can be written with different brace and commenting styles without affecting the cyclomatic

complexity.

SLOC and Cyclomatic Complexity are used for general programming, however, when using Object-

Oriented Programming, there are other measurements of size include the number of classes, and

number of methods in a class (Chidamber et al, 2007).

1.4.2.2 Object-Oriented Metrics.

Outside of the study of anti-patterns and code smells, metrics have been used of statistical analysis

of OOP source code. One of the first suites of metrics was developed by (Chidamber et al, 2007)

including:

Weighted Methods Per Class (WMC), the number of methods defined in a class

Depth of Inheritance Tree (DIT), the number of levels of inheritance per class

Number of Children (NOC), the number of child classes a class has

Coupling between objects (CBO), the number of other classes that a class depends on

Response for a Class (RFC), the number of external methods that are called from methods

inside the class

Lack of Cohesion in Methods (LCOM), a measure of cohesion

Although (Chidamber et al, 2007) did not specifically create the metrics for assessing code quality,

they observe that the metrics could be used for determining reusability:

Classes with large numbers of methods are likely to be more application specific, limiting the

possibility of reuse.

However, like Fowler et al (1999), leave it up to the individual to determine what is meant by "large

numbers of methods". These metrics are statistical tallies and on their own do not offer any insight

into software quality, despite statements that "too much" can be detrimental (Fowler et al, 1999).

1.4.3 How long is "too long"?

Attempts have been made to define how long methods and classes should be. For example Grady

Thomas Butler 14

et al (1994) suggests limiting the length of a method to 14 cyclomatic complexity. A number

derived by plotting the complexity against how frequently the code is updated. Industry tool

Scrutinizer-CI (n.d.) imposes a limit of 5 complexity per method and 35 per class for an A grade,

though the reasoning for this threshold is not disclosed.

Fontana et al (2015) notes that:

Many of the available smell detection tools implement a metrics-based approach, with ‘fixed’

or configurable threshold values. In some cases, tool providers using ‘fixed’ threshold values

do not provide a clear rationale on how these thresholds have been devised

Fontana et al (2015) uses existing systems to determine thresholds for various metrics in an

attempt to provide a repeatable way of answering "how long is too long?" through statistical

analysis of existing source code to work out averages. One conclusion they draw is that 47

methods is too many to have in a class. Although there is reasoning to back this number up, it is

still a mostly arbitrary cut off point. A class with 46 methods may not be any more maintainable

than a class with 47.

Although it has been shown that as a unit of code grows, the maintainability of code decreases

(Yamashita et al, 2013), efforts such as these to quantify "too long" are indicative at best.

1.4.4 Software Quality Metrics

A survey of Object Oriented Quality Metrics by Neelamegam et al (2009) identified the following

metrics used for assessing software quality:

MOOSE (Metrics for Object-Oriented Software Engineering). An extension of the CK Metrics

Model by the same authors.

MOOD (Metrics for Object-Oriented Design). A set of statistical metrics which can be used to

analyse various aspects of Object-Oriented Design

QMOOD (Quality Model for Object-Oriented Design), a set of metrics specifically designed for

assessing software quality.

Neelamegam et al (2009) concludes that:

We surveyed a group of desirable properties for OOD quality models, and then we used

them to compare the presented OOD quality models. Based on this comparison, we conclude

15 Thomas Butler

that the QMOOD suite is the most complete, comprehensive, and supported suite.

Although each quality model is unique and use different metrics the underlying principle is the

same: Source code is scanned and statistical analysis is used to assess quality. For example,

QMOOD uses the following metrics:

Table 1.1: QMOOD Metrics

Table 1.1 shows the metrics used by QMOOD, reproduced from Neelamegam et al (2009).

Like Chidamber et al (2007), the metrics are purely statistical with the inclusion of some averages

to allow comparisons between classes. QMOOD takes this a step further and defines the

characteristics Reusability, Flexibility, Understandability, Functionality, Extendability and Effectiveness

as defined below.

Table 1.2: QMOOD Quality Metrics

Thomas Butler 16

Table 1.2 shows the software quality characteristics defined by QMOOD, reproduced from

Neelamegam et al (2009).

The weightings they have chosen (For example, -0.25 for coupling in the Reusability metric) are

arbitrary and the authors state "Weights can be experimented with to best reflect organizational

objectives".

Neelamegam et al (2009) discusses the differences between MOOD, MOOSE and QMOOD. For the

purposes of this research, the differences between the metrics are not relevant as all three metrics

use a similar approach and have the same limitation with defined thresholds.

1.4.4.1 Problems with statistical approaches such as MOOD

Due to the purely statistical nature of these metrics they are only indicative. Someone looking at

the metrics may be able to infer some information about complexity and the overall software

design the usefulness is limited:

17 Thomas Butler

They are poorly defined. The Flexibility metric in QMOOD does not take Inheritance into1.

account. In most programming languages, overuse of inheritance creates a very rigid,

inflexible design (Holub, 2010). Global variables also lead to inflexible code (Hevery, 2008).

Using QMOOD, two pieces of software could receive the same score even though one uses

inheritance and global variables while the other does not.

There is no directly actionable outcome. After calculating the metric, there is very little2.

indication of what a developer could, or should, do to improve the quality of the source code,

only an indication of where in the code improvements could possibly be made to lower the

numbers.

Weightings are arbitrary. The score for each characteristic is useful for comparing different3.

systems but the numbers themselves are mostly meaningless on their own.

Regardless of which model is used, trying to answer the question "how long is too long?" will4.

always result in a cut off point that cannot be applied universally. When using 14 as Grady et

al (1994) suggests, a 15th logical statement is the difference between code labelled "flexible"

and code labelled "inflexible".

Different metrics will give different grades due to different thresholds.5.

1.4.7 Academic vs Industry assessments of code quality

While the academic focus has been on automated detection of code smells (Fontana et al, 2015)

such as "god classes" and "long methods", industry code reviewers look at more than just

statistical metrics (Hevery, 2008) to assess code quality.

Hevery (2008), a programming coach at Google, looks for specific bad practices such as the

Singleton Pattern and using the new keyword in constructors. Although these practices are

commonly discussed in industry, none of the software quality metrics used in academic works take

these into account.

In 2008, Knack-Nielsen (2008) while writing for the website sitepoint.com, a popular resource

among industry web developers, observed that:

for it is true that global variables are often demonised and more recently the Singleton has

befallen the same fate

Thomas Butler 18

Other industry sources (Densmore, 2004; Radford, 2003; Yegge, 2004; Ronacher, 2009; Brown,

2013; Kofler, 2012; Hevery, 2008; Hevery, 2008; Sayfan, n.d.; Weaver, 2010) make the same calls to

avoid using the pattern in the same manner as global variables because it introduces similar

problems. Online forums and question answer sites like stackoverflow.com used by developers in

industry can be seen to have the same negative opinion of the pattern (Vogt, 2008; Reddit, 2013;

Adobe, 2013).

However, among academic literature the singleton pattern is never mentioned as a bad practice,

anti-pattern or code smell. In 2018, ten years after the observation by Knack-Nielsen (2008)

regarding industry's negative opinion of the singleton pattern, a comprehensive review of the

academic literature (Sabir et al, 2018) identifies 56 "code smells", "bad practices" and "ant-

patterns". The singleton pattern is not included in their list as it does not currently appear in the

academic literature. The list does, however, contain global variables which are considered bad

practice in the same manner as the singleton among industry developers (Cosentino, 2013;

Hevery, 2008).

Google Programming Coach Hevery (2008) notes:

There is a price to pay for such a JVM Singleton, and that price is flexibility and testability.

Academic sources often contradict this. For example, using source code metrics to analyse the

maintainability of the singleton pattern Abdullah (2017) writes:

Maintainability metrics for implementation of Singleton is illustrated in table 6.1. It is

observed that all the maintainability metrics for Singleton Design Pattern are within limit of

maintainability thresholds and good scores for maintainability are observed for Singleton

Design Pattern

Despite specifically discussing maintainability and the singleton pattern, Abdullah (2017) never

identifies that the singleton pattern has been shown to introduce maintainability issues by

industry developers. This demonstrates that knowledge from industry is missing in academic

literature and the limitations of statistical based metrics for source code analysis.

In Detecting Software Bad Smells from Software Design Patterns using Machine Learning Algorithms

(Kaur et al, 2018) source code metrics are used analyse design patterns including the singleton

notes that:

In case of design patterns state strategy, adapter command, factory method and singleton

lack bad smells.

19 Thomas Butler

The paper is specifically discussing code smells but, like Abdullah (2017) never touches upon the

fact industry experts discourage the singelton pattern and and consider it a bad practice/code

smell.

The underlying reason for this appears to be that the list of smells used in academic work

originate from the industry developer Fowler et al (1999) and have not been added to since.

Subsequent research has built on prior academic research leading to a fork in knowledge between

academics and industry developers.

Thomas Butler 20

Figure 1.1: Overview of academic/industry literature

Figure 1.1 shows an overview of the relationships between the literature in Academia and

Industry. This chart contains only the most relevant litereature to give an indication of where this

research fits. A more detailed literature review is performed in this section.

Academia reached "Smell detection" via the route of software metrics like cyclomatic complexity

and coupling. These were then built on using threshold based "smell detection" where too much

coupling/complexity is flagged as a code smell. This is partiall influenced by Industry work by

Fowler et al (1999).

Although this appraoch is used in industry (Scrutinizer-CI, n.d.), industry code reivews tend to be

based on identifying coding practices which make code difficult to work with (Hevery, 2008). These

have been identifed by programmers at companies like Google (Hevery, 2008) and IBM (IBM, 2012)

as well as high profile software consultants (Bugayenko, 2016) from first hand experiences of

falling into traps caused by using these programming practices.

21 Thomas Butler

1.5 Current Tools/Strageies

According to Ivo et al (2009) formal review and inspections of code were "recognized as important

to productivity and product quality" as far back as the 1970s. Ivo et al (2009) also discusses the

uses and merits of various static analysis tools which have been used to detect bugs and potential

security vulnerabilities in code.

One such tool is FxCop by Microsoft which can be used to detect bugs, security issues and

potential performance issues in code. To a very limited degree FxCop and other tools identified by

Ivo et al (2009) detect design based issues but these tend to be very primitive such as duplicate

code and variables which are declared and never used (MSDN, 2013).

There are many tools designed to detect genuine bugs, security flaws and programming practices

which cause code to work in a manner it's not intended but none of these appear to target the

more abstract and philosophical best practices that come from OOP theory that limit flexibility ,

hindering further development of the software.

1.5.1 List of tools for a single language

There are numerous tools for analysing code in different ways. Table 1. is a comprehensive list of

static analysis tools for a single language. The scope of available tools for just one programming

language demonstrates how widespread and varied static analysis tools are.

PHP is mature and widespread enough that many code analysis tools to have been1.

developed for it.

There are thousands of open source libraries available for PHP (Packagist, n.d.) which gives2.

large body of sample inputs for any potential future further analysis of available tools.

This list had already been compiled by (Seguy, 2014) and has been included here solely to3.

show the scope of tools available for a particular language (other languages have other

similar tools (Analyis Tools, n.d.)).

It is intended that the final stage of this project use PHP for analysis for reasons outlined in4.

section 5.3.2.

The table includes a brief description, whether they produce a grade (A-F, 0-10, etc) and whether

they look for any Object-Oriented Bad practices and whether they offer automated fixes.

This overview is based upon the list compiled by Seguy (2014).

Table 1.3: Review of static analysis tools

Thomas Butler 22

Name What is detected?
Looks for
OOP bad

practices?

Provides
grade?

Automate
fixes? Notes

Relevant
to this

research?

AppChecker Syntax errors, undefined variables,
common mistakes like assignment
instead of comparison, code which
can't be called, division by zero

No Yes No Russian
Language

No

churn-php Statistical analysis through tallies:
Cyclomatic complexity, commits

No Yes No No

Eir Security issues No No No No

Exkat Comprehensive static analysis with
over 400 rules, looks for
deprecated/removed PHP features,
security issues, performance issues,
debugging instructions left in
production code. Does not look for
OOP bad practices like singletons.

No Yes No No

jscpd Duplicated code No No No No

Mondrain Graphical representation of class
coupling

No No No Doesn't look
specifically for
bad practices
but the visual
output helps
identify tight
coupling.

Partially
- can
identify
tight
coupling

NoVerify Syntax checker (Unused variable,
undefined variable, unreachable
code, etc)

No No No No

Pfff Syntax checker (Unused variable,
undefined variable, unreachable
code, etc), Visualisation, shows
relationships between
classes/methods/files.

No No No No

php-analysis Documentation does not declare
what it looks for, all links to
academic papers it is based on are
dead. Required "corpus" files no
longer available. No sample output
available.

N/A N/A N/A No

PHPArch Coupling (manually configured rules) No No No Requires
manual
configuration
but detects
code rot based
on rules
described at
the start of the
project. Each
class can be
tagged as a
certain layer,
the rules are
run over the
lifetime of a
project to check
that rules have
not been
broken.

No

PHP-Assumptions Strict type checking, looks for
assumptions e.g. that the user
entered a number, an array key is
set

No No No No

PhpCodeAnalyzer PHP features that may not be
available on all systems.

No No No No

23 Thomas Butler

Name What is detected?
Looks for
OOP bad

practices?

Provides
grade?

Automate
fixes? Notes

Relevant
to this

research?

PHPCodeFixer Deprecated/removed features No No No No

php7mar Code that suffers from backwards
compatibility issues between php
versions

No No No No

phpcallgraph Call graph visualisation No No No No

PHPCPD Duplicated code No No No No

Phan Backwards compatibility, used
classes/methods/variables/interfaces
exist, Duplicated code, unreachable
code, unused variables, etc

No No No No

Phinder Manually configured patterns No No No Per-project
manual
configuration.
Rules can be
added to scan
for patterns
e.g. var_dump
or in_array with
only two
arguments

No

Phortress Security issues No No No No

php-code-static-analysis Security issues No No No No

PHP Inspections Simple programming errors: Syntax,
performance issues, assignment
instead of comparison, duplicate
code, infinite loops

No No No No

PHP Integrator (aka
Serenata)

IDE auto completion, code
generation, syntax checking

No No No No

PHP Integrator (aka
Serenata)

IDE auto completion, code
generation, syntax checking

No No No No

Phlint Syntax errors, Deprecated code, type
checking, redeclaring variables,
duplicate array key

No No No No

PHP Lint Syntax errors No No No No

PHP Parallel Lint Syntax errors No No No No

phpmnd Magic numbers No No No No

PHP Malware Finder Potentially malicious PHP scripts No No No No

PHP Mess Detector Duplicated code, unused variables,
threshold based code size warnings

No No No No

PHP Reaper SQL injection vulnerability No No No No

PHP SA Syntax errors, missing
documentation, unused
variables/constants/methods,
missing
constants/methods/variables

No No No No

PHP Stan Syntax errors No No No No

PHP Unlocker SQL queries which cause table locks No No No No

PHP testability Issues which makes code hard to
test, global variables new in
constructor, static variables.

Yes Yes No Yes

PHP vuln hunter Security issues. No No No No

Progpilot Security issues. No No No No

Thomas Butler 24

Name What is detected?
Looks for
OOP bad

practices?

Provides
grade?

Automate
fixes? Notes

Relevant
to this

research?

Psalm Simple bugs such as type errors No No Yes No

psecio:parse Security issues. No No Yes No

SonarQube Threshold based metrics, duplicated
code

No No Yes No

side-channel-analyzer Security issue: side-channel
vulnerabilities

No No No No

TaintPHP Security issues: XSS and SQL
injection

No No No No

Taint-em-all Security issues: XSS and SQL
injection

No No No No

Tuli Static type checking No No No No

Unused-scanner Unused package dependencies No No No No

WAP Security: XSS, validation checker No No No No

PHP VarDump Check Looks for var_dump debugging left
in code

No No No No

17eyes Coding conventions (e.g. brace
position, line length)

No No No No

PHP Code Sniffer Coding conventions (e.g. brace
position, line length)

No No No No

EasyCodingStandard Coding conventions (e.g. brace
position, line length)

No No No No

PHPCheckstyle Coding conventions (e.g. brace
position, line length)

No No No No

PHP formatter Coding conventions (e.g. brace
position, line length)

No No No No

Pahout Coding conventions (e.g. brace
position, line length)

No No No No

PHP Doc Check Coding conventions
(docblocks/comments)

No No No No

Pahout Coding conventions (identifies
coding practices which are now old
fashioned due to language
improvements)

No No No No

PHP Doc Check Coding conventions
(docblocks/comments)

No No No No

Deptrac Checks dependencies are not used in
places they should not be

No No No Requires
manually
configuring the
rules for each
project

No

PHP-cfg Visualisation: Control flow graph No No No No

PHP Coupling Detector Checks there is no coupling where
there shouldn't be

No No No Requires
manually
configured
rules for each
project

No

PHP Coupling Detector Checks there is no coupling where
there shouldn't be

No No No Requires
manually
configured
rules for each
project

No

25 Thomas Butler

Name What is detected?
Looks for
OOP bad

practices?

Provides
grade?

Automate
fixes? Notes

Relevant
to this

research?

Rector Refactors code: rename classes
across a project, upgrade php code
to remove backwards compatibility
issues

No No Yes No

PHP Refactoring
Browser

Refactors code: Renames local
variables, converts local variable ot
instance variable, rename classes

No No Yes No

Pattern Detector for
PHP

Refactors code: Renames local
variables, converts local variable ot
instance variable, rename classes

Yes No No Detects
singleton
patterns but
does not
identify them
as bad, only
notes they exist

No

Bliss Unknown Yes No No Claims to make
code easier to
manage. No
documentation,
no tool
available,
sparse website
with no links.

No

Checkmarx Security issues No No Yes No

Codacy Security issues, coding standards No No Yes No

Code Climate Workflow: How quickly project
issues/changes are
reported/requested and
implemented

No Yes No No

CodeScene Threshold based metrics
coupling/cohesion

No Yes No No

Symfony Insight Threshold based metrics
coupling/cohesion,
package/dependency management
issues, deprecated code, security,
performance issues, bug detection

No Yes No No

RIPS Security issues No Yes No No

Scruinizer Threshold based metrics
coupling/cohesion

No Yes No No

Sider CI tool that uses phinder backed for
PHP

No Yes No Per-Project
manual
configuration
of rules
required

No

Laravel Shift N/A No Yes No Uses static
analysis to
automatically
upgrade old
laravel code to
newer versions

No

Table 1.3 demonstrates the wide variety of tools available for analysing PHP code. Despite the

scope of tools available, there are none that try to accomplish what this research is doing.

Thomas Butler 26

1.5.2 Relevant tools

Of these tools looked at the most relevant are Scrutinizer (Scrutinizer-CI, n.d.) and SensioLabs

Insights (SensioLabs Insight, n.d.) which grade source code on their own metrics, however they do

not grade the source code by looking for known bad practices.

PHP Testability looks for things like global variables and singletons but does not produce an

overall grade.

The metrics used by these tools are purely statistical and take measurements of code such as

cyclomactic complexity, the number of control sutrcutures per method and the number of methods

per class. Scruitinizer-CI grades a class A if it has a cyclomatic complexity lower than 35.

Another purely statistical metric used by Scrutinizer-CI (n.d.) and SensioLabs Insight (n.d.) is

coupling, a tally of how many external classes each class depends on.

Cycometric Complexity, Lines of Code and Coupling are the other metrics used by these tools are

purely statistical. They do not account for bad practices and they don't tend to differentiate

between programming practices such as tight and loose coupling.

These metrics could be used to give a very rough idea of how difficult a piece of software is to

maintain, however the metrics are crude. For example, Scruitinizer-CI gives a grade for each class

in the project and an overall grade. A class in the project can go from an A to a B by introducing a

single if condition because the grade is based on the cyclomatic complexity, the number of if

statements, loops and functions. It arbitrarily gives an A grade to any class with under 35

complexity, and any class will get a B grade for having just one more if statement or loop. There is

no technical reason for this number, it's just one the developers chose. Although the grade is

indicative of complexity, it is only an overview.

SensioLabsInsight detects one Object-Oriented based bad-practice: Global variables, along with a

lot of other bad practices which are not related to Object-Oriented Programming, such as

consistent code styling (brace position, capitalization), deprecated functions and practices known

to cause bugs or security risks. Other than global variables, it does not attempt to detect bad

practices such as those described by Fowler et al (1999) or Hevery (2008).

Other tools fall into a family called "mess detector". These exist for many languages including Java

(PHP Mess Detector, n.d.) and PHP (PHP Mess Detector, n.d.). These mostly detect duplicated code,

unused variables, unreachable sections however PMD does detect some bad Object-Oriented

practices such as tight coupling and digging into colaborators.

In academia, Some work made on the topic of "smell detection" to detect "code smells", which are

27 Thomas Butler

another name for "bad practices". The most relevant research is as follows:

Carneiro et al (2010) discusses programmatically detecting four specific bad practices, however

these detections were for much broader bad practices such as "God classes" which are classes that

“do too much” and visualising why. This is a definite bad practice that is worth detecting and falls

under the broader single responsibility principle. However, this paper is more concerned with

visualising the structure of the application to identify this than detecting and potentially fixing the

problem.

Bryton et al (2002) discusses the subjectivity of a particular bad practice called the Long Method,

where a method “does too much”. Detecting and addressing this presents a lot of challenges

which are discussed in detail. However, what is not explored or identified is that a long method

almost inevitably contains other bad practices such as Law of Demeter violation (Hevery, 2008;

Grimm, 2014) and if-else branching rather than polymorphism (Fowler et al, 1999; Brandsma,

2009; Ferris, 2012). Because of this, they are potentially approaching the problem from the wrong

end. The Long Method they identify is a symptom of poor design rather than a problem in its own

right. It leaves an important question unanswered: How long is too long?, there is unlikely to be a

standard or easy to calculate answer to this, however it's possible that by detecting then fixing

simpler, known, and far less subjective bad practices that the problem of Long Methods would

resolve itself because the method would be refactored and as the bad practices are removed, the

method would naturally shrink in length. The Long Method bad practice is more indicative of the

use of other bad practices than a bad practice itself. As Bryton et al (2002) even concede

themselves, there is nothing inherently wrong with long methods, the problem is that long

methods tend to merge responsibilities causing poor separation of concerns which, in turn, leads

to long sections of code that become difficult to understand, test and modify. It's this poor

separation of concerns that is the underlying issue, not the fact that a method is made up of "too

many" lines of code.

Fontana et al (2011) This paper discusses real world "code smell detection" tools. It's slightly out

of date as it doesn't include the newer generation of tools mentioned above, however the paper

shows there is a very real demand for code smell detection tools. This paper is useful, however,

because it shows the range of practices detected in the tools it analysed and these are the very

simplistic bad practices such as duplicated code that are detected by existing tools such as FxCop

mentioned above. What is very useful to this research is a list of detection tools along with a

comprehensive list of the exact bad practices they detect. Of all the tools tested, none of them

detect the OOP theory based "Anti-patterns" which are caused by tight coupling of components,

dependency injection related bad practices such as those recognized by Fowler et al (1999), Hevery

(2008), Noback (2013) and Butler (2013).

Thomas Butler 28

Liu et al (2012) is similar to Fontana et al. (2011), this paper discusses bad practice detection but

with a focus on real-time detection and fixing the bad practices during code development as soon

as they're created. However, the practices being detected are the same very simplistic ones which

Fontana et al (2011) describe such as long methods, public properties and duplicate code. Again, they

make no mention of the bad practices which affect pure OOP theory such as breaking

encapsulation and instantiating objects in constructors instead of using dependency injection

(Hevery, 2008)

Eden et al (2006) identifies flexibility as a very desirable trait and approaches the idea of

improving code not by reducing bad practices but by measuring the flexibility of the software by

examining flex points in the software. A method of measuring the flexibility in software is provided

by looking at design patterns and choices made during development. Rather than focussing on

negative elements in the code, his approach looks for positive aspects such as the visitor pattern

and the use of interfaces rather than complex inheritance trees when designing software. This fits

Hevery (2008) who identifies and explains why "loose coupling" in software is a very desirable trait

in software.

Code smell detection and static code analysis for quality metrics are beginning to gain traction in

both industry with tools such as Scrutinizer-CI and in academia. However, there is currently a

disconnect between the tools that have been produced and the bad practices that have been

identified by experts in the field.

29 Thomas Butler

1.6 Methodology

Aggregate documented common bad practices, "code smells" and "anti-patterns" such as1.

those presented by Fowler et al (1999). As many of the bad practices are only documented by

professional programmers who have documented them after encountering the problems

they discovered, often these practices are not currently formally identified in academia.

Design a data structure which can be used to consistently describe each bad practice.1.

This will need to be flexible enough to store details about bad practices which may not

all be able to be described in the same way and may require several iterations or

extensions as new bad practices are added

Using the format from (1.1) document each bad practice which has been described by2.

authors.

Categorise each bad practice by the negative traits it introduces and store the data3.

about what traits are used along with each bad practice

The data structure designed in (a) should be flexible enough to have additional4.

information added to each bad practice in case it needs to be extended as more bad

practices are discovered which might not fit the format.

Demonstrate that each bad practice is "bad":2.

With examples1.

Give referenced code examples that demonstrate issues caused by using a1.

practice

By literature review2.

Collect opinions about each practice1.

Construct a method of comparing the opinions based on a weighting (e.g. did2.

the author consider alternatives?)

Perform a meta-analysis of the opinions about each practice from (1)3.

With the database of bad practices, create an extensible model that allows a programmer to3.

look through any piece of code and easily identify bad practices by following a check list/flow

chart or some other easy to follow methodology for each bad practice. The model should

assign a score to each bad practice based on its severity. This severity score could be based

on the number of negative traits that the bad practice introduces. This score would then

allow a third party to identify how easy the software is to work with relative to other software

by getting an overview of the extent of bad practices it contained.

Create a proof-of-concept software tool that implements the model and produces the score4.

on given inputs using a single programming language. This will be run on sample projects

sourced from open source software.

Once the software calculates a score for a chosen programming language the score will be5.

Thomas Butler 30

evaluated against other metrics for software analysis that measure software quality and

other existing metrics such as class size which are perceived to have an impact on flexibility.

Many bad practices can be fixed by following a step-by-step process. In Refactoring:6.

Improving the Design of Existing Code , by Fowler et al (1999), the authors describe, methods

of removing the problematic code while retaining the functionality. Building upon this this

research will amend the proof-of-concept tool from (4) to optionally attempt to fix or offer

suggested fixes for bad practices found.

31 Thomas Butler

1.7 Chapter Review

This chapter looked at the current methods of analysing source code along with a review of

existing tools and strategies. In addition it outlines the overall research goals and describes the

project methodology.

To summarise the methodology, the research will be broken up into four stages:

Aggregation of bad practices1.

Proving that the practices identified are genuinely considered "bad practice"2.

Creating a metric for grading source code through identification of bad practices.3.

Creating a tool to automate the metric and allow for easier testing and evaluation than4.

would be feasible with manual code reviews.

Thomas Butler 32

2. Aggregation of Bad Practices

33 Thomas Butler

2.1 Documentation of bad practices

Based on the literature review in Chapter 1, a list of known bad practices will be created and each

bad practice documented. This is a necessary step prior to progressing with the research towards

creating a metric that grades software based on the frequency of these bad practices.

This list was compiled through literature review of industry experts, trends and coding practices.

As noted during the literature review, industry experts were used as there is a disconnect between

industry and academia.

There is not one central list of programming practices which impede flexibility. Through

experience and literature review of industry experts in chapter 1.4 the following list of bad

practices was compiled.

This list of bad practices list was created from practices identified by industry experts Hevery

(2008), Fowler (2002), Martin (2011) and Popov (2014).

Global variables (Radford, 2003; Densmore, 2004; Yegge, 2004; Crockford, 2006; Zakas, 2006;

Hevery, 2008; Hevery, 2008; Ronacher, 2009; Weaver, 2010; Hart, 2011; Nordmann, 2011;

Butler, 2013; IBM, 2012; Kofler, 2012; Svennervberg, 2012; Ferreira, 2013; Sayfan, n.d.)

Singleton pattern (J., 2001; Densmore, 2004; Radford, 2003; Yegge, 2004; Ronacher, 2009;

Brown, 2013; Kofler, 2012; Weaver, 2010; Reddit, 2013; Badu, 2008; Knack-Nielsen, 2008;

Geary, 2003; Hart, 2011; Nordmann, 2011; Sonmez, 2010; Benharosh, 2015; Deshapriya,

2011; Durand, 2013; Martin, 2014; Hevery, 2008; Hevery, 2008; Hevery, 2008)

Static methods (Mel et al, 1998; Neeraj et al, 2005; Bracha, 2007; Hevery, 2008; Sonmez, 2010;

Nordmann, 2011; Schwarz et al, 2011; Smith, 2012; Rybak, 2013; Eberlei, 2013; Bergmann,

2013; Mindra, 2014)

Service Locator (Hevery, 2008; Hevery, 2009; Böhlin, 2010; Butler, 2015; Johnson et al, 1988;

Waddicor, 2014; Seeman, 2015)

Inheritance (Ericson, 1995; Sumpton, 2010; Hurn, 2014; van Dongen, 2014; Otander, 2015;

Paul, 2013; Johansson, 2015; Kegel et al, 2008; Buss, 2016)

Creating an object inside a constructor (Hevery, 2008; Hevery, 2009; Böhlin, 2010; Butler,

2015; Johnson et al, 1988; Waddicor, 2014)

Setter Injection (Hevery, 2009; Butler, 2013; Schindler, 2012; Muhammad et al, 2013; Gierke,

2013; Arendsen, 2007; Kainulainen, 2013; Paul, 2012; Fowler, 2004)

Annotations (Bugayenko, 2016; Ahuja, 2015; Uhrig, ; Davis, 2007; Lewis, 2013; Sosnoski,

2005; Walls, 2008; Peterson, 2008; Gilstrap, 2010; Fernández, 2011; Bell, 2013; Reigler, 2014;

Torchiano, 2014)

Thomas Butler 34

There are certainly other practices which impede flexibility and this is not intended to be a

systematic review. Inevitably new bad practices will be identified by developers in the future.

These practices will be used for the remainder of this research, with any further work being built in

an extensible way.

At this stage, details about the practices are being collected for documentation purposes only. In

Chapter 3 analysis of the practices will be performed to determine whether developers do

genuinely consider them "bad

Data about each bad practice will be collected as part of this research and will be stored in an

easily accessible format that can be embedded in future tools and in a format which is extensible.

The data about the bad practices will likely be used in several places:

The model used by developers to follow step by step detection rules

Any software program which implements the model

The literature review section of this thesis

To avoid duplication of effort, this will require storing the data in a human readable and machine-

readable manner.

35 Thomas Butler

2.2 Aims & Objectives

Perform a literature review to collect known practices described as bad practice.1.

Design a data format which can be used to consistently catalogue each bad practice. This will2.

need to be flexible enough to store details about bad practices which may not all be able to

be described in the same way and may require several iterations or extensions as new bad

practices are added. The chosen format should be:

Human readable and machine readable

Programming language-agnostic. Ideally with the ability to include examples of the

practice in a variety of languages

Portable without requiring specialist software to open/parse

Extensible, bad practices should be able to be added easily

Flexible enough to allow each bad practice to include optional additional information.

Using the format from objective 2 to catalogue each bad practice identified.3.

Categorise each bad practice by the negative higher level traits it introduces according to4.

references. For example, tight coupling or global state.

Thomas Butler 36

2.3 Methodology

This section outlines the methodology for documenting the bad practices and the data storage

format being used.

2.3.1 Documenting Bad Practices

Prior to this research, if a developer wanted to learn about bad practices they would need to look

though various books, journals and blog posts. There was no standardised method of

disseminating this information and it is often difficult to locate due to its distributed nature.

One of the objectives of this research was to aggregate and formalise knowledge of existing bad

practices and make it simpler for programmers to find this information and view it in a consistent

way. To meet this objective, for each identified bad practice, the following was stored:

The name(s) given to the practice

The names of developers who have identified the practice as being detrimental to code

flexibility

The types of problem the bad practice introduces

How to identify the use of the bad practice

Code samples of the practice in use

Code samples of one or more alternative approaches which offer greater flexibility

A step by step guide of how to remove the bad practice and replace it with an alternative

This information needed to be stored in an accessible and extensible way so that it could be be

added to as new bad practices emerge. The completed database needed to be stored such that it:

Was portable

Could be modified without specialist software

Could be parsed using standard tools/libraries

2.3.2 Storing bad practices and code samples

For this project, a file-based approach had several advantages over a relational (or document)

database for both managing and creating the database of bad practices:

It did not require writing a software layer for reading/writing data. Any text editor could be1.

used.

By selecting a standardised format (JSON (ECMA International, 2017)), the files can be loaded2.

into any third party application without requiring a database server or language specific

client implementation.

37 Thomas Butler

Text-based files can easily be managed by version control software such as Git to track3.

revisions and tools like Github can easily allow managed collaboration.

Embedding source code samples in files was much simpler than storing source code in a4.

database.

Explaining bad practices required mixing code snippets within natural language text. Because of

this, a text encoding method which allowed embedding source code and had basic text formatting

options (paragraphs, headings, etc) was required. RTF, PDF. Word Documents, HTML and

MarkDown were all considered.

MarkDown was chosen because:

It is a very simple format which can be created/edited using text editors programmers are1.

accustomed to, it does not require any specialist software. By contrast Word Documents and

PDFs require relevant software to open and the created documents are more difficult to

embed in other software.

It can easily be opened/parsed. Future code analysis tools could easily embed the MarkDown2.

text in their applications (which would require significant extra work using RTF or a Microsoft

Word document). MarkDown parsers are available for many languages.

Source code can easily be embedded inside MarkDown documents.3.

Syntax highlighting can be applied at the rendering stage. Unlike creating a PDF, Word4.

Document or HTML file, the creator of the document does not need to be concerned with

adding syntax highlighting to source code within the document as this can be done on the

fly at the rendering stage.

Supporting Different Programming Languages

Although MarkDown supports embedding source code in the document using code fences, this

feature was not utilised directly. Embedding code in the document would have made it difficult to

embed examples from different programming languages. For example, if the descriptions used

PHP code examples embedded in the MarkDown file along with the English description, it would

not be useful documentation for a tool which detected the bad practices in Java as all the code

samples would have been in PHP.

Rather than storing a copy of the entire MarkDown document for each programming language,

the code samples were stored in separate files and embedded on the fly.

To achieve this, the MarkDown format was extended to allow embedding specific examples.

Although this requires an amended MarkDown format, the string chosen was designed to be

Thomas Butler 38

readable using a standard MarkDown parser and display text instead of the code.

The following was chosen:

[Example][4]

Using standard MarkDown, this would reference a link to a footnote (The same document) with

the text Example[4]. This allows someone using a standard markdown parser to know which

example to look at.

Using a modified parser, this would be expanded to an embedded code sample. For example, for

displaying the page using Java samples, [Example][4] would be replaced with the contents of

the file examples/java/4.java. For PHP the file examples/php/4.php would be used. The

language would be chosen by the person viewing the file and the relevant language examples is

embedded.

By separating out the sample code from the English description it made extending the database to

cater for different languages much easier. Sample code can be added for different languages by

supplying the code. Anyone who wished to extend the project with additional code samples could

use their standard editor and all the tools that the programmer is accustomed to can be used

when writing the sample code.

File/Folder Structure

Instructions on how to identify bad practices along with code samples and guides on removing the

practice will be stored as MarkDown files. Each bad practice will also require a name, citations, a

list of negative traits it introduces and a severity rating (See section 2.3.3).

To store this information about each practice, JSON was chosen for its flexibility and widespread

support in different programming languages (Gutha, 2015).

Figure 2.1 shows the JSON file that describes a bad practice will look like this:

{

 "name": "Using `new` in constructor",

 "severity": "5",

 "traits": ["tight-coupling", "separation-of-concerns",

39 Thomas Butler

"encapsulation", "law-of-demeter", "single-responsibility-principle"],

 "references": [

 "hevery-2008Aa", "hevery-2009", "bohlin-2010",

"butler-2015", "johnson-1988", "waddicor-2014"

]

}

Figure 2.1: Bad practice storage format

name is the informal name of the bad practice

severity is the severity of the practice on a cumulative scale (see section 2.1)

categories is an array storing the categories the bad practice falls into

references is a list of references who have described the problems the practice causes.

Each references is described in a separate references.json.

Handling References

References for each bad practice were stored in a file called

`references.json`. This is a JSON file of any referenced works. An example

reference is described in figure 2.2.

"butler-2013": { // unique identifier

 "author": ["Tom", "Butler"], //Author names as an array

 "year": "2013", //Publication year

 "title": "PHP: Annotations are an Abomination", //Publication title

 "online": { // "online", "book", "journal"

 "url":

"https://r.je/php-annotations-are-an-abomination.html",

 "accessed": "2016-07-06"

 }

}

Figure 2.2: Reference storage format

These can then be converted by the application into hyperlinks, footnotes, Harvard referencing,

and numerical referencing.

Thomas Butler 40

The markdown format was extended to include [ref:REFERENCENAME] which can be replaced.

For example [ref:wulf-1976] would be replaced with (Wulf et al, 1973) by software

parsing the MarkDown file.

For full documentation of the MarkDown extensions implemented and references.json format

see appendix I.

Folder Structure

Each bad practice was given its own directory and a file structure is described in table 2.1.

Table 2.1: Bad practice file and folder structure

Path Description

bad-practices/ directory to store all data
about bad practices

bad-practices/[practice-name].json/ The JSON file describing
the bad practice, always
named "badpractice.json"

bad-practices/content/[practice-name].md Markdown file explaining
how to identify and fix the
bad practice.

bad-practices/examples/[practice-name]/[language]/[file].[language] Stores each example
referenced in the
markdown document. For
example.
java/example1.java. Can
be expanded by adding
new folders for additional
languages

Each of the files in the content directory should form a complete document if joined together.

They are separated to make it easier for tools to pick and choose sections to display under

different circumstances.

Identification rules

Describing how to detect bad practices may be possible with regular expressions or another form

of pattern matching, however the exact syntax that represents a bad practice will differ between

targetted languages and depending on the bad practice, detecting it may require more conditional

logic than can be handled by simple pattern matching.

The rules for detecting the bad practice also need to be clear to anyone reading the

41 Thomas Butler

documentation with explanations and possible variants included. As such, an existing or bespoke

pattern language which can be understood by the computer will unlikely not be feasible and

would reduce the information for developers.

Instead, natural language explanations of how to identify and remove bad practices will be

included. Any software tool which intends to detect bad practices will need to implement these

rules manually.

2.3.3 Traits & Severity

Each bad practice introduces one or more negative traits into the code. These traits are the

underlying problems that make the code less flexible than alternative approaches. A practice is

labeled a bad practice because it introduces one or more of these negative traits into the code.

Each negative trait will be described using its own extended MarkDown file in the traits directory

following a similar format to the bad practices as described in table 2.2.

Table 2.2: Trait file/folder structure

Path Description

traits/ directory to store all data about bad
practices

traits/[trait-name].md Description of the negative trait in
MarkDown format.

traits/examples/[trait-name]/[language]/[file].[language] Stores each example referenced in the
markdown document. For example.
java/example1.java. Can be expanded
by adding new folders for additional
languages

By using a consistent file/folder structure, the list of traits can be easily extended.

Severity Rating

Each bad practice will be given a rating based on how many of these negative traits it introduces.

There are many ways this score could be calculated to account for different levels of severity of

different traits. However, even within a trait such as broken encapsulation there are different ways

of introducing the trait. Some of which will have a higher impact than others and depending on

where in a system the trait is introduced will determine how much of a negative impact that

negative trait has.

For example, a global variable in a class specific to a single project will have fewer repercussions

Thomas Butler 42

than a global variable inside a library function that's used across dozens of projects. It would be

difficult for any kind of detection tool to determine the circumstantial difference and in both

instances the result is lost flexibility. It's also possible that during refactoring a project specific

class is promoted to a library class.

It could also be argued that some traits are worse than others. For example, action at a distance

can often cause more issues than broken encapsulation. However, this is not always the case and

will be different depending on where or how the negative trait has been introduced. It's possible

there are some cases where tight coupling introduces more issues than action at a distance and

others where the inverse is true.

Even if it could be shown that one trait is always "worse" than another, the scoring mechanism

would need to reflect that. If tight coupling gives a severity rating of 1 and action at a distance is

"worse", should it be given a rating of 2? Is it really twice as bad or should it have a rating of 1.5? A

method for quantifying negative impact of a given trait would need to be constructed that applied

accurately in all circumstances.

The difference between traits is less meaningful to a developer than the overall negative impact to

a project. If one global variable is used in two places, the negative impact is less than a static

method which is used in hundreds of places. From a practical perspective, the programmer is

worse affected by something they are more likely to encounter.

In addition, a programmer looking at the grade their class gets will find more use in an actionable

outcome, for example, remove this global variable than a grade.

As such, each trait will add one to the bad practice's severity rating. If a bad practice introduces

tight coupling and broken encapsulation it will be given a severity rating of two. A bad practice that

introduces four negative traits will be given a severity rating of 4.

This approach is considerably simpler to implement and for someone looking at the number to

understand. Although it avoids the nuances and issues outlined above, it still allows an indicative

comparison of the negative impact of bad practices. If, for example, the global variables bad

practice has a severity of 4 and the static methods bad practice has a severity of 2 it can be said that

global variables are worse because someone looking at the score can see that global variables

introduces two more negative traits than static methods

Future research could explore quantifiable differences between the impact of different traits.

43 Thomas Butler

2.4 Results

The JSON file structure of each bad practice can be found in appendix II.

A summary of each bad practice is described below, for complete examples with longer

explanations, references and sample code, see appendix III.

2.4.1 Using the new keyword in a constructor.

When an object is constructed, if the constructor instantiates another object the two objects are

tightly coupled. This can be fixed by injecting the dependency rather than constructing it inside the

constructor.

2.4.2 Annotations for configuration

When configuring the application a recent trend is the use of annotations. These are embedded in

the class and as such are stored at a static level. The configuration format cannot be changed

without modifying the class breaking the single responsibility principle. Configuring one part of

the application from another unrelated component also causes action-at-a-distance.

2.4.3 Global/static variables

Global variables have been recognised to cause issues since at least 1973 (Wulf et al, 1973). They

couple components which are otherwise unrelated and suffer from action-at-distance whereby

one part of the application can accidentally break another part of the application due to name

clashes.

2.4.4 Singletons

The singleton pattern tightly couples components through static method calls. It impedes

flexibility by design as it enforces that only one instance may be created and introduces global

state.

2.4.5 Inheritance

Inheritance always causes tight coupling between the parent and child classes and makes it

impossible to substitute the relationship at runtime. To change the relationship the child class

must be rewritten.

2.4.6 Service locators

Service locators couple the code using them to the service locator and implicitly to any object that

the service locator can provide. Instead, the actual object required should be passed directly to the

Thomas Butler 44

object which requires it via dependency injection.

2.4.7 Setter Injection

When using setter injection, the object suffers from temporal coupling where methods on the

object must be called in a specific order to work correctly. It also exposes the dependencies of the

class to any collaborators, breaking encapsulation as any collaborator can replace the dependency

in the object. Instead, constructor injection should be used to ensure encapsulation.

2.4.8 Static methods

Static methods introduce tight coupling between components as the method's implementation

cannot be substituted. Instead, an actual instance should be passed to the method which requires

it.

2.4.9 Negative Traits

Each bad practice is classified as "bad" as it introduces one or more negative traits into the code.

These negative traits are documented in appendix III.

45 Thomas Butler

2.4.7 Table of bad practices

Table 2.3 shows the complete list of bad practices, the negative traits they introduce and

references that describe the practices.

Table 2.3: Table of bad practices

Name Severity
(number of
negative
traits)

Negative traits introduced References

Service Locator 4 • Unnecessary Coupling
• Broken Single Responsibility
Principle
• Broken Encapsulation
• Broken Law of Demeter

• Hevery (2008)
• Hevery (2009)
• Böhlin (2010)
• Butler (2015)
• Johnson et al (1988)
• Waddicor (2014)
• Seeman (2015)

Singleton 5 • Broken Encapsulation
• Action at a Distance
• Global State
• Tight Coupling
• Broken Single Responsibility
Principle

• J. (2001)
• Densmore (2004)
• Radford (2003)
• Yegge (2004)
• Ronacher (2009)
• Brown (2013)
• Kofler (2012)
• Weaver (2010)
• Reddit (2013)
• Badu (2008)
• Knack-Nielsen (2008)
• Geary (2003)
• Hart (2011)
• Nordmann (2011)
• Sonmez (2010)
• Benharosh (2015)
• Deshapriya (2011)
• Durand (2013)
• Martin (2014)
• Hevery (2008)
• Hevery (2008)
• Hevery (2008)
• Sayfan (n.d.)

Object not initliased after
constructor finishes
(`initialize` and `set`
methods)`

3 • Broken Encapsulation
• Action at a Distance
• Temporal Coupling

• Hevery (2009)
• Butler (2013)
• Schindler (2012)
• Muhammad et al
(2013)
• Gierke (2013)
• Arendsen (2007)
• Kainulainen (2013)
• Paul (2012)
• Fowler (2004)

Thomas Butler 46

Name Severity
(number of
negative
traits)

Negative traits introduced References

Annotations for
configuration

4 • Broken Encapsulation
• Broken Single Responsibility
Principle
• Action At A Distance
• Unnecessary Coupling

• Butler (2013)
• Bugayenko (2016)
• Ahuja (2015)
• Uhrig ()
• Davis (2007)
• Lewis (2013)
• Sosnoski (2005)
• Walls (2008)
• Peterson (2008)
• Gilstrap (2010)
• Fernández (2011)
• Bell (2013)
• Reigler (2014)
• Torchiano (2014)

Use of static methods 4 • Tight Coupling
• Broken Encapsulation
• Unclear Dependencies
• Single Responsibility
Principle

• Mel et al (1998)
• Neeraj et al (2005)
• Bracha (2007)
• Hevery (2008)
• Sonmez (2010)
• Nordmann (2011)
• Schwarz et al (2011)
• Butler (2013)
• Smith (2012)
• Rybak (2013)
• Eberlei (2013)
• Bergmann (2013)
• Mindra (2014)

Using `new` in
constructor

3 • Tight Coupling
• Broken Encapsulation
• Broken Single Responsibility
Principle

• Hevery (2008)
• Hevery (2009)
• Böhlin (2010)
• Butler (2015)
• Johnson et al (1988)
• Waddicor (2014)

Inheritance 3 • Tight Coupling
• Broken Encapsulation
• Broken Single Responsibility
Principle

• Ericson (1995)
• Sumpton (2010)
• Hurn (2014)
• van Dongen (2014)
• Otander (2015)
• Paul (2013)
• Johansson (2015)
• Kegel et al (2008)
• Buss (2016)

47 Thomas Butler

Name Severity
(number of
negative
traits)

Negative traits introduced References

Global/Static variables 5 • Tight Coupling
• Broken Encapsulation
• Broken Single Responsibility
Principle
• Action at a Distance
• Global State

• Radford (2003)
• Densmore (2004)
• Yegge (2004)
• Crockford (2006)
• Zakas (2006)
• Hevery (2008)
• Hevery (2008)
• Ronacher (2009)
• Weaver (2010)
• Hart (2011)
• Nordmann (2011)
• Butler (2013)
• IBM (2012)
• Kofler (2012)
• Svennervberg (2012)
• Ferreira (2013)
• Sayfan (n.d.)

2.5 Chapter Review

In this chapter, descriptions of identified bad practices have been produced and a file format for

consistently storing data about bad practices has been developed.

The files created as part of this chapter can be embedded in this research as part of the thesis as

well as embedded in any future tools which need to include descriptions of bad practices. The

format was designed specifically with this flexibility in mind.

A paper, summarising this chapter, entitled Seven Deadly Sins of Software Flexibility was presented

at the China-Europe International Symposium on Software Engineering Education conference in

2017 (Butler, 2017) and is available in appendix V. This venue was chosen as one application for this

research is educating future software engineers.

Thomas Butler 48

3. Demonstrating the practices really are
"bad".

49 Thomas Butler

3.1 Introduction

Building upon the last chapter which documented known bad practice, this chapter sets out to

demonstrate that these bad practices genuinely are considered "bad practice" by developers.

To facilitate this, a scoring system has been created to allow developers of most abilities to

calculate analytic rigor of an article discussing a programming practice. Multiple articles can be

graded and different articles compared on their analytic rigour.

The score can then be used to produce a meta-analysis of articles discussing each bad practice to

look for trends. A typical trend might be: developers who consider alternative approaches more

likely to prefer the practice over alternatives.

3.1.1 Background

In 1950, a vote at the meeting of the British Association for the Advancement of Science

showed that about half those present now embraced the idea of continental drift. [...]

Interestingly, oil company geologists had known for years that if you wanted to find oil you

had to allow for precisely the sort of surface movements that were implied by plate tectonics.

But oil geologists didn’t write academic papers; they just found oil.

Bryson (2010)

The Singleton has been regarded as bad practice in industry since at least 2003 (Radford, 2003)

with developers denouncing it ever since (Hevery, 2008; Sayfan, n.d.; Densmore, 2004; Radford,

2003; Yegge, 2004; Ronacher, 2009; Brown, 2013; Kofler, 2012; Weaver, 2010; Knack-Nielsen, 2008;

Badu, 2008; Hart, 2011) yet where it is mentioned in academia it is only discussed as having been

utilised while developing software rather than discussing whether it should or should not have

been used (Alipour et al, 2016; Liu et al, 2011).

A 2018 systematic review of academic literature found 56 different "anti-patterns", "code smells"

and "bad practices" which have been identified in academic literature (Sabir et al, 2018). Despite

the widespread derision of the singleton pattern among industry developers it is not currently

recognised as a bad practice in academia. As a systematic review of the academic literature did not

find a single source calling the singleton pattern a bad practice, a review of academic works is not

possible due to the limited data available.

In industry the singleton pattern is the most derided programming practice after global variables

(Knack-Nielsen, 2008). Given the lack of discussion about the singleton pattern in academia it is

unsurprising that patterns which are lesser discussed in industry do not feature in academic

literature either.

Thomas Butler 50

It is hypothesised that the gap between academic works and industry is because bad practices are

identified by people who spend 8 hours a day working on large projects where they are likely to

encounter problems that academics focusing mostly on theory will not. Industry experts tend to

work on large software projects which require constant maintenance and enhancement for years

or even decades. They are able to determine which practices prevent them performing

maintenance efficiently.

The systematic review by Sabir et al (2018) lists many bad practices which were first identified in

industry by Fowler et al (1999) and were referenced by academic works shortly afterwards. While

industry has moved on, academic sources have built on previous academic sources but have not

gone back and incorporated new developments from industry.

Like the oil geologists, industry experts don't tend to write academic papers, many industry

experts post articles on websites run by themselves or the company they work for.

3.1.2 Rationale

A problem with research in this area is that labeling a practice "bad" can be considered subjective.

Fowler et al (1999), in the same book where the term "code smell" was introduced, notes that:

We based our collection of refactorings on our own programming experiences.

Despite listing over a dozen "code smells", these are based entirely on the author's industry

experience.

Is the idea of a bad practice purely subjective or can a bad practice be defined by consensus? For

example, “9 out of 10 dentists agree”. If two or more developers independently reach the same

conclusions about a practice that may infer that expertise is a factor and labeling a practice "bad"

is not entirely subjective.

If the idea of a bad practice were purely subjective, different developers would disagree on

whether any given practice was indeed bad. A purely subjective practice would result in being

unable to predict a developer's attitude to a given practice. By analysing the opinions of different

developers it may be possible to identify trends.

A single article is a single developer's opinion. A group of articles by different authors that

independently come to the same conclusions about the same practice is a consensus.

If analysis produced a predictive model it would demonstrate that a consensus was reached by

experts.

51 Thomas Butler

Do developers who consider alternative solutions reach a different conclusion than those who do

not? Two or more developers may offer different contrary opinions about a practice but do those

who have considered the practice in more detail reach the same conclusion?

Thomas Butler 52

3.2 Aims and Objectives

This stage of the research has its own set of aims and objectives:

3.2.1 Aims

Bring missing industry developments in this area into academia.1.

Demonstrate that industry developers attitudes towards the chosen practices are dependent2.

on their level of analysis.

Create a reproducable method of gathering industry developer opinions about any given3.

programming practice.

3.2.2 Objectives

Create a scoring system which can be used to grade the analytic rigour of an1.

article/book/paper discussing a particular programming practice.

Compare the analytic rigour of different articles for the purposes of meta-analysis.2.

Compare the overall quality of discussions about a specific programming practice.3.

With a scoring system in place, perform proof-of-concept meta-analyses on practices which4.

are well known to be described as "good" and "bad" to demonstrate that the meta-analysis

methodology is fit for purpose.

Perform meta-analyses of remaining bad practices.5.

53 Thomas Butler

3.3 Methodology

The following section outlines the methodology used to demonstrate that the bad practices

identified in chapter 2 are generally considered "bad practice" among developers.

3.3.1 Metric for comparing analytical rigour in programming articles

Differing methodological rigor in sources is a problem which exits when doing any kind of meta-

analysis. When performing meta-analysis of clinical trials the Cochrane Collaboration consider

methodological rigour an important part of their meta-analysis (Cochrane, n.d.) .

Rather than simply counting the number of trials which show a positive outcome and counting the

number of trials which show a negative outcome, the trials are weighted on methodological

rigour. For example, in a meta-analysis of a drug they may find that 3 trials show that it is an

effective treatment and 8 which say that it is not. Instead of simply counting the numbers on each

side, methodological rigor of each study is used as a factor when building conclusions on the

overall efficacy of the treatment.

In a meta-analysis of the efficacy of homeopathic treatments it was found that trials of

homeopathy with a poor methodology are much more likely to show a positive outcome whereas

trials with a robust methodology are more likely to conclude that homeopathy is no better than

placebo (Mathie et al, 2015) .

This is because methodological rigour can affect the outcome. For example, by putting the most

healthy patients in the experimental group and putting the least healthy patients in the control

group it's likely that the experimental group will see significant improvement over the control

group regardless of whether the drug being tested has any effect (Goldacre, 2010).

For programming articles, analytic rigour can be plotted against whether the article recommends

using or avoiding the practice to create a meta-analysis in a similar manner.

It should be possible to draw conclusions such as an article's analytic rigour increases, it is more

likely to recommend using the practice in question.

The created metric was based on the Jadad Scale (Jadad et al, 1996) used for analysis of clinical

trials in medicine. The Jadad Scale is a 5 point scale using a 3 question questionnaire which can be

used to quickly assess the methodological rigour used in a clinical trial. The questions asked are:

Was the study described as randomized?, Was the study described as double blind? and Was there a

description of withdrawals and dropouts?. These are then used to calculate a score from zero (very

poor) to five (rigourous). By citation count the Jadad Scale is the most widely used method of

comparing clinical trials in the world (Olivo et al, 2008).

Thomas Butler 54

As the Jadad Scale is not applicable for anything other the clinical trials, for the purpose of this

research a new metric was created based on the principles of the Jadad scale to be used in

determining the analytic rigour of any given article about a programming practice. A seven point

scale was created, based upon the principles of the Jadad scale. A point awarded if the article does

each of the following:

Describes how to use the practice.1.

Provides a code example of using the practice.2.

Discusses potential negative/positive implications of using the practice.3.

Describes alternative approaches to the same problem.4.

Provides like for like code samples comparing the practice to alternative approaches.5.

Discusses of pros/cons of the compared approaches.6.

Offers a conclusion on when/where/if the practice is suitable.7.

These points were chosen as they inquire whether an article's author has considered alternatives.

Points 2, 3, 5 and 6 could be removed for a less granular scale, however these have been included

to enable differentiation between articles which cover the topic in different depths.

In addition, these points are binary choices. Does the article include these things or not? Any two

reviewers should come up with the same scores for any given article.

It is possible, though unlikely, that any article which includes point 4 also includes point 5. If this is

the case, any results/conclusions gathered from the score will be the same as if point 5 wasn't

included, however the added granularity may offer more detailed results. If this granularity is

removed, overall trends will remain the same as long as one of the questions inquires about

whether the article considers alternative approaches or not.

Using this metric, a manual page that describes a practice and provides a sample of how to use it

would score two whereas an article that discussed the pros/cons of different approaches and

made a recommendation would score seven.

This scale is tested in section 3.3.5 using two sets of 100 articles that produced a known outcome.

It is shown that articles which scored higher on this scale were more likely to suggest using

dependency injection and also more likely to suggest avoiding the singleton.

3.3.2. Meta-analysis

Clinical trials can be separated by their Jadad score but this alone shows nothing about the efficacy

of the treatment being analysed. To produce a conclusion the Jadad score of a trial is plotted

against whether it shows the treatment to be effective or not.

55 Thomas Butler

By comparing the results of multiple trials, a set of trials studying the same treatment can be

analysed and observations drawn such as trials with lower Jadad scores are more likely to produce a

positive result, indicating that the stronger the methodological rigor the less likely the treatment is

to be shown to be effective.

Programming articles do not produce a result, but they can offer a recommendation to use or

avoid the practice being discussed. A manual page won't make a recommendation but an opinion

piece will discuss if/when the practice being described should be used.

A five point scale was used to model the recommendation made by an article:

Always favour this practice over alternatives1.

Favour this practice over alternatives unless specific circumstances apply2.

Neutral - No recommendation (e.g. a manual page) or no conclusion drawn3.

Only use this practice in specific circumstances4.

Always favour alternative approaches5.

A five point scale was chosen over a three point scale as there may be cases where an article is

concluded with a discussion of trade-offs. For example where an approach may be faster but less

flexible an author may conclude their article with something like "use this practice unless

performance is a priority".

This research focus on flexibility. If a conclusion is drawn that you should use a practice when

flexibility is preferred over performance (or any other consideration) then the article would be

awarded a score of 2 and considered as "Favour this practice unless performance is a paramount

concern".

For research with a different goal, the focus of the analysis could be be changed to performance,

security or any other metric and results gathered in the same manner.

Although this scale is potentially subjective, "favour this practice" and "avoid this practice" is a

dichotomy. An article will clearly fall into one of the recommendation groups or make no

recommendation at all. There is very little chance that an article's conclusion could imply both

"favour this practice" and "avoid this practice" as they are contradictory points.

A three point scale: Favour, No recommendation, Avoid will produce the same trends on a less

granular scale. Regardless of potential subjectivity of "Avoid at all costs" and "Only use in specific

circumstances", trends such as "As acadmic rigour increases, authors are more likely to suggest

avoiding the practice" can still be observed.

For granularity, although adding subjectivity. A 5 point scale was used instead of a three point

Thomas Butler 56

scale. Lower resolution results could be produced using existing data by merging any 1 and 2

point results and 3 and 4 point results. Any overall trend would remain the same.

To minimise subjectivity for points 2 or 4, the specific circumstances have to be described rather

than alluded to. This is to avoid ambiguity. For example Buss (2016) writes:

When designing a system, it’s important to pick the right design principle for your model. In

many circumstances, it makes sense to prefer composition over inheritance.

This article only alludes to when using inheritance is preferable and provides only examples where

composition is preferred. In this case the article is given a 5 despite the conclusion saying "many

circumstances" rather than "all circumstances".

To score a 4 the article must explicitly define what the circumstances are. A 4 was awarded to

Ericson (1995) as the author clearly states a situation where inheritance should be used over

composition:

If you aren’t sure if a class should inherit from another class ask yourself if you can

substitute the child class type for the parent class type. For example, if you have a Book class

and it has a subclass of ComicBook does that make sense? Is a comic book a kind of book?

Yes, a comic book is a kind of book so inheritance makes sense. If it doesn’t make sense use

association or the has-a relationship instead.

3.3.3. Collecting data

Data was collected using Google from articles written by companies, developers and technology

journalists. As a Google search for singleton pattern yields over half a million hits, a complete

systematic review was not feasible. Instead, the first 100 relevant results from a Google search for

the programming practice being analysed will be used as the sample.

A relevant result is defined as an article which is written by a single author or organisation

describing or discussing the singleton pattern. Discussion forums, posts on social media and

question & answer sites will not be included as these pages will include multiple opinions.

Comments sections on articles will be omitted for the same reason. Any article which has a Jadad

style score of zero will also be deemed irrelevant.

To avoid potential selection bias and to get an overview of what a developer searching for the

topic would discover, no other inclusion/exclusion criteria were used. Future research could look

into whether attitudes change over time by selecting articles between specific dates or look at

websites only about particular programming languages.

57 Thomas Butler

Google was used to act as a randomization tool. A search returns any articles discussing the

practice regardless of whether they are for or against its use.

Each article was then given a Jadad style score from 0-7 and a score from 1-5 for its

recommendation.

A list of all URLs accessed and scores given is available in Appendix VI.

3.3.4 Additional considerations

There are several practical issues with collecting data in this manner:

To minimise the effect of Google giving user-specific results based on previous searches,1.

results were collected while logged out and using the browser's private browsing mode and

closing the browser between each search term.

Search results will not be truly random due to the way Google's algorithm works and results2.

will be sorted by relevance and the way Google sorts the results may have implicit bias: The

most popular links and most cited links will appear first. Although not truly random, this

gives a better overview of the zeitgeist than a genuinely randomised sample by putting the

most read/cited articles ahead of less read/cited pages. Articles which are widely shared and

linked to will be more likely to appear in the first 100 results.

A practice may have more than one common name. When this is the case, each name will be3.

searched for and 100 results collected in total. If a practice is known by 4 different names,

the first 25 relevant results for each practice were used. If a result lists both names it will

only be counted once.

Other search engines may yield different results. Google was chosen because of its4.

dominance and likelihood to have indexed more results. Using a search engine such as

Qwant (Qwant, n.d.) which does not offer personalised results would make the results easier

to replicate but may not offer as comprehensive results. Regardless of which search engine

is used, results will change over time.

Ideally this methodology would be performed on academic literature rather than a wide-net5.

Google search. However, as documented in chapter 1, these bad practices are currently not

widely discussed in academic literature.

Thomas Butler 58

Regardless of these factors, results should be indicative of developers' attitudes towards the

programming practice being analysed.

3.3.5 Test methodology

To verify that the suggested meta-analysis methodology produces meaningful results, a meta-

analysis was performed on two practices where the result can be predicted with a high degree of

certainty. If the methodology works as intended, the following hypotheses should be proven true.

Singleton pattern

The singleton pattern is well known as being considered bad practice among developers (Knack-

Nielsen, 2008) and will act as a good benchmark for testing the meta-analysis methodology.

Hypothesis

Before the results were collected it was expected that articles which had a higher Jadad style score

(higher academic rigour) would be more likely to suggest avoiding the practice.

Dependency Injection

Dependency Injection is antithesis to the Singleton Pattern and is much more flexible. Although

there are some practical considerations when using Dependency Injection and there is widespread

discussion about the best way to implement it, it's widely considered the best approach for

flexibility (Albert, 2013).

Hypothesis

Dependency Injection a well established method of increasing flexibility in code (Fowler, 2004).

Because of this, it is expected that there will be few to no negative recommendations and as the

Jadad style score increases articles should be more likely to suggest favouring dependency

injection over alternative approaches.

59 Thomas Butler

3.4 Results

After gathering data about programming practices for the two test meta-analyses, the

methodology was followed to check that it produced expected results which match the hypotheses

outlined in section 3.3.5.

Raw data used for these meta-analyses is available in appendix VI.

3.4.1 Singleton

Figure 3.1 shows the results for the meta-analysies of the Singleton. Each line represents an article

and the left (orange) bar for each article is the recommendation going from 5: Avoid this practice

at all costs (Far left) to 1: Favour this practice over alternatives.

The right (blue) bar for each article is the Jadad style score measuring analytic rigour. A score of

seven means the article describes the practice, provides code examples, discusses alternative

approaches, provides like-for-like code samples, discusses the pros/cons of each approach and

makes a recommendation of which approach should be used.

Figure 3.1: Singleton results

Article 1 has a recommendation score of 3 and a Jadad style score of 1. It does not go into detail

and it's recommendation is neutral; it doesn't suggest either avoiding or favouring use of the

Thomas Butler 60

Singleton Pattern.

Article 99 strongly recommends against using the Singleton Pattern and has an Jadad style score

of 7, it compares the singleton against alternatives in detail and concludes by strongly

recommending against its use (recommendation score of 5).

Key findings - Singleton Pattern

As hypothesised, articles with a high analytic rigour are considerably more like to suggest

avoiding the singleton pattern.

If a simple tally was used, the singleton pattern would appear to have a mostly neutral

recommendation score. 65% of articles do not recommend for or against its use.

The mode recommendation is neutral.

The mean recommendation score is is 3.5. From this alone it could be inferred that the

singleton pattern is generally considered to be neutral, slightly discouraged but not widely

avoided.

When the Jadad style score is taken into account, every article which makes a

recommendation recommends against using the singleton pattern (recommendation score

of 4 or 5).

Only 22% of articles about the singleton pattern even mention alternative approaches that

can be used to solve the same problem.

Of those that recommend against using the pattern, over half say it should be avoided at all

cost.

55 of the 65 articles which make a neutral recommendation are manual type pages (Jadad

style score of 2) which show how to use the pattern but do not weigh in on when, where or if

it should be used and do not compare the pattern to alternatives.

No articles which make a recommendation recommend using the singleton pattern instead

of alternative approaches.

61 Thomas Butler

3.4.2 Dependency Injection

Figure 3.2 shows the results for the meta-analysis of Dependency Injection.

Figure 3.2: Dependency Injection results

Key findings - Dependency Injection

As hypothesised, Dependency Injection is seen as overwhelmingly positive with zero articles

favouring alternative approaches.

The mean recommendation score is 1.94 which shows that even using a simple tally, the

overall recommendation is that Dependency Injection is a favourable pattern among

developers.

50% of articles suggest using dependency injection instead of alternatives.

Every article with an analytic rigour score of 4 or higher recommends using this practice

instead of alternative.

Thomas Butler 62

47 of the 50 articles with a neutral recommendation are manual style pages which show how

the pattern is used but do not discuss when, where or if it should be used.

Discounting the manual pages, only two of the remaining 53 articles make a neutral

recommendation and both of those have a Jadad style score 3.

As the Jadad style score increases, the probability that an article will recommend using

Dependency Injection over alternatives increases.

Only 5 of the 55 articles in favour of dependency injection (Recommendation score of < 3)

suggest there are some specific circumstances where alternatives should be used instead.

63 Thomas Butler

3.5 Conclusion

By testing the methodology with practices that the outcome can be predicted for it was possible to

validate this meta-analysis methodology.

The methodology produced the expected result. It was shown that if an author considered

alternative approaches they were more likely to recommend against using the Singleton Pattern.

The inverse was also true for Dependency Injection.

As these were the expected results, the methodology suggested can be shown to work as

intended and provide an overview of the attitudes of developers about any given practice.

This meta-analysis methodology gives more insight into the overall opinion of programming

practices than a simple tally of for/against/neutral by also accounting for analytic rigour.

3.5.1 Key findings

Although a small sample size of two practices were used to test that the scores work, in both1.

cases roughly half of articles analysed do not make a recommendation on when/where the

practice should be used. For the singleton pattern only 45% of analysed articles discussed

whether the pattern should be used or avoided. The remaining practices will be analysed in

the following sections.

Any developer looking for information on a practice will find more information about how to2.

use a practice than when or where the practice is applicable.

A sample size of 100 articles is enough to demonstrate a trend, it is unlikely that increasing3.

the sample size will affect the results, though this hypothesis could be tested in future

research.

3.5.2 Problems Encountered

Data collection using Google became increasingly difficult after around 80 relevant results. The

number of irrelevant articles appearing in search results begin to heavily outweigh the relevant

articles and there was a significant issue with duplicated content which was overcome by keeping

track of author names and article titles.

Since Dependency Injection and the Singleton pattern are both widely known and discussed

programming practices, finding 100 unique relevant results for lesser known practices may be

Thomas Butler 64

difficult.

3.5.3 Evaluation

The scoring system has been tested by using the methodology on bad practices where results can

be predicted and the scoring system gave expected results.

While the results look valid, one weak point is that all data was collected by the same person.

Although the scoring systems have been designed to be as objective as possible by using binary

points and dichotomous scales:

The seven point Jadad-style score uses binary options, for example "does it include code

examples?" and "does it discuss alternative approaches?". These are unlikely to be contentious

points, however the lack of additional participants leaves this question open.

Despite this, it is possible that a different person would grade articles differently and yield

different results. However, small differences in analysis of the articles would be unlikely to affect

overall trends.

To test this hypothesis and to identify if possible ambiguities would affect the overall outcomes,

the charts were generated using the minimal data possible:

The seven point jadad-style score is now a single binary option: Does the article compare the1.

practice to alternatives?

The 5 point was refined to "avoid the practice", "no recommendation" and "use this practice"2.

(points 1 and 2 were combined as were points 4 and 5).

65 Thomas Butler

Figure 3.3: Singleton results

Figure 3.4: Dependency Injection Results

In figures 3.3 and 3.4, the overall trends are the same even though the dataset has been

minimised. These graphs show only whether the article discusses alternative approaches and

whether the author recommends using or avoiding the practice. The overall

Although additional participants may grade articles slightly differently, it is very unlikely to affect

Thomas Butler 66

the overall trends.

3.5.4 Future Research

To further validate the model a selection of participants could be used to grade a set of articles

using the two scales. This would ensure that the grades given were accurate and that the point

scales were as objective as possible.

This research could be continued by running the same meta-analysis on different search engines

and comparing the results or looking into trends over time using article dates. For example, it may

be observed that a practice is seen favourably in articles published in 1990s-2000s and then less

favourably as time progresses.

This methodology could be abstracted to and used for a meta-analysis of any widely discussed

topic by defining the scales for academic rigour and recommendation.

3.6 Results for remaining bad practices

The previous section demonstrated that the methodology works and produces results that can be

use for meta-analysis. The approach was then used to perform meta-analyses for the rest of the

bad practices. Each section below contains the results, key findings and conclusions for the meta-

analysis of each bad practice. Raw data for all the meta-analyses are available in appendix VI.

67 Thomas Butler

3.6.1 Annotations

A meta-analysis was performed for annotations using the search term "annotation configuration".

It quickly became apparent that this term was mostly yielding results demonstrating how

annotations were used for configuration in a specific library rather than comparing the use of

annotations to alternative approaches.

This search was stopped after 20 results as most results were not relevant to the research:

18 of the 20 results relate to Java's popular Spring where annotations are very commonly

used.

All results were examples of configuring libraries using annotations, rather than comparing

annotations to alternative approaches.

To find relevant results, which discuss the pros/cons of using annotations or alternative four new

search terms were used

annotation configuration "best practice"

annotation configuration "good practice"

annotation configuration "bad practice"

annotation configuration anti pattern

Searches were stopped after either 50 relevant results or page 10 of search results and results that

appeared in more than on set of search results were only included once. In total 110 results were

gathered across the four search terms.

Although these search terms all have explicit bias and will bring up results specifically discussing

annotations against alternatives, searching explicitly for "good practice" and "best practice" should

be biased in favour of results where authors talk favorably about annotations, however it was

found that the inverse was true. Search results containing the terms "good practice" and "best

practice" overwhelmingly argued against using annotations for configuration.

Results

Figure 3.4 shows the results for the meta-analysis of Annotations.

Thomas Butler 68

Figure 3.4: Meta-analysis results: Annotations

Key findings

There is a clear correlation between the recommendation score and Jadad-style score. Every

article with a Jadad-style score of 5 or higher recommends avoiding the practice.

The mode recommendation score is 3 (neutral/no recommendation). A simple tally would

imply that most people do not recommend either using or avoiding the practice.

The mean recommendation score is 3.22. A metric that did not account for analytic rigour

would show developer's attitude to be slightly unfavourable but nearly neutral.

Although there are many articles discussing annotations, only 8.1% of articles discuss

potential alternative approaches and only 12.7% mention negative aspects of using the

practice. However, this is only slightly lower than the very well known bad practice Global

Variables which has 8% and 21% respectively.

Each of the nine articles that compares annotations to alternatives suggests using

69 Thomas Butler

alternatives instead of annotations.

In total twelve articles recommend using alternatives instead of annotations and zero

recommend using annotations over alternatives.

The Jadad-style score correlates with the recommendation. The higher the Jadad-style score,

the less likely the author is to recommend using annotations.

Conclusion

Annotations are used by a large number of libraries and frameworks, however compared to the

the other bad practices analysed there is very little discussion surrounding when or if annotations

should be used in place of alterantive approaches.

There is a clear trend that when annotations are compared to alternative approaches, alternative

approaches are preferred.

Further research could be carried out to examine why there is so little discussion surrounding the

merit of annotations, however it is hypothesised that reasons for the lack of discussion include:

Annotations are not widespread and are only used it some, albeit popular, libraries such as1.

Java's Swing.

Compared with other practices, annotations are modern. They have only been available2.

since 2004 in Java (Oracle, 2014) and much more recently in other languages. Even after their

introduction there would have been a delay between the language feature being introduced

and use in libraries. One of the early adopters of annotations, Spring Framework, did not

start using them until late 2007 (Spring, 2018) and there would have been a further delay

between the library release and developers using the new version. Then developers would

not have run into maintenance issues until they needed to restructure their applications

after implementing them. The series of delays may be why problems are only starting to be

discussed relatively recently.

Thomas Butler 70

3.6.2 Global Variables

A meta-analysis was performed for annotations using the search term "global variables".

Results

Figure 3.5 shows the results for the meta-analysis of Global Variables.

Figure 3.5: Meta-analysis results: Global Variables

Key Findings

There is a clear correlation between the recommendation score and Jadad-style score. Every

article with a Jadad-style score of 5 or higher recommends avoiding the practice.

The mode recommendation score is 3 (neutral/no recommendation). A simple tally would

imply that most people do not recommend either using or avoiding the practice.

The mean recommendation score is 3.22. A metric that did not account for analytic rigour

would show developer's attitude to be slightly unfavourable but mostly neutral.

71 Thomas Butler

Although global variables have been described as "bad practice" since at least 1973 (Wulf et

al, 1973) and are one of the first bad practices junior developers are taught about (Judis,

2017), only 21% of articles discussing global variables mention the negative implications of

their use and only 17% recommend against using them.

As expected, zero articles recommend using global variables over alternative approaches.

As the Jadad-style score increases, an article is more likely to recommend against using

global variables.

Conclusion

Although any article making a recommendation recommends against their use, having just 17% of

articles about global variables talking about them as a bad practice is surprising given how

derided they are (Meyer, 1988; Hevery, 2008) and that global variables being bad practice is one of

the first things often taught to junior developers (Judis, 2017). If global variables are only

described negatively 17% of the time, this makes less common and more complex bad practices

significantly less likely to be discussed in terms of negative or positive impact.

Thomas Butler 72

3.6.3 Inheritance

The results for the meta-analysis for Inheritance are displayed in the following chatper. However,

due to the common name of the practice outside of programming terminology, this meta-analysis

had to be carried out differently to others. The amended methodology is outlined below.

Methodology

Due to the term "inheritance" not being exclusive to programming the search term "inheritance

class" was used to bring up only programming related results. Similar search terms like

"inheritance programming" or "inheritance oop" would yield similar results but the page may not

mention "oop" or "programming". However, any discussion about inheritance will need to mention

classes.

Using this search term, only 7% of results made a recommendation on whether to use inheritance

or not. All 7% argued in favour of alternatives.

As 7 articles is a very small sample size, additional search terms were used to find articles which

specifically compare inheritance to alternatives:

"vs inheritance" class

"inheritance vs" class

These terms should not introduce any bias but return only relevant results. As previously, the

search keyword class was appended to ensure only discussions about programming are returned.

Relevant results from the first ten pages of each of these searches were added to the data set if

the URL was not already present which is why there are more than 100 articles being in the results.

Results

73 Thomas Butler

Figure 3.6: Meta-analysis results: Inheritance

Figure 3.6 shows the results for the meta-analysis of Inheritance.

Key Findings

There is a clear correlation between the recommendation score and Jadad-style score. With

the the exception of one neutral recommendation, every article with a Jadad-style score of 5

or higher recommends avoiding the practice.

The mode recommendation score is 3 (neutral/no recommendation). A simple tally would

imply that most people do not recommend either using or avoiding the practice.

The mean recommendation score is 3.4. A metric that did not account for analytic rigour

would show developer's attitude to be slightly unfavourable but mostly neutral.

There are zero articles which suggest favouring inheritance over alternative approaches.

The Jadad-style score correlates with the recommendation. The higher the Jadad-style score,

the less likely the author is to recommend using inheritance.

Thomas Butler 74

Conclusion

There is an overwhelming amount of information about how to use inheritance in various

languages. However, discussions around when it should be used over alternative approaches are

comparatively rare.

75 Thomas Butler

3.6.4 new in constructor

This practice is very difficult to search for on its own terms because there is no common name for

the practice as there is with singletons or setter injection. However, this practice is the exact

opposite of dependency injection where dependencies are injected into the class rather than

instantiated inside it. Rather than searching for new in constructor the same search was

completed for dependency injection. Any recommendation to favour dependeny injection is a

recommandation to avoid instantiating dependencies inside classes.

This approach may skew the results and the results may include articles which do not explicity

mention this practice, however as the alternative to dependency injection is creating dependencies

inside the same class any results in favour of dependency injection can be considered results

arguing against constructing objects in constructors.

Results

Figure 3.7 shows the results for the meta-analysis of Dependency Injection.

Figure 3.7: Meta-analysis results: Dependency Injection

Thomas Butler 76

Key Findings

See results for Dependency Injection

77 Thomas Butler

3.6.5 Service Locator

This section covers the results for the meta-analysis for the service locator pattern.

Methodology

The search keywords used were "service locator pattern" as searches for "service locator" yields

results which are overwhelmingly unrelated to programming.

Results

Figure 3.8 shows the results for the meta-analysis of Service Locator.

Figure 3.8: Meta-analysis results: Service Locator

Key Findings

There is a clear correlation between the recommendation score and Jadad-style score. With

the the exception of one neutral recommendation, every article other with a Jadad-style

score of 6 or higher recommends avoiding the practice.

The mode recommendation score is 3 (neutral/no recommendation). A simple tally would

Thomas Butler 78

imply that most people do not recommend either using or avoiding the practice.

The mean recommendation score is 3.65. A metric that did not account for analytic rigour

would show developer's attitude to be somewhat unfavourable.

The Jadad-style score correlates with the recommendation. The higher the Jadad-style score,

the less likely the author is to recommend using Service Locators.

56% of articles about Service Locators discuss negative implications of the pattern, the

highest percentage of any practice analysed.

79 Thomas Butler

3.6.6 Static Methods

This section covers the results for the meta-analysis for static methods.

Results

Figure 3.9 shows the results for the meta-analysis of Static Methods.

Figure 3.9: Meta-analysis results: Static Methods

Key Findings

There is a clear correlation between the recommendation score and Jadad-style score.

The mode recommendation score is 3 (neutral/no recommendation). A simple tally would

imply that most people do not recommend either using or avoiding the practice.

The mean recommendation score is 3.19. A metric that did not account for academic rigour

would show developer's attitude to be mostly neutral.

The Jadad-style score correlates with the recommendation. The higher the Jadad-style score,

Thomas Butler 80

the less likely the author is to recommend using static methods.

Considering how common static methods are, there is surprisingly little discussion about

when they should be used.

81 Thomas Butler

3.6.7 Setter Injection

Results

Figure 3.10 shows the results for the meta-analysis of Setter Injection.

Figure 3.10: Meta-analysis results: Setter Injection

Key Findings

There is a clear correlation between the recommendation score and Jadad-style score.

However, one article with a Jadad-style score of 6 and one with 7 recommend using Setter

Injection over constructor injection. Further research could be done to determine where the

point of disagreement is or whether it's a specific programming language or framework

being discussed in these articles.

The mode recommendation score is 3 (neutral/no recommendation). A simple tally would

imply that most people do not recommend either using or avoiding the practice.

The mean recommendation score is 3.37. A metric that did not account for analytic rigour

would show developer's attitude to be mostly neutral.

Thomas Butler 82

The Jadad-style score correlates with the recommendation. The higher the Jadad-style score,

the less likely the author is to recommend using setter injection.

58% of articles discuss alternative approaches, the most of any practices analysed.

83 Thomas Butler

3.7 Meta-analyses overall conclusions

Most programming practices are taught using examples, but very few articles regarding any

practice discuss alternative approaches or when/where a given practice should be used over

another.

This is potentially a serious problem for students and junior developers as they are taught

practices without also being taught negative side effects of using those practices or alternative

solutions to the same problem.

This is similar to teaching students of carpentry to use a jigsaw without teaching them about hand

saws or chainsaws and where each one is useful.

if all you have is a hammer, everything looks like a nail *- Proverb*

Figure 3.11: Depth of discussion about each practice

Figure 3.11 shows each practice broken down by the number of articles that discuss negative

implications of the practice, discuss alternative approaches and make a recommendation.

The following conclusions were made based on over 800 articles being analysed across 8 bad

practices:

Thomas Butler 84

Regardless of the practice being discussed, authors who consider alternative approaches

come to different conclusions than those who do not.

Despite global variables being widely considered bad practice by even junior developers and

known to cause issues since 1973 (Wulf et al, 1973) only 16% of articles about global

variables recommend against their use and only 8% discuss alternative approaches.

Of the 847 articles analysed, 33% mention the negative implications of the practice being

discussed, while 26% discuss alternatives and 27% make a recommendation of when/where

to use the practice. Although as demonstrated in Figure 3.10, this varies significantly by the

practice being discussed.

Although it was expected that simpler practice like global variables would receive more

discussion regarding the problems, advanced level practices such as service locators have a

higher percentage of articles discussing their negative aspects than simpler practices such

as global variables and inheritance. It is hypothesised that this is because:

People using these more advanced practices are using them to solve a specific1.

problem and are more likely to consider alternatives

Professional programmers are not interested in talking about basic functionality like2.

global variables and inheritance and would rather discuss more advanced concepts.

Lower level programmers who are still using global variables are less likely to write

articles.

3.7.1 Possible further research

Further research could be performed on the data already gathered. The following research

questions are proposed:

If articles were broken down by publish year, are developers becoming more or less1.

favourable of a practice over time?

Does language choice affect the outcome? If articles were broken down by programming2.

language in each article would different languages yield different results. The existing data

suggests it doesn't as the current language agnostic results are internally consistent but a

proper analysis may yield some surprises.

85 Thomas Butler

As roughly two thirds of articles about programming practices teach only how to use it and3.

not where or if it should be used, does this have an impact on developers progression? What

would be the effect of teaching developers up front that these practices introduces

maintainability problems?

3.8 Chapter Review

This chapter outlined the problem of subjectiveness in the definition and identification of bad

practices, and outlined a methodology for determining whether developers generally considered

given practices "bad".

As a result of this chapter, the following was produced:

A metric for grading articles about a programming practice on their academic rigour.1.

A methodology for performing a meta-analysis for articles about any given programming2.

practice.

An academic paper entited A Methodology for Performing Meta-analyses of Developers Attitudes3.

Towards Programming Practices was presented at the Proceedings of the 2019 Computing

Conference (Butler, 2019) to describe the metholody for performing the meta-analyses. This

paper is available in appendix VII).

For each bad practice, 100 articles were anaylsed and results used for meta-anyses. The raw4.

data gathered for the meta-analyses in this chapter is available in appendix VI.

Results of the meta-analyses were generated.5.

Thomas Butler 86

4. Creating a metric

87 Thomas Butler

4.1 Introduction

The previous chapter showed that the identified bad practices genuinely are considered "bad" by

developers. These can now be used as part of a metric which scans source code for these

practices.

A metric was created for identifying bad practices in source code and grading it. Source code is

analysed and two results are returned:

A grade for the software. The grade is a score from 0-100 based on the quality of the1.

software with 100 meaning no bad practices identified and 0 meaning that every class

contains bad practices.

A list of classes/lines which contain bad practices and instructions for how a developer could2.

remove the practices.

The metric can be used to compare the flexibility of two different pieces of software and in

isolation to identify where code flexibility can be improved by highlighting known bad practices.

Thomas Butler 88

4.2 Aims and Objectives

4.2.1 Aim

Create a metric for measuring the previously identified bad practices found in source code. The

metric will need to account for the size of a project and severity of each bad practice.

4.2.3 Objectives

Calculate weightings for ecach bad practice based on the severity of each bad practice.1.

Design a metric which grades software based on frequency of bad practices.2.

Test the metric to ensure it produces a spread of results.3.

89 Thomas Butler

4.3 Methodology

This section outlines the methodology used to create the metric for grading source code flexibility.

4.3.1 Introduction

A base metric was created and refined during the development process. The actual grades

generated are not important as long as one software grade can be compared to another.

4.3.2 Software Size

A meaningful metric cannot be a simple tally of the number of bad practices. A piece of software

could be given a score of 5 indicating that it contains 5 bad practices. This alone is not useful when

comparing different software.

Using a tally, two different pieces of software could be graded 5, however if one contains 100 lines

of code and the contains 10,000 lines of code the scale of the problem is different between the

pieces of software. A developer working on the first has a higher probability of encountering

maintainability issues than a developer working on the second larger project.

For this reason the size of a project will be factored in to the overall score of the software.

Measuring software size

To account for project size the question how large is the project? must be answered.

There are several methods for measuring software size (as outlined in the literature review in

chapter 1) including:

Source Lines of Code (SLOC). A count of the number of lines of source code. This method can1.

be unreliable as coding style can affect the number of lines. For example, brace position,

comments and whitespace.

Cyclomatic Complexity. A count of the number of if statements, loops and functions. This2.

consistent across coding and commenting styles and gives a much more accurate indication

of code size.

Number of methods/number of classes. The building blocks of an Object-Oriented3.

application are classes.

Thomas Butler 90

Number of classes

Number of classes was chosen for the metric for the following reasons:

Number of classes is a consistent, unambiguous, easy to calculate figure for any project1.

which doesn't change with coding style choices such as brace positions, whitespace,

comments and other coding convention differences.

Classes are the building blocks of an object-oriented program and every project will have2.

them.

Several bad practices exist at a class level. For example, in relation to properties or3.

constructors. Other bad practices exist due to coupling between classes and the practice will

affect the class regardless of the size of the class.

A class' API is what makes it maintainable or not. Bad practices such as using singletons,4.

global variables or inheritance make the entire class class difficult to maintain and move

between projects. For example, if a class uses setter injection the whole object can exist in an

incomplete state and introduce bugs, regardless of the size of the class.

SLOC and Cyclomatic Complexity would produce inconsistent results. Bad practices which5.

exist at a class level such as use of inheritance or new in constructor would be diluted by

large classes. For example, a 2000 line class which uses inheritance would potentially see a

lower score than a 200 line class with the same bad practice, despite having the same effect

on the overall maintainability/portability of the code.

4.3.3 Severity

Are all bad practices equally bad? Are annotations as bad as Global Variables. If not, how can the

difference be quantified?

As discovered earlier in the the research, bad practices are bad because they introduce one or

more negative traits such as Action at a distance, Tight Coupling, Broken encapsulation, Broken Single

Responsibility Principle, etc.

Annotations only introduce four of these problems, whereas global variables introduce all of them.

91 Thomas Butler

Because of this, global variables can be considered quantifiably worse than annotations in the

context of this research.

Each bad practice was given a severity score based on how many of these traits were introduced as

follows:

Table 4.1: Bad practice severity ratings

Bad practice Negative traits introduced Severity

Annotations for
Configuration

Broken Encapsulation, Single Responsibility Principle, Action
At A Distance, Unnecessary Coupling

4

Global/Static Variables Tight Coupling, Broken Encapsulation, Single Responsibility
Principle, Action At A Distance, Global State

5

Inheritance Tight Coupling, Broken Encapsulation, Single Responsibility
Principle

3

New In Constructor Tight Coupling, Broken Encapsulation, Single Responsibility
Principle

3

Service Locator Tight Coupling, Broken Encapsulation, Single Responsibility
Principle, Law of Demeter

4

Setter Injection Temporal Coupling, Broken Encapsulation, Action at a
Distance

3

Singleton Tight Coupling, Broken Encapsulation, Global State, Action At
a Distance, Single Responsibility Principle

5

Static Methods Tight Coupling, Broken Encapsulation, Single Responsibility
Principle, Unclear Dependencies

4

This rating could potentially be further refined. Is Broken Encapsulation worse than Tight coupling?

This could be a question for further research, however this would be very difficult to quantify in an

unopinionated way. As such, each negative trait will be weighted identically for this metric.

4.3.4 What to grade

As bad practices generally operate at a class level, grading individual classes is beneficial. To make

feedback meaningful and enable users to identify the source of problems, each class will be given

an individual grade. From this, users will be able to identify which classes contain bad practices

and which do not

The overall grade for the project will be an average class score. One class with a low score in a

large project will still result in a high overall project score.

Thomas Butler 92

4.3.5 Grading range and visualisation

There are are numerous methods to express the grades of classes or projects. For example, and

not limited to, A-F, 1-5 stars, 0-10, 0-100 (percentage). Each of these grading ranges would be

feasible but 0-100 was chosen as it gives a finer level of granularity. A-F gives only six (or five when

the E grade is omitted) grade bands, 0-10 gives only 11. With 0-100 one project can be graded at

82 with another at 83. This additional granularity should make comparing projects easier.

1-10 with decimal points was considered e.g. 8.3 or 8.2 which would be equivalent to 82 or 83, but

this requires more characters to express the same score and as such 0-100 was the grade which

was eventually chosen.

By contrast, 1-1000 (or any higher number) is less common and likely less intuitive. If finer

granularity is required a decimal can still be added to a 1-100 grade.

Using a numerical scale, as long as decimals can be added to refine the granularity, the actual

range does not matter as long as it is made clear to users what a high score is and what a low

score is.

Visualisation

An advantage of A-F is that is a grading system used frequently in education and users would likely

be familiar with the fact that A is a better grade than F. With 0-100 (or 0-10) there is ambiguity Does

100 mean 100% e.g. a perfect score? or Does 0 mean zero issues detected?.

To reduce this ambiguity, when grades are displayed, they will be displayed with visual cues:

Colour coding. Low scores (<30) will be displayed in red, medium scores in yellow, high1.

scores in green and perfect scores in bright green. The numbers for the bands could be

adjusted, however the colour is only indicative. If someone sees green and a score of 87 they

should be able to infer that higher is better.

Progress bar. By including a progress bar of 0-100, coupled with colour coding, it should be2.

quickly apparent that 100 is a high score and 0 is a low score.

4.3.6 Grade Calculation

To make it possible for users to identify where issues are detected each class will be individually

graded. This individual class score can be utilised by users to identify the classes where

93 Thomas Butler

improvements can be made.

Each class score is calculated by identifying bad practices in the code weighted by severity and

size.

The number of methods was taken into account as it will give more of a spread of results and give

more useful data to users. A class with 1 method and 1 bad practice should not give the same

score as a class with 10 methods and 1 bad practice as practically, a much lower percentage of the

code being flagged is genuinely an issue.

Initially, for each bad practice the processes outlined in figure 4.1 was followed to calculate the

score.

Score = 0;

for each bad practice identified:

 Score = Score + IssueSeverityRating;

ClassGrade = 100 - ((Score/NumClassMethods)*100)

Figure 4.1: Initial grade calculation

Where:

The contents of ClassGrade is the grade for the class.

IssueSeverityRating is the severity rating of the issue identified.

Score is a tally of severity ratings for each bad practice identified (The same bad practice can be

identified multiple times in the same class)

NumClassMethods is the number of methods in the class.

This process starts off assuming the class is perfect (100 score) and subtracts points based on the

severity of the issue and the size of the class.

This method was tested using the top 20 PHP projects listed on packagist (Packagist, n.d.) the most

popular repository for hosting PHP libraries (TutsPlus, n.d.).

4.3.6 Model refinement

Thomas Butler 94

After examining the results, most projects had numerous classes with a score of 0 even though

they only had a single negative trait.

These zero score classes were usually where classes had few methods and used inheritance or

using new in constructor. Because the grades were weighted on number of methods, any class

with inheritance and few methods was graded zero.

Regardless of the class size, inheritance has the same effect of tight coupling on the class. For this

bad practice (among others) it makes little sense to weight based on class size because the bad

practice can only exist at one specific point in each class and introduces tight coupling throughout

the class.

Other bad practices, like static methods can exist multiple times in a class and at different

locations should and therefore should be weighted by method.

As there are now two different types of weighting (class level and method level) the metric was

changed to incorporate this.

Class level bad practices were given 50% of the grade and method level bad practices were given

the other 50%. The result of this is that even if a class has all the class level bad practices, if it has

no method level bad practices it will still get a score of 50%. On the other hand, classes which have

zero class level bad practices can at worst score 50%. For a class to score less than 50% it must

contain both class level bad practices and method level bad practices

50% for each was initially chosen as a metric as there is no clear justification for 60/40, 70/30 etc.

After testing 50/50 it was discovered that this gave a good spread of results with a lot more

granularity than applying all bad practices at method level.

The bad practices which are applied at class level are: - New in constructor - Inheritance

The updated metric was calculated as shown in figure 4.2:

MethodScore = 0;

ClassScore = 0

for each class level bad practice identified:

 ClassScore = ClassScore + IssueSeverityRating;

for each method level bad practice identified:

 MethodScore = MethodScore + IssueSeverityRating;

ClassGrade = 50 -(((MethodScore/2)/NumClassMethods)*50);

95 Thomas Butler

ClassGrade = ClassGrade + (50-(ClassScore/2)*50)

Figure 4.2: Refined grade calcuation

To keep scores for method level bad practices the same as they were previously, all tallies were

halved because each was only being applied to 50% of the total.

The result of this is that there are effectively two different metrics from 0-50 being added together

to get the final grade. One 0-50 for class level bad practices and one 0-50 for method level ones.

4.3.7 Further refinement

Due to the severity of inheritance (4 severity rating) the above still did not produce meaningful

results in some instances.

Any class with inheritance would be calculated as shown in figure 4.3:

50-((4/2)*50)

Figure 4.3: Initial inheritance calculation demonstration

This calculates to -50 due to how severely inheritance is weighted. Even rounding up to 0 this

posed a problem: A class with inheritance will always get 0% for its class level bad practices.

A class which had inheritance would have the same score as a class with inheritance and new in

constructor despite one class being quantifiable worse: two bad practices instead of one.

Several different weightings were tested and the calculation shown in figure 4.4 was chosen:

ClassGrade = ClassGrade + (50-(ClassScore/5)*50)

Figure 4.4: Refined class grade calculation

/5 was chosen as:

Thomas Butler 96

Any class with inheritance will lose 40% marks

A class with inheritance and new in constructor will lose 50% marks

The weighting could be fairer such that a class with inheritance lost 25% and lost another 25% for

new in constructor but this did not accurately reflect the severity of class level bad practices.

From the previous iteration where inheritance was an immediate 0% score making inheritance

into a 75% score did not reflect the severity of the bad practice.

Instead, by using /5 and inheritance costing 40%, it better expresses the severity to the user.

A note on numbers

One important consideration is not that each class is given a completely meaningful number but

that the flexibility of one class can be directly compared to the flexibility of another. The actual

number being displayed matters less than a metric that gives more granularity. For example, if

every class was either 0 or 100 that would be less useful than a metric which graded classes at any

point in between that.

Any number associated with a class is always going to be arbitrary without the context of

something else to compare it to. The only time the number is useful is when comparing two

classes, two projects, etc which have been graded using the same metric.

As such, the result of these numbers can be further refined without any detriment to the metric or

any tool which uses it. The important consideration is that any comparisons done can only happen

between classes (or projects) which are scanned using the same revision of the metric.

4.3.8 Project score

The project score is simply the mean class score and calculated using the process shown in figure

4.5:

Total = 0;

for each class

 Total = Total + ClassGrade

ProjectGrade = Total / NumberOfClasses

Figure 4.5: Project score calculation

97 Thomas Butler

By using a mean, project size is taken into account. A project with a low number of classes with

issues will get a lower score than a project with a large number of classes. This is useful as it gives

an indicative figure for the percentage of the project affected by bad practices.

Thomas Butler 98

4.4 Results

The completed metric, labelled Insphpect, was tested on the top 20 PHP projects on packagist at

the time of writing.

The "Top packages" list from packagist was chosen as the packages are by different authors,

different sizes and perform a variety of different tasks. This should be representative of general

PHP libraries.

Note: Packages were omitted if they:

Only contained interfaces (no classes)

Were polyfill packages. These tend to be single class/single method utility packages which

act as backward/forward compatibility tools. As such their design/function is very limited.

The phpunit/phpunit package. As most packages contain PHPUnit tests, any class which

extends PHPUnit is ignored as tests should not be scanned for flexibility. However, the tool

developed detects phpunit classes as tests so it cannot be scanned. This is currently a

limitation of the tool which may eventually be worked around.

Table 4.2: Results table for 20 projects

Project Insphpect Number of classes

doctrine/lexer 100 1

sebastian/exporter 100 1

webmozart/assert 33.33 2

phpdocumentor/reflectioncommon 100 2

doctrine/instantiator 73.67 3

symfony/event-dispatcher 76.43 9

guzzlehttp/promises 81.9 9

sebastian/diff 88.76 13

symfony/process 66.74 15

symfony/finder 58.06 21

guzzlehttp/guzzle 67 30

99 Thomas Butler

Project Insphpect Number of classes

phpdocumentor/typeresolver 84.86 32

phpdocumentor/reflectiondockblock 71.84 34

myclabs/deep-copy 86.32 35

doctrine/inflector 45.77 39

symfony/translation 72.64 53

symfony/http-foundation 68.99 65

symfony/console 70.25 73

monolog/monolog 66.19 99

phpspec/prophecy 68.58 178

Table 4.2 shows the raw scores generated by the metric for the top 20 pakcages on packagist.

4.4.1 Preliminary Evaluation

A preliminary evaluation was conducted to test the suitability of the metric before a complete

evaluation by other developers.

This evaluation was performed to determine whether the grades generated gave an even spread

of results and to check that the results were not biased by project size.

The results show a range of different projects of varying sizes by different authors and this

resulted is a wide spectrum of scores. As expected, project scores do not directly correlate with

project size.

Thomas Butler 100

Figure 4.6: Graph of results and number of classes

This is by design, the score should not correlate with project size and shows that the metric works

similarly for both large and small projects.

The lowest score was 33.33 and the highest score was 100. Although this may indicate that the

range is not wide enough as there are no results in the sample which are below 33, this is also to

be expected. As the project score is the mean of all classes, to get a low score a project would have

to have issues in all or most classes in the project.

Even in a project where half the classes scored 0, the mean would be much higher.

Sample size

A greater number of projects could have been analysed for the preliminary evaluation, however

this is evaluating whether the metric produces a meaningful spread of results the sample size

does not matter as much as the randomisation of the sample.

In total 714 classes were analysed across the 20 projects, 510 of the classes contained issues and

1078 issues were detected in total. The mean class grade was 74.04 with the lowest at 0 and

101 Thomas Butler

highest at 100.

A more complete evaluation will be performed at a later stage by asking other developers to

upload their work and evaluate the results themselves.

4.4.2 Conclusion

The metric gives a reasonable spread of results and is not biased towards large or small projects

or projects by particular authors. There is likely room for improvement but as a proof-of-concept it

is ready to be tested and used by real developers in order to gather their feedback.

Thomas Butler 102

4.5 Chapter review

In this chapter a metric was developed, and revised, for grading software based on the frequency

of bad practices it contains. Preliminary results, after revising the calculation, showed that the

metric produced a meaningful spread of results and could be used to measure the flexibility of

different software projects by notifying the user of bad practices in the source code.

103 Thomas Butler

5. Testing the metric by creating a tool

Thomas Butler 104

5.1 Introduction

While developing the metric in the last chapter, software was developed alongside the metric, in

the first instance to test that the metric produced meaningful results without having to manually

analyse thousands of lines of code and secondly to enable other developers to test it for

themselves.

5.2 Aims and Objectives

Build a software tool that analyses source code for previously identified bad practices.1.

The tool should use the metric which is to be developed in parallel to the software and2.

produce a grade.

In addition to the overall software grade, the software should display which classes/lines3.

contain the issues and information about why the issue was flagged up and a generic

explanation of how to fix the issue.

If possible, as a proof of concept, the tool could be extended to include automated4.

corrections.

105 Thomas Butler

5.3 Design

A tool designed to test and evaluate the metric was created alongside the metric. This was done in

parallel in order to test that the metric produced a meaningful spread of results rather than

grading everything at extremes.

As such, the metric was modified during development of the tool.

5.3.1 Web based or application.

A web based tool was chosen that users did not need to download and install an application, they

can upload a project or provide a git repository URL to have it analysed by the tool.

There are both advantages and disadvantages of a web based application as shown in table 5.1.

Table 5.1: Pros/Cons of a web-based tool

Pros Cons

Does not require downloading or installing any
software

User data is sent to the server. The
user may not be comfortable
uploading their code to a service to
which they are unfamiliar

Users can try the software with minimal effort or risk,
they don't need to install software from an unknown
source

Relies solely on the server, too many
requests at once will slow the site
down and since this may be fairly
computationally expensive may
require a server with a strong CPU.

Platform independent, the software does not have to be
developed for windows, mac or linux

Evaluation and error detection is easier as all results are
stored on the server rather than the user's own PC

It's potentially easier to design a user friendly and
aesthetically pleasing HTML/CSS website than a desktop
application

The software can be improved without users needing to
update to the latest version

Due to the positives outweighing the negatives, a web-based tool decided upon though this

project could just as easily have been built as a desktop application.

5.3.2 Language choice

The tool could have been built for any Object-Oriented language. Although any language could be

Thomas Butler 106

used to build the tool and as a target language for analysis, it was anticipated that it would be

significantly easier to analyse code in the language it was written in. For example, a tool written in

Java to analyse Java code or a tool written in Javascript to analyse Javascript, etc as the tool would

be able to utilise existing parsers, class loading mechanisms and even execute the code to trace

what it is doing.

As such, the language chosen was the language the tool was written in and the target language

which is being analysed.

The three candidate languages were Java, Javascript and PHP.

Javascript was avoided because its object model is significantly differed to other Object languages.

It does not support strong typing and Inheritance and class loading are handled very differently.

PHP was chosen over Java because:

It is open source and would have been possible to make a custom build of the PHP1.

interpreter for the tool if required.

There are thousands of existing projects which could be used to test the metric.2.

PHP allows easily controlling how classes are loaded via autoloaders. This enabled easier3.

development as custom code could be easily injected into classes on the fly, just before they

are parsed. Classes can be substituted with doubles and mocks on the fly in a way that is

considerably more difficult in Java.

PHP is used for many web based projects and could be easily used to build a web-based tool.4.

PHP already includes tools for parsing PHP code and using the same language for the tool as

the language being analysed potentially makes the tool more efficient to build.

The developer has significant experience in the language.5.

Implications of using PHP

The language choice, regardless of which was ultimately chosen, may have an impact on eventual

findings. The following could be impacted by language choice:

Selection bias of respondents. If the tool is developed for a particular language, developers

of that language will be over-represented in any trials.

Language nuances. Due to the differences in languages, some languages may require things

to be done in certain ways. For example, PHP requires extending the Exception class to

create custom exceptions. Projects may be build differently in different languages due to

107 Thomas Butler

restrictions imposed by the language itself.

However, these differences will not affect the bad practices being identified or direct results of the

tool. Feedback can still be gathered from users of other languages by presenting pre-generated

reports.

Due to the scale of the project, building a tool to identify bad practices across multiple different

languages was infeasible. For the reasons listed above, PHP was chosen. Regardless of which

language was ultimately decided upon these issues would be present.

In future the tool could be developed for multiple languages and results compared between users

of different languages and projects written in each language. This is beyond the scope of this

research at this stage.

5.3.3 Specification

From a user's perspective, the website is fairly basic:

The user either uploads a zip file or provides a git repository URL.1.

The sever extracts/downloads the files.2.

The source code is scanned for the previously identified bad practices and a report is3.

generated.

The report will list all the classes in the project to allow users to see which classes contain4.

issues.

Clicking a class will display the code for the selected class and highlight any issues in the5.

code.

The tool will also include background information on the project and a way of reporting6.

bugs.

To collect feedback, a survey will be included as part of the website.7.

The challenging part of the build is the back-end that analyses the code for bad practices. The user

will not see this and will only be given the generated report.

5.3.4 Report format

The report will display a grade for the project and classes. The first page of the report will clearly

display the project score along with a list of classes in the project along with their grade.

Clicking on a class will take the user to another page which displays the grade for the class, all the

code for that class along with highlighting the issues that were detected. Lines with issues will be

highlighted to the user and clicking the line will display information about the issue that was

Thomas Butler 108

detected.

This format is inspired by reports generated by Scrutinizer (Scrutinizer-CI, n.d.) and PHPUnit's code

coverage report (PHPUnit, n.d.) which provide different information but are also used to analyse

projects.

5.3.5 Methodology

The tool was built loosely using Agile techniques with a focus on Test-Driven-Development. All

code was built as individual units with its own test prior to being put together to construct the final

project.

Each stage of the software development process (excluding the GUI) followed these steps:

Tests were written to describe what the unit should do.1.

Code was written until all tests passed.2.

If the unit needed extension or modification during development, new tests were added and3.

tests re-run to ensure nothing was broken.

The following modules were developed:

5.3.6 Unit 1 - Utility class 1: Navigating code

A set of tools were created for parsing and navigating around source code. A class which

tokenized PHP code and could move to the next/previous token, match brackets and navigate

around to the next class/function or other block was created.

Sample tokenizer usage is shown in figure 5.1.

$tokenizer = new Tokenizer(token_get_all($file));

//Extract class name

$className = $tokens->next('T_CLASS')->next('T_STRING')->string();

Figure 5.1: Sample Tokenizer usage

109 Thomas Butler

This would extract the string ClassName from the code shown in Figure 5.2 by moving to the

corresponding tokens.

<?php

namespace Example;

class ClassName {

}

Figure 5.2: Sample Tokenizer usage (b)

The complete code and unit test suite is available on request and will be made open source after

this research is published.

5.3.7 Unit 2 - Utility class 2: Calculate namespace

Because PHP supports local aliases for class names, the tool will need to work out the Fully-

Qualified-Class-Name as it is referred to in global scope.

A class was written to determine the global, Fully-Qualified-Class-Name for any given local class

name as shown in figure 5.3.

namespace Example;

use \Library\Some\Class as SomeClass;

class ClassName {

}

Figure 5.3: Sample local class aliasing in PHP

In this scope, the class called SomeClass is. A tool, NamespaceResolve, was written to convert

the local alias to the global class name as demonstrated in figure 5.4

$source = file_get_contents('file.php');

$resolver = new NamespaceResolve($source);

Thomas Butler 110

$globalName = $resolver->resolve('SomeClass'); // \Library\Some\Class

Figure 5.4: Tool for resolving global class name

5.3.8 Unit 4 - Project

A unit was created for handling projects. This unit is used to load a set of files and has the ability to

attach issues to classes in the project.

A Project instance is given a directory and recursively loads all files with a .php extension, it can

then be used to get information about the files in the project or associate an identified issue with a

particular class.

Sample Project API is shown in figure 5.5.

$project = new Project('/path/to/files');

//Returns an array of all classes in the format Name => Tokens

$classes = $project->getClasses();

//Returns an array of all files in the format Path => File

$classes = $project->getClasses();

//Gets the file by class name

$file = $project->getFileForClass($className);

//Registers an identified issue

//Issues are things like global variables and singletons identified by

earlier research

$issue = new Issue($className, //Name of class with issue

 $lineNumber, //Line number where issue was

detected

 $method, //Name of method which detects

issue (Can be left blank)

 $descriptionOfIssue, //Description of issue e.g. "New in

constructor"

 $stringOfCode, //The line or block of code

containing the issue e.g. $this->object = new Object();

 $typeOfIssue, //Consistent type e.g.

NEW_IN_CONSTRUCTOR for use in the metric

 $pathToDocumentation //Path to a file containing the

111 Thomas Butler

explanation of why this is an issue

);

$project = $project->registerIssue($id, $issue)

Figure 5.5: Project class usage

5.3.9 Unit 5 - Scan for bad practices

A unit was created for each of the bad practices. Each unit is independent from the others and

follows the interface shown in figure 5.6.

interface Rule {

 public function run(Project $project): Project;

}

Figure 5.6: Rule interface

Each Rule has access to the project, scans each file or class for the bad practice it is intended to

identify and returns a new bad practice. Each Rule looks follows the interface and sample usage is

shown in figure 5.7.

class GlobalVariables implements Rule {

 public function run(Project $project): Project {

foreach ($project->getClasses() as $className => $tokens) {

 if ($this->lookForGlobals($tokens) == true) {

 $project = $project->registerIssue(uniqid(),

new Issue($className, $lineNo....));

 }

 }

}

}

Figure 5.7: Sample rule implementation

Thomas Butler 112

A Rule instance was created for each bad practice.

As each bad practice uses its own class which follows this structure, the tool can be very easily

extended with new bad practices.

5.3.10 Unit 6 - Combining the rules

A unit was created to tie together the work done to this point. An instance of Insphpect takes a

project and some rules and scans the project for any assigned rules.

Sample usage is shown in figure 5.8.

$insphpect = new Insphpect();

$insphpect = $insphpect->addRule(new Rule\GlobalVariables());

$insphpect = $insphpect->addRule(new Rule\StaticMethods());

$insphpect = $insphpect->addRule(new Rule\NewInContstructor());

$project = $insphpect->scan($project);

Figure 5.8: Sample Insphpect instance

This approach was chosen as it is beneficial for testing as it is possible to test this process with just

one rule enabled.

5.3.11 Unit 7 - Metric

After scanning a project with unit 6, the $project instance contains a list of identified issues.

The next stage was creating a unit for grading the project.

Sample usage is shown in figure 5.9.

$result = new Result($project);

//Calculates an overall grade for the project

$grade = $result->getGrade();

//Returns an array in the format ClassName => Grade

$classRatings = $result->getClassRatings();

//Returns the percentage of classes with issues

113 Thomas Butler

$percentIssues = $result->getPercentageIssues();

Figure 5.8: Code for generating the grade of a project

The metric itself was changed several times during the course of development. This is documented

in the previous chapter.

5.3.12 Unit 8 - Class Issues

The next unit was designed to extract the issues for a particular class. This class can be used in the

process of generating a report for a particular class.

It includes methods for extracting all the code for a class formatted as HTML, with issues

highlighted.

5.3.13 Unit 9 - GUI

The final stage was putting a GUI on top of the existing code. This required some minor changes

to some of the other units for tracking progress to display a progress bar to the user while the

uploaded code was being analysed.

The GUI design was changed over several iterations through discussions with the supervisor.

5.3.14 Unit 10 - Automated corrections

One of the projects overall additional objectives is exploring the idea of automated corrections.

This was implemented for one the bad practice, new in constructor and partially implemented for

static methods.

This was technically very challenging as it required rewriting the code to remove the bad practice.

5.4 Implementation

The web based tool, named Insphpect and launched on https://insphpect.com/ was built in parallel

to the metric in order for the metric to be tested.

For portability, Insphpect was built inside a containerised environment using Docker. The project

can be moved to any machine running docker and launched with docker-compose up.

The docker-compose.yml configuration file is included in the source code and uses the following

services:

Thomas Butler 114

nginx web server

PHP

certbot (for SSL certificates)

The tool uses the following third party libraries:

PHPUnit (PHPUnit, n.d.) unit testing suite

level-2/transphporm (Transphporm, n.d.) Template engine

level-2/dice (Transphporm, n.d.) Dependency Injection Container

RadialBar (RadialBar, n.d.) for drawing circular progress bars

Screenshots of Insphpect

Figure 5.9 shows the home page of Insphpect. Users can enter a Git repository URL or click the

"upload zip file" link to upload zipped source code.

115 Thomas Butler

Figure 5.9: Screenshot of Insphpect home page

Once a user has uploaded a project or provided a Git repository URL, a report is generated as

shown in figure 5.10. An overall project score is displayed at the top with each class from the

project listed in a table below. Each class is given a score and colour coded for user friendliness.

Thomas Butler 116

Figure 5.10: Screenshot of sample report

Each class can be selected and when a single class is clicked on, the class' score is displayed with

the code from the class below. Any lines with flexibility issues are highlighted in red as shown in

figure 5.11.

117 Thomas Butler

Figure 5.11: Screenshot of sample class

Thomas Butler 118

To give users a better understanding of the issue, as shown in figure 5.12, each red line can be

clicked on to expand an explanation of the issue detected. The data used to populate this is the

data collected in chapter 2.

Figure 5.12: Screenshot of sample class with issue expanded

119 Thomas Butler

For some bad practices, Insphpect generates step by step instructions which are specific to the

code supplied (shown in figure 5.13). It is also able to generate a patch which can be applied to the

project to remove the bad practice (shown in figure 5.14). Due to the nature of bad practices, this

patch can affect files beyond the class which has been clicked on by the user.

Figure 5.13: Screenshot of automated fix instructions

Thomas Butler 120

Figure 5.14: Screenshot of generated patch

121 Thomas Butler

5.4.1 Technical challenges

The majority of the bad practices use static analysis. For example, looking for object instantiation

in a constructor is fairly trivial:

For each class, find the constructor.1.

Look for a new keyword.2.

However, for service locators and setter injection, the process was significantly more complex. The

code is re-written on the fly to log all calls to a method.

For example, the code shown in figure 5.14 Is rewritten on the fly, to this prior to being executed

to become the code shown in figure 5.15.

class Car {

 private $engine;

public function __consturuct(Engine $engine) {

 $this->engine = $engine;

 }

public function drive() {

 $drive = $this->engine->drive();

 return $drive;

 }

}

Figure 5.14: Code prior to being rewritten

class Car {

 private $engine;

public function __consturuct(Engine $engine) {

 Insphpect::logCall(__CLASS__, '__construct');

 $this->engine = $engine;

 }

public function drive() {

 Insphpect::logCall(__CLASS__, 'drive');

Thomas Butler 122

 $drive = $this->engine->drive();

 return Insphpect::logReturn(__CLASS__, __METHOD__, $drive);

 }

}

Figure 5.15: Code after being rewritten by Insphpect

This was done for every class and mock dependencies were created. In this example a mock

version of the Engine class is created on the fly and how its return values are used are logged.

The code is then executed in a separate process for each class so that each class can be run in

isolation with its own set of mock dependencies created.

Once the trace is complete it is then possible to see:

If a dependency is used in more than one method

If an object is a service locator (if it is used to just return another object)

Re-writing the code on the fly was particularly challenging because there are so many variations of

code. For example, for logging return values it's not always simple due to complex expressions

such as the return statement shown in figure 5.16.

return $check ? 1 : -1;

Figure 5.16: Complex return statement

Which is rewritten to the code shown in figure 5.17:

return Insphpect::logReturn(__CLASS__, __METHOD__, $check ? 1 : -1);

Figure 5.17: Complex return statement after being rewritten by Insphpect

The first attempt to handle this wrapped everything from the return statement to the following

semicolon. However, there were still edge cases where this is not the case. For example a closure

123 Thomas Butler

as shown in figure 5.18.

return function($a, $b) {

 return $a+b;

};

Figure 5.18: Alternative complex return statement

Insphpect needs to rewrite this code to become as it is shown in figure 5.19.

return Insphpect::logReturn(__CLASS__, __METHOD__,function($a, $b) {

 return $a+b;

});

Figure 5.19: Alternative complex return statement after being rewritten on the fly

Rewriting code on the fly had to be done carefully and required a significant amount of testing on

various real projects before the error rate was low.

The top 20 PHP projects form Packagist were scanned during testing and none of them now

causes errors when rewriting the code, however there are likely still edge cases where re-writing

the code on the fly will not produce valid code.

5.4.2 Known limitations

The software is feature-complete however there is still room for improvement. The tool currently

lacks the following features:

Privacy. Anyone can see any code uploaded to the website if they know (or guess) the URL.

Automated fixes/Patch generation. This is partially implemented for two of the bad practices,

however it is not perfect and may result in invalid code. There is a notice on the site telling

users that the feature is experimental.

Thomas Butler 124

The tool cannot scan itself or any library it uses in the back-end. Because the tool runs

modified versions the code it has to load the classes into memory to run them. PHP does not

allow loading two classes with the same name so the tool cannot currently scan itself.

Future iterations could fix these issues and improve the tool, however it is in a state where it is

useful to general programmers so will be released with these limitations.

125 Thomas Butler

6. Evaluation

Thomas Butler 126

6.1 Introduction

In chapters 3 and 4, a metric, and tool which enables grading source code based on that metric,

were developed. This chapter outlines the techniques used to evaluate the metric and software

and presents the results of the evaluation.

6.2 Evaluation techniques used by other software metrics

During the literature review, the following existing software metrics were analysed. To evaluate

the metric that was developed for this research, the evaluation techniques used when these

metrics were created were looked at as inspiration for evaluation techniques.

MOOD (Abreu et al, 1995) introduces the metric but does not evaluate it. A later paper An

Evaluation of the MOOD Set of Object-Oriented Software Metrics (Harrison et al, 1998) by different

authors, provides a more robust evaluation of the metrics. This paper uses nine commercial pieces

of software to evaluate the metrics and compare them to other metrics such as total classes, total

methods and total attributes. The paper ends with the sentence " Without further empirical

validation, we cannot be sure that it is worth paying attention to these metrics." implying their

evaluation technique is inconclusive. They also note that "their utility will continue to be

questioned until a sufficient number of empirical validations have been performed at a systems

level to establish causal relationships between the metrics and external quality attributes of

systems, such as reliability,maintainability, testability, etc"

MOOSE (Chidamber et al, 2007) does not provide any kind of external validation or evaluation. The

paper outlines the metric and compares it to criteria supplied by Weyuker et al (1988). However,

(Chidamber et al, 2007) cites Cherniavsky et al (1991) which concludes "It is shown that a collection

of nine properties suggested by E.J. Weyuker is inadequate for determining the quality of a

software complexity measure". The MOOSE metrics are evaluated against these nine properties

but here is no other external evaluation and no evaluation on the suitability of the proposed

metrics or comparison to alternatives.

QMOOD (Bansiya et al, 1997). When this metric was presented, it was not externally validated at

all. As these metrics are purely statistical (e.g. number of classes) there is no scope for evaluation

in the context of disagreeing or agreeing with the results. The metrics are presented as-is without

any external validation of their usefulness. A later paper (Bansiya et al, 2002) does provide some

model validation. This validation only "Verifies quality attribute values are in valid ranges". There is

no external evaluation, survey or opinions on the suitability of the metric by anyone outside the

authors of the metric.

None of these metrics were externally validated or evaluated at the point they were introduced,

127 Thomas Butler

they are evaluated on their own merit with their own criteria.

An important distinction in metrics is noted by An Evaluation of the MOOD Set of Object-Oriented

Software Metrics (Harrison et al, 1998):

We also need to distinguish between internal attributes of a product or process (those

attributes which can be measured purely in terms of the product itself), and external

attributes of a product or process (those attributes which can only be measured with respect

to how the product or process relates to entities in its environment [1]). Managers are often

particularly interested in measuring external attributes such as reliability and

maintainability. However, OO software metrics are often based on internal (low-level)

attributes, under the assumption that they are related to external (high-level) attributes

By Harrison's definition, flexibility is an external attribute while the metrics such as QMOOD above

are measuring internal attributes. Evaluation techniques used for these internal attributes are may

not be useful when applied to external attributes such as flexibility.

6.2.1 Other academic approaches

Towards a Framework for Software Measurement Validation (Kitcchenham et al, 1995) provides an

overview of how to validate software measurements and notes that software metrics should

exhibit the following properties:

Be based on an explicitly defined model of the relationship between certain attributes (the1.

relationship between the internal and external properties)

be based on a dimensionally consistent model.2.

exhibit no unexpected discontinuities.3.

use units and scale types correctly.4.

The metric produced as part of this research can be tested against each of these criteria:

Be based on an explicitly defined model of the relationship between certain attributes

The created metric links the internal attributes (bad practices) to the external attribute (flexibility).

This is done explicitly using the severity rating of each bad practice. As such, the metric meets this

criteria.

Thomas Butler 128

be based on a dimensionally consistent model.

This is elaborated as:

For example, a cost model often uses size to predict effort. A feature of this type of model is

that the unit of the output variable is different from the unit of the input variable(s). Thus,

the model must include constants with appropriate units to convert between the different

units.

The produced metric, uses such constants in the form of severity ratings for each bad practice to

convert the input variables (size of the project, number of bad practices) into the output. The

metric fulfills this criteria.

exhibit no unexpected discontinuities.

Valid indirect measures should not exhibit unexpected discontinuities; that is, they should be

defined in all reasonable or expected situations.

The example given is where an input is zero where the metric generally expects a positive number.

The produced metric implicitly handles these cases as outputs can either be 100 or 0 depending

on whether bad practices were detected or not.

There is no way for the metric to produce a number outside of the range 0-100, therefore this

criteria is met.

use units and scale types correctly.

Kitcchenham et al (1995) defines units as measurable attributes and scale types as nominal,

ordinal, interval and ratios. An example given is categories such as "Major, Minor and Negligible".

How units are applied to these scales must be consistent.

Thus, in the context of nominal and ordinal scale measures where our measures are

mappings to arbitrary labels, we suggest a “unit” is needed to ensure that such measures

are used consistently.

The metric created maps bad practices / project size (a unit) to the scale output. The output on a

scale of 0-100 is an arbitrary label but it is based on a unit and the mapping is consistent.

Therefore, this criteria has been met.

The metric produced meets all of Kitcchenham et al (1995) criteria. Kitcchenham et al (1995) also

notes that to validate the mappings and scales that experiments such as "asking a random section

129 Thomas Butler

of individuals" is a meaningful method of validating the measurements.

To corroborate a measure, we can perform experiments to see whether people agree that an

attributes exists or whether a mapping to a value captures their understanding of the

attribute For example, if we want to know whether an entity exhibits a particular attribute

we can ask a random selection of individuals to classify a set of entities according to a set of

possible categories (for nominal scale measures) or to rank the set of entities with respect to

the attribute of interest.

To validate the scale produced, a selection of individuals can be asked whether their view of

flexibility matches the output of the metric.

6.3 Evaluation techniques for this project.

The following evaluation strategies were considered:

Comparing the results to other similar metrics (Like Harrison et al (1998))1.

Asking real developers to evaluate the flexibility of some software and comparing it to the2.

metric's results.

Having real users try the software and answer a questionnaire to see if they agreed with the3.

score and recommendations given (As suggested by Kitcchenham et al (1995)).

Strategies (1) and (3) were chosen and (2) was discounted.

6.4 Real developer evaluations

The software could have been evaluated by getting real developers to give their view of flexibility

of some existing software and grade it, then compare their grade to the results generated by the

metric.

This could potentially yield answers to questions such as "Is X more flexible than Y?" from both

developers and the metric that was developed.

This was discounted for the following reasons:

If using existing software, for a developer to accurately grade the flexibility of some code, it1.

would be significantly easier for programmers already familiar with the code they are

grading. This would introduce significant selection bias towards authors/users of the code

being analysed who may assume the software is flexible because they are used to using it,

even potentially used to working around flexibility issues the software has.

Thomas Butler 130

The question of "what makes code inflexible" was already answered earlier in this research2.

via meta-analysis, as such, developer opinions (100 per bad practice) have already been

identified and evaluation with real-users would need to cover this again.

For people unfamiliar with the software, it would require a significant time investment to3.

look through code and rate it.

Finding experienced developers to spend significant time grading software will be difficult4.

and likely result in a very small sample size as there is nothing in it for them other than

participating in the research.

Instead, blind trials could be performed on some sample projects created specifically for this

purpose. This would have introduced its own set of issues:

It would be very difficult to create sample projects that are representative of real world1.

projects. Real world projects can take months or years worth of development and different

projects by different authors have different programming styles which would be hard to

replicate. Creating realistic sample projects is not feasible.

Recruitment of respondents would be difficult as it would require a large time investment to2.

look through the code.

This would likely result in a tiny sample size, from which it would be difficult to infer any3.

meaningful conclusions.

As such, although this strategy may have the potential to be the most robust form of evaluation,

the limitations mentioned previously made it unfeasible and this evaluation strategy was not used.

As the less than 5 minute questionnaire eventually used only yielded 75 responses, the sample size

of people for this much more time consuming, and higher skill requirement, evaluation technique

would have been very small.

6.5 Compared to other metrics

Insphpect was used to grade 20 pieces of existing software. The same 20 pieces of software were

graded using other metrics for comparison.

This method was chosen as it's relatively easy and may yield interesting correlations. However, it is

131 Thomas Butler

noted that any correlation or lack of correlation may not give any meaningful insight as the

metrics will be grading the software in different ways. It may be that a good grade in one metric

always gives a good grade in another, if so, that would be a useful point for further research.

During the literature review 72 different static analysis tools were briefly reviewed. Most of these

were deemed irrelevant to the research as they did not analyse code for the same kind of issues

and most did not produce a grade.

Three metric based tools were found to grade software quality and produce an overall project

grade. However, between the literature review and evaluation Symfony Insights is now

commercial software and cannot be used without a paid license. As such, it was omitted from the

evaluation.

The following tools which provide an overall grade were used for evaluation:

Insphpect (this metric)

Scrutinizer-CI

SonarQube (Specifically SonarCloud)

Scrutinizer uses threshold based metrics and was reviewed in detail during the literature review.

SonarQube provides similar threshold based metrics but also has a "Maintainability" grade, which

is described as "SonarQube helps you find your Code Smells and understand what’s wrong. Then it

shows you how to fix the problem." (SonarQube, n.d.) which is very similar to Insphpect.

6.5.1 Methodology

Insphpect was already used to analyse the top 20 packages from packagist. These grades were

compared to SonarQube's and Scrutinizer-CI's scores for the same packages. The results were

plotted to look for correlation.

A sample size of 20 was used because Scrutinizer took 15-20 minutes for small projects and 20-25

minutes for larger projects. Gathering results for 20 projects already took a significant amount of

time.

This selection method was chosen as the top 20 packages are popular, of varying sizes and by

different authors. This acts as a randomisation technique that is biased towards the most popular

packages.

Each of the packages was then scanned with the three different tools to produce a grade.

Correlation between the grades, or lack thereof, may not be meaningful because the software

tools are all looking for different aspects of the software. However, if the tools all roughly agree it

Thomas Butler 132

would be a starting point for further research to understand why they agree and why there may

be correlation is between bad practices and aspects like code size.

Scrutinizer and Insphpect provide an overall project score to grade the quality of the software.

SonarQube provides four different metrics:

Reliability, detects bugs

Security, detects security issues

Maintainability, detects code maintenance issues

Duplications, detects duplicated code

The only metric which can be reasonably compared to Inpsphect is the Maintainability score. As

such, the others were omitted from the results.

Number of classes was also included in the results as a project's score may correlate with project

size. Tiny projects may be less likely to include issues in any tool due purely to probability.

6.5.2 Results

Figure 6.1: Results of each tool, Normalised

133 Thomas Butler

Figure 6.1 shows normalised results for each tool and the size of the project.

SonarQube graded all 20 projects as A while Scrutinizer and Insphpect showed variation in their

scores. This may be due to limited granularity using an A-F scale however, neither Scrutinizer or

Insphpect correlate with SonarQubue. Scrutinizer and Insphpect each gave three perfect scores. A

larger sample size may yield a wider variation from SonarQube but both Scrutinizer and Insphpect

grade one or more project in the 40-50% band which should be visible in an A-F scale.

It could be hypothesised that popular packages are more likely to be well written and get higher

scores. To test this, a further 20 projects were uploaded to SonarQube:

20 projects were chosen at random from packagist using the "random packages" page.

The packages were scanned 6 months after the initial tests in case the A grades given

previously were a temporary bug in the software at the time the results were gathered.

The 20 projects analysed by SonarQube were:

def-studio/dock

vyuldashev/monolog-loki

signifly/laravel-domain-commands

takeit/amp

vietanh/lform

snowcookie/generate-schema

singcl/php-mvc

wanghouting/lt-dev-tools

6phere/php-websocket

hschottm/contao-textwizard

memio/spec-gen

zzzcms/mysql-dispatch

armonia-tech/phalcon-migration

yuk1/job

joshuand1990/excel-helper

dakalab/birthday

b61/laravel-reportable

contaoblackforest/contao-calendar-tags-bundle

caaqil/instagram-api

m2demo/module-m2-extension

Thomas Butler 134

All 20 packages were also given an A grade for maintainability. It is not clear why this grade is A in

all 40 projects uploaded as no other score has been recorded. Regardless of the reason, the

outcome for this research is the same: The score from SonarQube is not relevant for the research.

In contrast, both Insphpect and Scrutinizer gave three perfect scores of 20 projects analysed.

Two of the three perfect scores given by Insphpect were on projects with only one class where any

issues related to coupling would be difficult to introduce, therefore several of the checks are

irrelevant.

Scrutinizer gave two of its three perfect scores to different projects to Insphpect so they disagree

on what gets a perfect score more than they agree.

This can be explained due to Scrutinizer's threshold. Scrutinizer gives poor grades to large classes,

as such any project with few classes but many lines will be graded poorly by Scrutinizer. On the

other hand, as Insphpect looks for bad practices, the size of the class is not taken into account.

6.5.3 Conclusions

None of the three result sets correlate with project size, at least when the project size is > 2

classes. Due to the way these tools work, small projects are less likely to contain issues and

therefore are more likely to get higher scores.

SonarQube gives the least meaningful results on this dataset with every project getting an A

grade. This makes comparisons difficult and usefulness to users limited. As the other two tools

show significant variance it is unclear if this is a bug in SonarQube at the time of

It is unclear if there is a correlation between Scrutinizer and Insphpect. There appears to be a

small correlation, but there are several libraries in which Scrutinizer and Insphpect strongly

disagree with each other. For example, Scrutinizer gives doctrine/inflector a 9.84 (out of 10)

while Insphpect grades it 45.77 (out of 100).

The Normalised Root Mean Square Deviation (NRMSD) is 19.42. Using NRMSD, the closer the

result is to zero, the higher predictability the model being tested has. For this comparison, a score

of zero would mean knowing an Insphpect score, you could always accurately predict the

corresponding Scrutinizer score.

At 19.424 this may indicate a minor correlation. Though the average difference between the scores

is 19.42.

135 Thomas Butler

Figure 6.2: Normalised Root Mean Square Deviation of Insphpect and Scrutinizer-CI

As shown in figure 6.2, plotting the RSMD may show a minor correlation but demonstrates the

significant outliers. A much larger sample size would be required to draw any meaningful

conclusions, however there is no conclusive correlation in the results collected.

6.6 Bad practice frequencies

After gathering results in section 6.5, the results from all 20 projects were analysed together to

identify which bad practices were detected most often.

Table 6.1 shows each tool analysed and the number of times each bad practice was identified.

Table 6.1: Frequency of bad practices

Thomas Butler 136

new in
constructor

annotations
for
configuration

global
variables

service
locator

static
methods

inheritance setter
injection

singleton

doctrine/lexer 0 0 0 0 0 0 0 0

sebastian/exporter 0 0 0 0 0 0 0 0

webmozart/assert 0 6 0 0 99 1 0 1

phpdocumentator/reflection-common 0 0 0 0 0 0 0 0

doctrine/instantiator 0 8 2 0 6 0 0 0

symfony/event-dispatcher 1 0 3 0 4 1 0 0

guzzlehttp/promises 1 6 1 0 27 3 0 0

sebastian/diff 1 2 1 0 1 3 0 0

symfony/process 2 0 5 0 5 8 0 1

symfony/finder 1 0 2 0 12 16 0 0

guzzlehttp/guzzle 4 0 8 1 90 9 0 0

phpdocumentor/type-resolver 2 16 0 0 0 7 0 0

phpdocumentor/reflection-docblock 3 0 25 0 32 0 1 1

myclabs/deep-copy 6 0 0 0 2 7 1 0

doctrine/inflector 0 0 0 0 26 4 0 1

symfony/translation 4 0 8 0 7 33 0 0

symfony/http-foundation 6 1 21 0 47 33 2 2

symfony/console 23 6 15 0 40 35 0 0

monolog/monolog 8 10 15 0 31 56 0 0

phpspec/prophecy 35 0 4 26 103 0 1

Total 97 55 110 1 455 319 4 7

The most commonly identified bad practice identified was static methods with inheritance in

second place.

It is observed, and expected, that different projects follow different programming styles and

contain different practices due to the authors chosen approaches.

These numbers alone do not give meaningful data as different projects are different sizes. Table

6.2 shows the same data weighted by class. Each cell is the number of occurrences divided by the

number of classes in the project, an average number occurrences per class within the project.

Class level practices such as inheritance will never score above one as inheritance cannot occur

more than once per class.

Table 6.2: Frequency of bad practices (average per class)

new in
constructor

annotations
for
configuration

global
variables

service
locator

static
methods

inheritance setter
injection

singleton

doctrine/lexer 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

sebastian/exporter 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

137 Thomas Butler

webmozart/assert 0.00 3.00 0.00 0.00 49.50 0.50 0.00 0.50

phpdocumentator/reflection-common 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

doctrine/instantiator 0.00 2.67 0.67 0.00 2.00 0.00 0.00 0.00

symfony/event-dispatcher 0.10 0.00 0.30 0.00 0.40 0.10 0.00 0.00

guzzlehttp/promises 0.08 0.46 0.08 0.00 2.08 0.23 0.00 0.00

sebastian/diff 0.08 0.15 0.08 0.00 0.08 0.23 0.00 0.00

symfony/process 0.13 0.00 0.33 0.00 0.33 0.53 0.00 0.07

symfony/finder 0.05 0.00 0.09 0.00 0.55 0.73 0.00 0.00

guzzlehttp/guzzle 0.13 0.00 0.25 0.03 2.81 0.28 0.00 0.00

phpdocumentor/type-resolver 0.06 0.50 0.00 0.00 0.00 0.22 0.00 0.00

phpdocumentor/reflection-docblock 0.08 0.00 0.69 0.00 0.89 0.00 0.03 0.03

myclabs/deep-copy 0.17 0.00 0.00 0.00 0.06 0.19 0.03 0.00

doctrine/inflector 0.00 0.00 0.00 0.00 0.67 0.10 0.00 0.03

symfony/translation 0.06 0.00 0.12 0.00 0.10 0.48 0.00 0.00

symfony/http-foundation 0.08 0.01 0.29 0.00 0.64 0.45 0.03 0.03

symfony/console 0.29 0.08 0.19 0.00 0.50 0.44 0.00 0.00

monolog/monolog 0.08 0.10 0.15 0.00 0.31 0.56 0.00 0.00

phpspec/prophecy 0.18 0.00 0.02 0.00 0.14 0.54 0.00 0.01

Table 6.2 shows how many times per class on average each bad practice appears in each project.

The most immediately surprising result is that webmozart/assert contains 49.5 static methods on

average per class, nearly twenty times as many as the next project, guzzlehttp/guzzle with 2.8. This

shows a very different coding style between webmozart/assert and the other projects.

A similar coding style trend can be seen with inheritance. On average across all projects, 27% of

classes use inheritance but this is over 40% in Symfony projects. symfony/finder uses inheritance

in 73% of its 22 classes.

Overall, static methods are by far the most common bad practice encountered in this data set. This

may be expected as static methods can occur more than once per class while inheritance cannot.

Figure 6.3 shows the mean frequency of each bad practice across all twenty projects.

Thomas Butler 138

Figure 6.3: Mean frequency of bad practices across all projects

The most frequently detected issue is static methods. The second most common issue is

Inheritance, followed by a much smaller occurrence of the other practices. Both static methods

and inheritance are very easy to implement and static methods can be used by those more

familiar with procedural programming to produce a procedural application in classes (Hevery,

2008).

Table 6.3 shows the the grade each project was given and the percentage of marks lost for each

practice in each project. Each cell contains the percentage of marks lost due to occurrences of

each practice. For example, webmozart/assert lost 8.33% from its grade due to using annotations.

Table 6.3: Which bad practice caused grade reductions

Score new in
constructor

annotations
for
configuration

global
variables

service
locator

static
methods

inheritance setter
injection

singleton

symfony/finder 58.78 2.27 0 0.31 0 11.36 27.27 0 0

monolog/monolog 66.93 3.63 1.18 3.62 0 3.17 20.36 0 0

phpspec/prophecy 69.04 6.59 0 0.73 0 1.48 18.48 0 0.27

symfony/process 66.77 5.88 0 0.46 0 4.39 18.82 0 2.94

webmozert/assert 55.28 0 8.33 0 0 26.07 10 0 0.25

symfony/translation 74.91 1.77 0 1.91 0 2.98 15.53 0 0

symfony/http-foundation 72.07 3.04 0.02 1.81 0 6.17 15.11 0.98 0.13

139 Thomas Butler

symfony/console 70.16 9.56 1.42 0.88 0 2.87 14.59 0 0

guzzlehttp/guzzle 67.97 4.12 0 1.04 3.72 15.75 9.23 0 0

guzzlehttp/promises 62.58 3.13 3.13 0.37 0 23.3 7.5 0 0

sebastian/diff 88.76 3.13 0 0.39 0 0.22 7.5 0 0

phpdocumentor/type-resolver 82.85 2.94 3.03 0 0 0 8.24 0 0

myclabs/deep-copy 86.67 2.56 0 0 0 2.32 8.2 0.24 0

doctrine/inflector 45.77 0 0 0 0 45.94 5.86 0 2.44

symfony/event-dispatcher 78.39 4.17 0 4.09 0 10.02 3.34 0 0

doctrine/lexer 100 0 0 0 0 0 0 0 0

sebastian/exporter 100 0 0 0 0 0 0 0 0

phpdocumentator/reflection-common 100 0 0 0 0 0 0 0 0

doctrine/instantiator 64.78 0 8.89 2.77 0 23.55 0 0 0

phpdocumentor/reflection-docblock 69.6 3.58 0 11.86 0 12.01 0 0.41 0.18

Total 54.1 26 29.94 3.72 180.24 162.76 1.63 6.21

The highest single reduction of marks is doctrine/inflector's 49.94% reduction in grade due to use

of static methods. Despite webmozart/assert having a much higher number of static methods, the

ratio of static methods to object methods is higher in doctrine/inflector, causing it a higher

reduction in grade as a higher proportion of methods throughout the project are static than not.

Overall, static methods caused the highest loss of marks with inheritance in second which is

unsurprising as static methods and inheritance are the most commonly detected bad practice in

this sample.

6.7 User evaluation

Insphpect.com was launched in March 2020 along with an anonymous questionnaire offered to

users of the site. The questionnaire is available as appendix VIII.

To attract a wide spectrum of PHP developers rather than just contacts of the author, the tool was

advertised in the following locations:

Reddit (Butler, 2020)

Hacker News (also known as ycombinator) (Butler, 2020)

PHP Today (Butler, 2020)

In addition to the author's website and facebook page which are both followed by a general

programming audience.

Initially the results were intended to be collected on the 1st June 2020. However, by this date,

despite over 400 projects having been analysed, only 63 people had completed the survey.

This was extended until the 1st August 2020 in an attempt to achieve a larger sample size.

The primary method for generating more responses was a guest post on Sitepoint.com, a popular

Thomas Butler 140

resource for web developers. As sitepoint have over 100,000 followers on both facebook and

twitter, this was an ideal place to advertise the tool to a wider audience and sitepoint.com

accepting the article demonstrates an interest from industry. The guest article, entitled How to

Ensure Flexible, Reusable PHP Code with Insphpect is available in appendix IX.

Despite sitepoint.com posting an article about Insphpect (Butler, 2020) which generated nearly

1,000 hits to the Insphpect website and 25 tweets (Twitter, 2020) about the project, this only

resulted in an additional 12 questionnaire responses, bringing the total to 75.

Although a larger sample size would have been preferred, the data collected is still valuable as

contains the opinions of real users of varying skill levels about the project.

A study by Macefield et al (2009) found that with a sample size of 20, 98.4% of usability issues were

detected. In a similar study, Faulkner et al (2003) found that with a sample size of 5 users, 55% of

usability issues were detected. By increasing the sample size to 20, 95+% of usability issues were

detected.

From these studies, it can be inferred that a sample size of 75 should be enough to identify close

to 100% of usability issues. However, as usability is not the only factor it cannot be inferred that 75

respondents are enough to answer questions about the suitability of the metric or accuracy of

grades given.

Although it is clear that as sample size increases, confidence in the answers also increases. It is not

clear what an optimal sample size for a study like this may be.

According to Riley et al (2020):

The sample size of the development dataset must be large enough to develop a prediction

model equation that is reliable when applied to new individuals in the target population.

What constitutes an adequately large sample size for model development is, however,

unclear.

Though Riley is discussing sample sizes in the context of clinical studies, not software evaluation,

the concept of a prediction model may be beneficial here. If there is a clear trend in the results

then the sample size may be considered accurate. Outliers are always to be expected, but if the

majority of respondents agree with each other, this helps validate the results.

For example, if a question with answers Strongly Disagree - Strongly Agree had the same or similar

number of responses for each answer there would be no predictability. Whereas, if 95% of

answers were in the same answer, for example, 95% of respondents selected Strongly disagree it

would be possible to predict that the next respondent is much more likely to respond Strongly

141 Thomas Butler

Disagree rather than any of the other options.

If the 75 respondents produce results with predictability, then 75 can be considered an adequate

sample size for this research.

6.7.1 Results

The data for users who completed the questionnaire are summarised below. Raw data for the

results is available in appendix VIII.

All questions were optional and several were multiple choice (multiple choice questions are noted

on the respective charts).

Question 1. How would you describe yourself as a programmer?

Figure 6.4: Question 1. How would you describe yourself as a programmer?

This question was asked so that the data could be broken down by programming ability. Experts

should find the tool useful for different reasons than novices. The majority of respondents were

Thomas Butler 142

senior developers. Due to the locations the website was advertised, this is unsurprising and senior

developers are the most important for judging the usefulness of the results and metric.

Predictability is not a factor for this question as personal information is being asked rather than

their opinion on the research.

Most respondents are senior developers. This is beneficial for later questions as senior developer

opinions on whether they agree with the grade are more meaningful than that of novices.

Question 2. Which languages do write Object-Oriented code in regularly? Please tick all that apply.

Figure 6.5: Question 2. Which languages do write Object-Oriented code in regularly? Please tick all

that apply.

This question was asked so that results can later be broken down by languages used. For example,

do Java developers have different opinions on the results than PHP developers?

As the tool being evaluated grades PHP code, and the tool was advertised primarily on PHP

143 Thomas Butler

focused programming websites, it's unsurprising that the majority of respondents chose PHP.

Predictability is not a factor for this question as personal information is being asked rather than

their opinion on the research.

Question 3. Do you use code reviews as part of your workflow?

Figure 6.6: Question 3. Do you use code reviews as part of your workflow?

This question was asked so that results can later be broken down by those who currently use code

reviews and those who do not. As the metric is an automated code review, it is anticipated that

those who use code reviews will find the results more useful than those who do not.

Thomas Butler 144

Predictability is not a factor for this question as personal information is being asked rather than

their opinion on the research.

Question 4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc?

Figure 6.7: Question 4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc?

This question was asked so that results can be broken down by those who currently use similar

tools.

Predictability is not a factor for this question as personal information is being asked rather than

their opinion on the research.

Question 5. During code reviews, or when writing your own code, do you look for any of the

following? Please tick all that apply.

145 Thomas Butler

Figure 6.8: During code reviews, or when writing your own code, do you look for any of the

following? Please tick all that apply.

This question was asked to see if respondents look for flexibility during code reviews so that the

opinions of those who currently look for flexibility can be isolated.

Predictability is not a factor for this question as personal information is being asked rather than

their opinion on the research.

Question 6. Are you familiar with any of the following Object-Oriented best practices? Please tick

all that apply

Thomas Butler 146

Figure 6.9: Question 6. Are you familiar with any of the following Object-Oriented best practices?

Please tick all that apply.

This question was asked to to determine which best practices developers are familiar with. This

was included so that respondents could be filtered by whether they follow OOP best practices or

not.

Most respondents are familiar with Encapsulation with less than half familiar with Law of Demeter.

As an understanding of these concepts is a requirement for understanding why bad practices

(which go against these best practices) it is useful to know whether respondents are familiar with

best practices rather than bad practices.

This is a secondary assessment of ability in addition question 1.

Predictability is not a factor for this question as personal information is being asked rather than

their opinion on the research.

Question 7. Do you try to follow Object-Oriented best-practices when developing software?

147 Thomas Butler

Figure 6.10: Question 7. Do you try to follow Object-Oriented best-practices when developing

software?

This question was asked to determine whether respondents actively follow object-oriented best

practices. Those who do not are unlikely to find the metric useful.

It is predicted that those who answer never or rarely to this question will rate the usefulness of the

metric lower (Questions 13, 14 and 15)

Question 8. Do you actively try to avoid programming practices which go against best practice

principles? (For example, do you actively avoid global variables and singletons)

Thomas Butler 148

Figure 6.11: Question 8. Do you actively try to avoid programming practices which go against best

practice principles? For example, do you actively avoid global variables and singletons

This question was asked to see whether programmers try to follow best practices or not. 35 of 75

respondents answered answered "always" indicating that nearly half try to follow best practices all

the time.

Among the 31 senior developers, all of them chose either "Always" (25) or "Often" (6) indicating

that senior developers keep best practices in mind during development moreso that novices and

students, which is unsurprising.

Question 9. Which, if any, programming practices do you actively avoid using (tick all that apply,

ignore any you are unfamiliar with)

149 Thomas Butler

Figure 6.12: Which, if any, programming practices do you actively avoid using tick all that apply,

ignore any you are unfamiliar with

This question was asked to see which practices developers avoid, to infer which they consider "bad

practice".

This list includes known best practices composition, dependency injection and constructor

injection.

Of the 3 people who said they avoid dependency injection, one classed themselves as a senior

developer, one as a student and one as an open source developer. This goes against common best

practices (as shown in the meta-analysis in chapter 3)

In addition to saying they avoid Dependency Injection, the senior developer and open source also

said that they avoid global variables indicating that they did not misunderstand the question and

assume it was asking which practices they use.

The student did not say they avoid global variables but they do avoid static variables. This is

inconsistent, but as they are a student it is not expected they will be as nuanced as the other two

who rate themselves as more experienced.

This shows there is some genuine disagreement from a senior developer. This is to be expected as

not everyone will agree on everything. In chapter 3 it was shown that once academic rigour was

Thomas Butler 150

taken into account, these disagreements are filtered out.

30 of the 31 (96%) of senior developers surveyed did not say that they avoid dependency injection

implying that they do not consider it a bad practice.

Question 10. Do you have any comments on the background research of this project (If you didn’t

read the background research, please enter N/A, if you read it but have no comments, please

leave blank)

There are a few (very few) valid uses for the Singleton, but most of the time it is an anti-

pattern.

Inheritance is has even more valid uses, and judging when to use it or not use it is probably

extremely difficult to judge in a tool like this.

You should make the raw data available so we can see the "good" and "bad" articles

Found the background research really interesting as like you mentioned best practice can be

very much open to interpretation! Was a really insightful read

I believe it is a nice tool which helps improve best practices

I feel the background research was very interesting to read. It is always nice to come up with

tools that are not available out there. I believe this tool is great and I would like to use it in

the future.

Reviewing code and finding weakness is a good idea. We do this all the time however a large

body of professional programmers really don't take the sort of care you may think over

code. There are a lot of "paycheque programmers" just churning out mediocrity, what is also

an issue is that people blindly follow tools that tell them things are a bad idea. Granted a lot

of the things discussed here are bad news, ServiceLocator etc I particularly detest setter

injection. The reality is often software engineers are following the JFDI process their boss has

laid out and are really thinking about their next craft beer than software process.

The feedback is very informative but I feel like having a huge piece of text and examples

opening when clicking a line is a bit jarring. Maybe these should be short examples and link

off to external articles that are more detailed. Also it would be great for CI purposes if this

was a Composer package that people could use to maybe automatically add GitHub

comments or something along those lines? Just some ideas. Great project

151 Thomas Butler

This question was free-text and asked to get opinions on the background research. Several

answers were about the tool in general but overall the opinion of the background research was

positive.

Question 11. The insphpect site is intuitive and easy to use

Figure 6.13: Question 11. The insphpect site is intuitive and easy to use

This question was asked to inquire about the usability of the website. Nobody responded "Strongly

disagree", one respondent selected "Disagree" and the majority, 43 (57%) selected "Strongly

Agree".

Question 12. How much do you agree with the statement: "Overall, the suggestions made by

Insphpect are helpful"?

Thomas Butler 152

Figure 6.14: Question 12. How much do you agree with the statement:"Overall, the suggestions

made by Insphpect are helpful"?

Question 13. Do you agree with the recommendations made by Insphpect?

Figure 6.15: Question 13. Do you agree with the recommendations made by Insphpect?

153 Thomas Butler

This is one of the most important questions asked in the survey. This is to determine respondent's

opinions of the metric and identification of bad practices.

The majority agree or strongly agree, this question will be broken down by programming ability in

the following section.

Question 14. How much do you agree with the following statement: "The explanations of why

identified bad practices should be avoided are clear and helpful."

Figure 6.16: Question 14. How much do you agree with the following statement: "The

explanations of why identified bad practices should be avoided are clear and helpful."

Question 15. How much do you agree with the following statement: "The grade given is a fair

evaluation of the flexibiltiy of the code analysed."

Thomas Butler 154

Figure 6.17: Question 15. How much do you agree with the following statement: "The grade given

is a fair evaluation of the flexibiltiy of the code analysed."

This question was asked to determine people's opinion of the grade. As this grade is a calculated

attribute with the scale chosen to provide a wide range of grades it is important to know if people

thought the grade given was fair.

68 (90%) of agreed or strongly agreed with the grade given. 0 strongly disagreed and 5 (6.6%)

disagreed with the grade.

Of the 5 who disagreed, 1 was a student and 4 were senior developers. Only three of them left

comments on why they disagree:

wouldn't consider it as something that is missing, but possibly a cut-down version of the

explanation. A summary of the issue without too going in-depth with the explanation

The feedback is very informative but I feel like having a huge piece of text and examples

opening when clicking a line is a bit jarring. Maybe these should be short examples and link

off to external articles that are more detailed. Also it would be great for CI purposes if this

was a Composer package that people could use to maybe automatically add GitHub

comments or something along those lines? Just some ideas. Great project!

As a tool designed specifically for inspecting PHP code, I would recommend disregarding

155 Thomas Butler

Inheritance issues when the class in question extends one of the built-in Exception classes, as

there is no other way in the language to throw custom exceptions.

And for a more opinionated suggestion, you may want to add an option to disregard

Inheritance issues when the class in question extends an abstract class. (An option for

advanced users, as opposed to by default, because it should still be discouraged in general.)

Those two changes alone should take care of the overwhelming majority of false positives in

the inspection I ran.

While two also offered positive comments:

Good tool, keep up the good work

I think it's a great idea and I would love to see a similar tool for other languages that would

apply more to what I use

Question 16. How much do you agree with the following statement: "I would like to see a similar

tool built for other programming languages."

Figure 6.18: Question 16. How much do you agree with the following statement: "I would like to

see a similar tool built for other programming languages."

Thomas Butler 156

Question 17. Is there anything you think is missing from Insphpect which should be included in a

future update?

This was a free-text question to allow respondents to provide more detailed opinions. A selection

of answers are included below. The raw data is available in appendix X.

As a tool designed specifically for inspecting PHP code, I would recommend disregarding

Inheritance issues when the class in question extends one of the built-in Exception classes, as

there is no other way in the language to throw custom exceptions.

And for a more opinionated suggestion, you may want to add an option to disregard

Inheritance issues when the class in question extends an abstract class. (An option for

advanced users, as opposed to by default, because it should still be discouraged in general.)

Those two changes alone should take care of the overwhelming majority of false positives in

the inspection I ran.

I think the information given about an error is too much. 1 easier back and forth navigation

when navigating between analyzed files

I think, as a testing tool, that I think is valuable to good code quality - it should be possible

to create an adapter that promotes Test-Driven Development and Behaviour-Driven Design.

This would really provide for a cool feature to base a Code Review Service and so on and so

forth.

The responsive mode is not good.

Flexibility is so important, (Composition over Inheritance) I add it in my best practices list!

Thanks a lot for you work, future PhD!

I'd like to be able to run it locally rather than trusting a site with my private code

It would be nice to customise the rules, so certain practices which the tool may consider bad

could be ignored for a project that needs to use that practice for a valid reason. A tool I use

called Sonar for C# has a concept of “Ways” which would be similar.

Having less information when first clicking on the issue with an option to read-more? e.g.

just display the summary, then have another button to expand the data.

157 Thomas Butler

I'd like to see it handle inheritance differently. There are some cases where PHP forces you to

use inheritance (e.g. extending InvalidArgumentException) and it's flagged up as bad as

extending one of your own classes. The explanation popup should at least mention this or

grade the code differently when extending an inbuilt class. Another example is PDO.

Sometimes it's useful to add functionality to it and the only way that can currently be

achieved is with inheritance, if you wrap it you can't then pass it into code that expects a

\PDO instance so any code which does this is going to lose points for doing something

unavoidable even if it does technically introduce tight coupling.

I wouldn't consider it as something that is missing, but possibly a cut-down version of the

explanation. A summary of the issue without too going in-depth with the explanation

For tooling like this to be valuable, it should be able to be run in an automated fashion from

the CLI, for inclusion in build processes.

Can't run locally. It's fine for testing some toy project or open source library, but I can't

possibly use it at work like this.

I'd like to be able to analyse a private repository and keep the reports behind a login system.

It looks like all code uploaded is available on public URIs which prevents me from uploading

code I write for work.

Overall, the responses are positive. There are some common complaints:

Being able to run the tool locally, rather than on a website.

Responsive mode (viewing the website on a mobile phone)

Cutting down the text into a summary/full text

These have been noted and are important features to add going forward.

One respondent said "Tools for other languages that do this do exist." but did not elaborate on

what those tools are and they were not discovered during literature review. It's unclear if the

respondent meant specifically grading code by identifying bad practices, or tools that grade code

more generally.

Question 18. Do you have any general comments about Insphpect? This question is free-text and

asked to get general feedback about the tool and metric. A selection of answers are included

below, the complete raw data with all responses is available in appendix X.

I think it should be available in an offline version. I'm reluctant in uploading private code on

the web

Thomas Butler 158

I am hoping the tool is easy to integrate with given it has things like GuzzleHttp port and

that of Symfony Routing

The site doesn't work well on mobile

An interesting and cool tool and proof of concept. The website design is perhaps not really

what I would have gone with but it's certainly quirky and the animation give it an interactive

and fun feel. The background on the project is really interesting as is the methods used to

assess programming best/worst practices. Great name too!

Would love to see this tool developed into a plugin for common IDE's and editors and

become available for other languages. 1 It looks fabulous and it is very simple and easy to

use. I can quickly see where there are issues in what files and how to improve it

PHP requires thrown objects to be a subclass of Exception so perhaps it should not complain

about that.

A very useful tool. One possible concern with making code as generalised as possible is it

could potentially lead to new developers to a project taking a bit longer to get up to speed.

A proactive tool, helpful for every user, independently of their experience in programming.

Well done.

I've been following your work for years and learnt a lot. This is a clever progression from

what you've been doing previously. Great job!

I use Scrutinizer regularly and find it to be helpful but rather dumb. As you point out, there

are thresholds for grades which seem to have been chosen at random. I like Insphpect's

approach of identifying antipatterns a lot more as it has a more solid foundation for the

grades given.

Good tool, keep up the good work

Would love to have a command line version to add to my tooling, along with phpstan,

phpmd, phpunit, phpmd, etc. :-)

The "What is tight coupling" page is the best concise explanation I've seen, will be adding

that to the list of reading materials sent to all new developers who join the company.

159 Thomas Butler

Totally not agree with annotations and red warning about inheritance. Modern

programming will always depend on some other library; it is not enough just to implement

interface.

Since you are unable to run it locally (or on servers you control) it is not possible to run it on

any client work, due to restrictions in the contract about who you can give access of the code

to. In other words, as it is, it can really only be utilized for open source projects.

Nice tool, I'll definitely be using this on my projects moving forward.

The concept is really interesting. I'd be really interested to see how this impacts the quality of

code in the future if it is something budding coders are introduced to early on in their

learning.

On the couple of repositories I looked at there were definitely a few debatable red lines. For

example, private static, sure it does introduce global but it's unlikely to cause any real world

issues as the scope for damage is limited to the class it's used in and you'd hope that static

was used for a good reason

Even if you still identify it as introducing global state, public static and private static should

not be treated the same way.

The responses are generally positive, with most of the complaints being the same as above

(wanting to run the tool locally amd responsive mode improvements). There were several

disagreements with some of the issues picked up with some edge-cases that may warrant more

investigation. However, comments such as:

And yes, it introduces tight coupling but some things are just primitive enough or specific

enough it is not worth decoupling them.

Such comments miss the purpose of the tool and metric. The metric detects inflexible code such as

tight coupling, it does not attempt make a decision whether the additional flexibility is "worth it" as

doing so would be difficult or even impossible to quantify.

6.7.2 Conclusions

Overall the results are positive with 75% of respondents agreeing or strongly agreeing with the

Thomas Butler 160

statement "Do you agree with the recommendations made by Insphpect" with just 8% disagreeing

and 0% strongly disagreeing.

Breaking down the results by programming ability (figure 6.19), with users who described

themselves as "Professional: Senior Developer" the results are very similar to the overall result set

though 12% disagreed with the recommendations given and none strongly disagreed

Figure 6.19: Question 13. Do you agree with the recommendations made by Insphpect? Senior

Developers Only

Senior Developers also generally agreed with the grade given as shown in figure 6.19:

161 Thomas Butler

Figure 6.20: How much do you agree with the following statement: "The grade given is a fair

evaluation of the flexibiltiy of the code analysed." Senior Developers Only

Breaking the Senior Developers down further to those who answered "Yes" to "Do you use code

reviews as part of your workflow?" gives a similar result, however a higher percentage chose

"Strongly Agree" rather than "Agree".

Thomas Butler 162

Figure 6.21: Question 13. Do you agree with the recommendations made by Insphpect? Senior

Developers who use code reviews

At the other end of the spectrum those who described themselves as students or novices,

overwhelmingly found the recommendations made by Insphpect helpful.

Figure 6.22: Question 12. How much do you agree with the statement: "Overall, the suggestions

made by Insphpect are helpful"? Students and Novices only

163 Thomas Butler

Figure 6.23: Question 14. How much do you agree with the following statement: "The

explanations of why identified bad practices should be avoided are clear and helpful." Students

and Novices only

Shown in figure 6.23, novices and students overwhelmingly found the explanations of bad

practices helpful.

6.7.3 User comments

Comments from users were mostly positive with a few common complaints.

The primary complaint was that the tool could not be run locally and had to be used as a website

with 6 respondents (8%) asking for this feature. The second biggest complaint was that the site is

not optimised well for mobile phones (5% of respondents).

An offline version could be provided in future and site redesigned to be more mobile friendly.

These are valuable feature requests, however these they do not impact the evaluation of the

metric or research project.

On the metric itself, several users had concerns about specific recommendations made by the tool

and identified edge cases where it might need tweaking. For example:

On the couple of repositories I looked at there were definitely a few debatable red lines. For

example, private static, sure it does introduce global but it's unlikely to cause any real world

Thomas Butler 164

issues as the scope for damage is limited to the class it's used in and you'd hope that static

was used for a good reason.

Even if you still identify it as introducing global state, public static and private static should

not be treated the same way.

PHP requires thrown objects to be a subclass of Exception so perhaps it should not complain

about that.

These are valid concerns and could be handled differently in future versions of the metric/tool by

treating these differently to other cases of these bad practices. However, there is a trade-off

between trying to provide a general purpose metric which produces consistent results and

catering to language-specific exceptions.

By enabling users to turn on/off or tweak specific identification rules the metric is less meaningful

because the overall score would not always be based on the same rule-set for each project. The

only way to have a meaningful score would be to scan multiple projects with the same rule-set.

Conclusion

There are some areas for improvement but overall the project feedback has been positive. The

negative feedback is generally about the interface and usability of the tool rather than

reservations about the grade or the general issues identified.

6.8 Project outputs

The following outputs have been produced as a result of this project

An aggregation of bad practices which impact code flexibility. This was published in a paper1.

presented at the China-Europe International Symposium on Software Engineering Education

conference in 2017 (Butler, 2017) (Appendix V)

A metric was produced for grading the academic rigor of an article discussing a2.

programming practice, based on a methodology used for grading clinical trials in medicine.

A methodology for conducting a meta-analysis was created using the academic rigor grade.3.

This methodology was presented in a paper at the Proceedings of the 2019 Computing

Conference (Butler, 2019) (Appendix VII).

165 Thomas Butler

Meta-analyses were produced for each of the identified bad practices to show what4.

developers thought of the practice.

A metric was created for measuring the flexibility of Object-Oriented code by identifying bad5.

practices.

A tool was created to analyse PHP projects and grade their flexibility using the metric.6.

An article was published on industry website sitepoint.com introducing the tool and the7.

metric (Appendix IX).

The tool was extended to offer automated corrections in some cases.8.

6.9 Project strengths

This project achieves what it set out to do, a metric has been created which can be used to grade

the flexibility of source code by identifying programming practices which negatively impact

flexibility.

The objectives set out at the start of the project were all met and a tool has been published which

allows users to test the metric on their own code.

In addition, during the project a methodology was created for performing a meta-analysis on

programming articles.

The additional objective has been shown to be possible on one of the bad practices and the tool is

able to provide automated corrections in some cases. It is even able to generate a patch which can

be applied to the code.

The partial completion of this additional objective shows that automated fixes are possible and

future work will be carried out performing the same task on the remaining bad practices. This is a

feature which has not been implemented on this scale before in other metrics. Scrutnizer and

similar tools can automatically remove unused variables and fix typos, but they cannot re-

structure the architecture of the application to automatically replace tight coupling with loose

coupling.

Thomas Butler 166

6.10 Project weaknesses

The primary issue with the evaluation is the sample size. The results would have a lot more weight

if more people had completed the survey. However, as the survey was left open for another two

months and advertised on a very popular website, it is not clear how this could have been

achieved.

A different programming language may have yielded more results. Python and Java tools might

have garnered more interest. However, as the PHP version of the tool took over 6 months of

development time, additional tools for other languages would not have been feasible, though

could have been chosen up front as the primary language to use.

Secondly, it would have been useful to log where survey respondents came from. Although this

data is logged and it is possible to see how many visitors the site got from various sources (with

the standard caveat that this information is not 100% accurate), it would have been beneficial to

have logged this along with the survey response. For example, to see if people coming from

Google gave different answers than people coming from Reddit.

Though with the relatively small sample size acquired, breaking data down this way may not have

been meaningful as the sample size from each website would be very small.

6.11 Research relevance and use-cases

It is envisaged that the tool and metric could be used for the following cases:

As a learning tool. Novices and junior developers can upload their code and see explanations1.

of where improvements can be made and learn why the practice has been flagged up and

what they should be doing instead.

As a part of a business quotation. The initial idea for this research came from real-world2.

experience. Programmers often inherit projects or are asked to work on code that was

previously written by someone else or build using third party libraries. Often they are

expected to give quotes for how much a new feature will cost. Doing so requires a lot of up-

front work looking through the code to see what is needed to make the required updates.

Depending on how the software was written will determine how much the changes will cost

or even whether the developer wishes to take on the job. The tool created can be used to

give an overview of how flexible inherited code is or is not.

As a code-review tool in companies. It is common that code written by junior developers is3.

167 Thomas Butler

reviewed by senior developers before being committed to the project. This can be a long

back and forth with several revisions before the code is finally committed. The metric and

tool could be used as initial step, saving the code reviewer time filtering out bad practices

and enable them to spend more time reviewing the logic.

As a continuous-integration tool. Although the tool is not currently capable of automatically4.

scanning source code when new commits are added, if this was introduced in a later version,

the metric could be employed as part of a continuous-integration work-flow, checking that

no inflexibility has been added to the code each time someone commits a change.

6.12 Future improvements and limitations

Each chapter in the research has scope for further research and contains its own limitations.

6.11.1 Future improvements/Limitations - Chapter 2 - Aggregation

Chapter 2 collated information about each bad practice and described it. Currently the data

gathered is used for this research only. The JSON file format developed and the data stored using

it could be made public so that others could describe other programming bad practices in this

manner or embed the data in their own research/tools/software.

The documentation format could also be extended to documenting programming best practices

by noting positive traits instead of negative traits.

Additional bad practices could be documented. One such bad practice which was identified later in

the research is mutability. A (fairly) recent programming trend in object-oriented programming is

making objects immutable. This has numerous advantages when it comes to flexibility and would

be useful to be added to the list and the metric.

6.12.2 Future improvements/Limitations - Chapter 3 - Meta-analysis

Chapter 3 introduced a meta-analysis methodology for comparing articles about any given bad

practice.

In addition to performing the meta-analyis on additional bad practices, this methodology could be

utilised for performing meta-analyses of programming practices outside the scope of flexibility, for

example, security.

For extended scope meta-analyses it would be possible to extend the methodology by defining a

custom Jadad-style score and recommendation score. For example, performing a similar meta-

Thomas Butler 168

analysis for software performance the recommendation score could be based on benchmarks in

the article while the Jadad-style score could be adjusted to measure the rigour of the study by

asking questions such as Did the article provide the hardware being benchmarked on?, Did the article

provide the software environment variables (e.g. php.ini settings)?, etc.

A very useful piece of future research would be to run the same meta-analyses at intervals such as

each year over a 5-10 year period. This would track developer opinions over time and it would be

possible to see if developers attitudes change as time goes on. A similar study could be done with

the existing data by breaking articles down by publish date.

6.12.3 Future improvements/Limitations - Chapter 4 - Metric

Chapter 4 introduced the metric for grading software based on the frequency of bad practices it

contained.

The metric itself is already extensible, it would be easy to add additional bad practices and

incorporate them into the grade generated. However, doing so would invalidate all previous

grades. As such, a versioning system could be introduced to identify which revision of the metric

was used to calculate a particular grade.

6.12.4 Future improvements/Limitations - Chapter 5 - Tool

In chapter 5, a tool was developed which enabled other people to test the metric for themselves

by uploading some code to be analysed.

User feedback provided several areas where improvements are needed. Most of these are

cosmetic or usability issues:

Better usability on mobile phones. This is an area which requires a significant amount of work1.

to improve as code is generally written with the intention of being displayed on desktop

computers. The pages which do not display source code could be re-designed to work better

on mobile phones, however.

Summarise the issues. This was noted by several respondents of the questionnaire. The large2.

block of text detailing the issue is not as user friendly as a summary with an option to

expand.

Allow the tool to be run locally. This was the number one suggestion and the easiest to3.

implement in future. As the entire site runs in docker, it can easily be packaged and

169 Thomas Butler

distributed. In addition, as the front-end and back-end are entirely decoupled and

communicate only via a very simple JSON API, it would be simple to make a command line

application. Doing so would give users access to the code, potentially causing security issues

on the live website.

Additional suggestions by respondents such as omitting language specific bad practices which are

forced by the language would require a potential redesign of the metric. An example given by a

survey respondent is in PHP programmers are forced to extend the built-in Extension class. As

this is forced by the language, should the project lose marks for doing so if there is no other way

to achieve this functionality?

This would require further research and analysis of what should/should not be included in the

results for each language. Currently, the tool is designed so that it can be built the same way in

other languages and there are pros/cons which would need to be researched by becoming

opinionated on a per-language basis.

Other potential future work involves improving the performance of the tool. Although no users

complained about the speed in the survey, work could be done to improve the performance of the

code which scans the source code uploaded. During development one issue that caused some

projects to be scanned twice was notice and fixed (thereby doubling the time it took to analyse

them) but no work has actively been done profiling the code or looking for other bottlenecks.

There are no doubt many ways performance of the tool could be improved.

The tool currently makes no effort to utilise multi-threading when analysing a project and is

therefore limited by the CPU speed of a single core of the server on which it is running.

Currently most projects are analysed in under a minute, which is deemed reasonable by the

developer, however there is room to improve the performance of the tool so that users are not

waiting as long for results. For comparison, Scrutinizer takes 10-15 minutes to analyse a small

project.

In addition, the tool is running on a medium specification VPS with 8 cores. If the tool became

more popular, a queuing system would need to be introduced as only 8 projects can reasonably be

analysed at once before performance suffers.

Finally, the tool currently produces a patch to automate fixes of two of the bad practices. This is

proof-of-concept and in some cases the patch may not be complete. This is something which

requires further work and automated fixes for the remaining bad practices need to be introduced.

Thomas Butler 170

6.12.5 Future improvements/Limitations - Chapter 6 - Evaluation

Section 6.5 which compares the metric produced as part of this research to other metrics could be

extended in several ways:

A larger sample size of software for the comparison to other metrics. Rather than 201.

projects, 100 or more could be analaysed. SonarQube graded all 20 projects as A, with a

larger sample size, projects may be graded in a larger range. The primary reason for this

moderately sized sample is the 15-20 minutes each project took to scan using Scrutinizer.

Increasing the sample size to 100 would require around 24 hours of time spend waiting for

Scrutinizer to generate results.

Using different tools for other languages. The reason this is currently not possible is that the2.

tool currently only supports PHP. Before this kind of evaluation can be completed, the metric

will need to be implemented for additional languages.

The user evaluation in section 6.7 could be expanded and altered for different target3.

audiences. It is noted, however, that gathering respondents was difficult and finding a

meaningful number of respondents in each target audience may be challenging. Doing so

would enable assessing the metric and tool as a learning tool in comparison to a business

tool and determine which of the use-cases it is most useful.

Further results could be gathered by performing an additional user evaluation where users4.

compare Insphpect's results to other tools. Ideally this could be done blindly by showing

them, for example, Scruitnizer-CI's report and Insphpect's report and asking them which

they prefer, which they believe more accurately reflects the quality and flexibility of the code

that has been analysed. Additional feedback could be gathered on which aspects of each tool

users find useful. This feedback could then be used to refine Insphpect and make it even

more useful to users.

This type of comparative evaluation would provide useful feedback for further development of the

tool and metric

6.13 Chapter review

This chapter outlined potential evaluation techniques and explained why the chosen methods

were used. It includes data obtained from 75 real users and their feedback.

171 Thomas Butler

Overall user feedback was positive and the tool and metric were both useful to users of the

website.

Thomas Butler 172

173 Thomas Butler

7. References

Abreu, F. (1995) The MOOD Metrics Set. ECOOP'95 Workshop on Metrics .

Adobe, A. (2013a) OOP 101 Advice (please) [online]. Available from:

https://forums.adobe.com/thread/1304387?start=0&tstart=0 [Accessed 7th January 2016]

Ahuja, K. (2015) Are Annotations Bad? [online]. Available from:

https://dzone.com/articles/are-annotations-bad [Accessed 6th July 2016]

Aldrich, J. (2004) Selective Open Recursion: A Solution to the Fragile Base Class Problem. Carnegie

Mellon University .

Alipour, G., Sangar, A., Mogaddam, M. (2016) ASPECT ORIENTED IMPLEMENTATION OF DESIGN

PATTERNS USING METADATA. Journal of Fundamental and Applied Sciences 57, pp.66-75.

Analyis Tools, A. (n.d.) Analysis Tools [online]. Available from: https://analysis-tools.dev/ [Accessed

20th May 2021]

Arendsen, A. (2007) Setter injection versus constructor injection and the use of @Required [online].

Available from:

http://spring.io/blog/2007/07/11/setter-injection-versus-constructor-injection-and-the-use-of-requi

red/ [Accessed 28th December 2015]

Albert, A. (2013) Why should we use dependency injection? [online]. Available from:

http://www.javacreed.com/why-should-we-use-dependency-injection/ [Accessed 1st May 2018]

Atwood, J. (2007) Rethinking Design Patterns [online]. Available from:

https://blog.codinghorror.com/rethinking-design-patterns/ [Accessed 22nd August 2016]

Badu, K. (2008) What's so evil about Singleton? [online]. Available from:

http://www.sitepoint.com/forums/showthread.php?530917-What-s-so-evil-about-Singleton

[Accessed 7th January 2016]

Bansiya, J., Davis, C. (1997) Automated metrics and object-oriented development. Dr. Dobb's

Journal; San Mateo 22, pp.42-48.

Bansiya, J., Davis, C. (2002) A hierarchical model for object-oriented design quality assessment. IEEE

Transactions on software engineering 28, pp.4-17.

Bell, J. (2013) PHP Annotations Are a Horrible Idea [online]. Available from:

http://theunraveler.com/blog/2012/php-annotations-are-a-horrible-idea [Accessed 6th July 2016]

Thomas Butler 174

Benharosh, J. (2015) The singleton pattern in PHP [online]. Available from:

http://phpenthusiast.com/blog/the-singleton-design-pattern-in-php [Accessed 2nd August 2016]

Bergmann, S. (2013) de-legacy-fy [online]. Available from:

https://github.com/sebastianbergmann/de-legacy-fy [Accessed 2nd August 2016]

Biberstein, M., Sreedhar, V., Zaks, A. (2002a) A Case For Sealing Classes In Java. IBM Research .

Bloch, J. (2008) Effective Java: Second Edition ISBN: 978-0321356680. Addison-Wesley.

Bracha, G. (2007) Constructors Considered Harmful [online]. Available from:

https://gbracha.blogspot.co.uk/2007/06/constructors-considered-harmful.html [Accessed 2nd

August 2016]

Brandsma, C. (2009) Observations on the 'if' statement [online]. Available from:

http://elegantcode.com/2009/08/14/observations-on-the-if-statement/ [Accessed 5th September

2013]

Brown, W., Malveau, R., McCormick, H., Mowbray, T. (1998) AntiPatterns: Refactoring Software,

Architectures, and Projects in Crisis ISBN: 0471197130. JOHN WILEY & SONS.

Brown, W. (2013) Why Singletons are "Bad Patterns" [online]. Available from:

http://brollace.blogspot.co.uk/2013/04/why-singletons-are-bad-patterns.html [Accessed 5th

September 2013]

Bryson, B. (2010) A short history of nearly everything ISBN: 9780552997041. London : Black Swan.

Bryton, S., Brito e Abreu, F., Monteiro, M. (2002) Reducing Subjectivity in Code Smells Detection:

Experimenting with the Long Method. Quality of Information and Communications Technology

(QUATIC), 2010 Seventh International Conference. IEEE. .

Bugayenko, Y. (2015) Temporal Coupling Between Method Calls [online]. Available from:

https://www.yegor256.com/2015/12/08/temporal-coupling-between-method-calls.html [Accessed

6th July 2016]

Bugayenko, Y. (2016) Java Annotations Are a Big Mistake [online]. Available from:

http://www.yegor256.com/2016/04/12/java-annotations-are-evil.html [Accessed 6th July 2016]

Buss, M. (2016) Interfaces vs Inheritance in Swift [online]. Available from:

https://mikebuss.com/2016/01/10/interfaces-vs-inheritance/ [Accessed 22nd September 2018]

175 Thomas Butler

Butler, T. (2013) Are Static Methods/Variables bad practice? [online]. Available from:

https://r.je/static-methods-bad-practice.html [Accessed 4th October 2015]

Butler, T. (2013) Constructor Injection vs Setter Injection [online]. Available from:

https://r.je/constructor-injection-vs-setter-injection.html [Accessed 4th October 2015]

Butler, T. (2013) PHP: Annotations are an Abomination [online]. Available from:

https://r.je/php-annotations-are-an-abomination.html [Accessed 6th July 2016]

Butler, T. (2015) Slutty Software is good software: Tight and loose coupling in OOP [online]. Available

from: https://r.je/slutty-software-tight-and-loose-coupling.html [Accessed 4th October 2015]

Butler, T. (2017a) Seven deadly sins of software flexibility. 13th China Europe International

Symposium Of Software Engineering Education . University of Derby.

Butler, T. (2019a) A Methodology for Performing Meta-analyses of Developers Attitudes Towards

Programming Practices. Intelligent Computing: Proceedings of the 2019 Computing Conference 2,

pp.948-954. Springer.

van Dongen, J. (2014a) The Fragile Base Class Problem [online]. Available from:

http://www.web-brainz.co.uk/fragile [Accessed 8th August 2016]

Carneiro, F., Silva, G., Mara, L., Figueiredo, E., Sant'Anna, C., Garcia, A., Mendonça, M. (2010)

Identifying code smells with multiple concern views. Brazilian Symposium on Software Engineering

(SBES) 57, pp.128-137. IEEE.

Caromel, D. (1993) Toward a method of object-oriented concurrent programming. Communications

of the ACM , pp.90-102.

Cherniavsky, J., Smith, C. (1991) On Weyuker's Axioms for Software Complexity Measures. IEEE

Transactions on software engineering 17, pp.636-638.

Chidamber, S., Kemerer, C. (2007) A metrics suite for object oriented design. IEEE Transactions on

software engineering 20, pp.476-493.

Mel, O., Nixon, P. (1998) Program Restructuring to Introduce Design Patterns. ECOOP Workshop ,

pp.79-80.

Mathie, R., Frye, J., Fisher, P. (2015) Homeopathic Oscillococcinum® for preventing and treating

influenza and influenza-like illness. Cochrane Database System Rev 12 .

Cochrane, C. (n.d.) Cochrane [online]. Available from: http://www.cochrane.org/ [Accessed 8th

Thomas Butler 176

August 2016]

Cosentino, N. (2013) Singletons: Why Are They “Bad”? [online]. Available from:

https://www.codeproject.com/articles/634723/singletons-why-are-they-bad [Accessed 4th October

2015]

Crockford, D. (2006) Global Domination [online]. Available from:

http://www.yuiblog.com/blog/2006/06/01/global-domination/ [Accessed 5th September 2013]

Davis, P. (2007) Annotations, the Good the Bad and the Ugly [online]. Available from:

http://willcode4beer.blogspot.co.uk/2007/12/annotations-good-bad-and-ugly.html [Accessed 6th

July 2016]

Densmore, S. (2004) Why Singletons Are Evil [online]. Available from:

http://blogs.msdn.com/b/scottdensmore/archive/2004/05/25/140827.aspx [Accessed 5th

September 2013]

Deshapriya, R. (2011) A Singleton Java class for MySQL DB connection [online]. Available from:

http://rdeshapriya.com/a-singleton-java-class-for-mysql-db-connection/ [Accessed 2nd August

2016]

Transphporm, T. (n.d.a) Dice Dependency Injection Container [online]. Available from:

https://github.com/Level-2/Dice [Accessed 12th May 2020]

Dohms, R. (2013) Annotations in PHP: They Exist [online]. Available from:

http://www.slideshare.net/rdohms/annotations-in-php-they-exist [Accessed 2nd May 2016]

van Dongen, J. (2014) Why composition is often better than inheritance [online]. Available from:

http://joostdevblog.blogspot.co.uk/2014/07/why-composition-is-often-better-than.html [Accessed

8th August 2016]

Durand, W. (2013) From STUPID to SOLID Code! [online]. Available from:

http://williamdurand.fr/2013/07/30/from-stupid-to-solid-code/ [Accessed 2nd August 2016]

Eberlei, B. (2013) Traits are Static Access [online]. Available from:

http://www.whitewashing.de/2013/04/12/traits_are_static_access.html [Accessed 2nd August 2016]

ECMA International, E. (2017) The JSON Data Interchange Syntax [online]. Available from:

http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf [Accessed 22nd

March 2018]

Eden, A., Tom, M. (2006) Measuring software flexibility.. IEE Software 153, pp.133-126.

177 Thomas Butler

Ericson, B. (1995) Association vs Inheritance [online]. Available from:

http://ice-web.cc.gatech.edu/ce21/1/static/JavaReview-RU/OOBasics/ooAssocVsInherit.html

[Accessed 3rd January 2016]

Faulkner, L. (2003) eyond the five-user assumption: Benefits of increased sample sizes in usability

testing. Behavior Research Methods, Instruments, & Computers volume 35, pp.379-383.

Fernández, D. (2011) Some Java “dependency injection” bad practices [online]. Available from:

http://diegacho.blogspot.co.uk/2011/09/some-java-dependency-injection-bad.html [Accessed 6th

July 2016]

Ferreira, G. (2013) Best C Coding Practices – Global variables [online]. Available from:

http://guilhermemacielferreira.com/2013/06/01/best-c-coding-practices-global-variables/

[Accessed 5th September 2013]

Ferris, J. (2012) Refactoring: Replace Conditional with Polymorphism [online]. Available from:

http://robots.thoughtbot.com/post/31728620503/refactoring-replace-conditional-with-polymorphi

sm [Accessed 5th September 2013]

Fontana, F., Mariani, E., Morniroli, A., Sormani, R., Tonello, A. (2011) An experience report on using

code smells detection tools. IEEE Fourth International Conference on Software Testing, Verification and

Validation Workshops (ICSTW) , pp.450-457.

Fontana, F., Ferme, V., Zanoni, M., Yamashita, A. (2015) Automatic metric thresholds derivation for

code smell detection. Proceedings of the Sixth international workshop on emerging trends in software

metrics. IEEE Press .

Fowler, M., Beck, K., Brant, J., Opdyke, W., Roberts, D. (1999) Refactoring: Improving the Design of

Existing Code (Object Technology Series) ISBN: 0201485672. Addison Wesley Longman, Inc..

Fowler, M. (2002) Patterns of Enterprise Application Architecture ISBN: 0321127420. Addison Wesley.

Fowler, M. (2004) Inversion of Control Containers and the Dependency Injection pattern [online].

Available from: http://martinfowler.com/articles/injection.html [Accessed 5th July 2016]

Fowler, M. (2013a) TellDontAsk [online]. Available from:

http://martinfowler.com/bliki/TellDontAsk.html [Accessed 2nd August 2016]

Fowler, M. (2015) Yagni [online]. Available from: http://martinfowler.com/bliki/Yagni.html

[Accessed 22nd August 2016]

Funaro, M. (2009) How OO Almost Destroyed My Business [online]. Available from:

Thomas Butler 178

https://www.advantexllc.com/blog/post.cfm/how-oo-almost-destroyed-my-business [Accessed

22nd August 2016]

Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1994) Design Patterns: Elements of Reusable Object-

Oriented Software. ISBN: 0201633612. Addison Wesley.

Geary, D. (2003) Simply Singleton [online]. Available from:

http://www.javaworld.com/article/2073352/core-java/simply-singleton.html [Accessed 7th January

2016]

Gierke, O. (2013) Why field injection is evil [online]. Available from:

http://olivergierke.de/2013/11/why-field-injection-is-evil/ [Accessed 28th December 2015]

Gilstrap, J. (2010) Java Annotations have Become Pixie Dust. [online]. Available from:

http://viewfromthefringe.blogspot.co.uk/2010/02/java-annotations-have-become-pixie-dust.html

[Accessed 6th July 2016]

Goldacre, B. (2010) Bad Science ISBN: 978-0-00-724019-7. Fourth Estate.

Ivo, G., Mogado, P., T, G., R, M. (2009) An overview on the static code analysis approach in software

development. Faculdade de Engenharia da Universidade do Porto, Portugal. .

Google Scholar, G. (n.d.) Refactoring: Improving the Design of Existing Code [online]. Available from:

https://scholar.google.com/scholar?cites=3793765135686184301&as_sdt=2005&sciodt=0,5&hl=en

[Accessed 5th September 2019]

Grady, R. (1994) Successfully applying software metrics.. Computer 27, pp.18-25.

Green, C. (2015) Singleton Database Connection Class in PHP [online]. Available from:

http://sundayepidemic.com/singleton-database-connection-class/ [Accessed 2nd August 2016]

Grimm, A. (2014a) Demeter: It's not just a good idea. It's the law [online]. Available from:

http://devblog.avdi.org/2011/07/05/demeter-its-not-just-a-good-idea-its-the-law/ [Accessed 2nd

August 2016]

van Gurp, J., Bosch, J. (2001) Design, implementation and evolution of object oriented frameworks:

concepts and guidelines. Software- Practice and Experience 31, pp.277-300.

Haack, P. (2009) The Law of Demeter is not a dot counting exercise [online]. Available from:

http://haacked.com/archive/2009/07/13/law-of-demeter-dot-counting.aspx [Accessed 2nd August

2016]

179 Thomas Butler

Harrison, R., Counsell, S., Nithi, R. (1998) An Evaluation of the MOOD Set of Object-Oriented

Software Metrics. IEEE Transactions on Software Engineering 24, pp.491-496.

Hart, S. (2011) Why helper, singletons and utility classes are mostly bad [online]. Available from:

http://smart421.wordpress.com/2011/08/31/why-helper-singletons-and-utility-classes-are-mostly-

bad-2/ [Accessed 6th July 2016]

Hevery, M. (2008) Flaw: Constructor Does Real Work [online]. Available from:

http://misko.hevery.com/code-reviewers-guide/flaw-constructor-does-real-work/ [Accessed 4th

October 2015]

Hevery, M. (2008) Static Methods are Death to Testability [online]. Available from:

http://misko.hevery.com/2008/12/15/static-methods-are-death-to-testability/ [Accessed 4th

October 2015]

Hevery, M. (2008) Brittle Global State & Singletons [online]. Available from:

http://misko.hevery.com/code-reviewers-guide/flaw-brittle-global-state-singletons/ [Accessed 4th

October 2015]

Hevery, M. (2008q) Flaw: Digging into Collaborators [online]. Available from:

http://misko.hevery.com/code-reviewers-guide/flaw-digging-into-collaborators/ [Accessed 4th

October 2015]

Hevery, M. (2008) Guide: Writing Testable Code [online]. Available from:

http://misko.hevery.com/code-reviewers-guide/ [Accessed 4th October 2015]

Hevery, M. (2008) Top 10 things which make your code hard to test [online]. Available from:

http://misko.hevery.com/2008/07/30/top-10-things-which-make-your-code-hard-to-test/ [Accessed

4th October 2015]

Hevery, M. (2008) Breaking the Law of Demeter is Like Looking for a Needle in the Haystack [online].

Available from:

http://misko.hevery.com/2008/07/18/breaking-the-law-of-demeter-is-like-looking-for-a-needle-in-t

he-haystack/ [Accessed 4th October 2015]

Hevery, M. (2008) Singletons are Pathological Liars [online]. Available from:

http://misko.hevery.com/2008/08/17/singletons-are-pathological-liars/ [Accessed 4th October

2015]

Hevery, M. (2008?) How to Think About the “new” Operator with Respect to Unit Testing [online].

Available from: http://misko.hevery.com/2008/07/08/how-to-think-about-the-new-operator/

Thomas Butler 180

[Accessed 4th October 2015]

Hevery, M. (2008) Code Reviewers Guide [online]. Available from:

http://misko.hevery.com/code-reviewers-guide/ [Accessed 4th October 2015]

Hevery, M. (2009) Constructor Injection vs. Setter Injection [online]. Available from:

http://misko.hevery.com/2009/02/19/constructor-injection-vs-setter-injection/ [Accessed 4th

October 2015]

Holub, A. (2010) Why extends is evil [online]. Available from:

http://www.javaworld.com/article/2073649/core-java/why-extends-is-evil.html [Accessed 8th

August 2016]

Hurn, S. (2014) Favor Composition Over Inheritance [online]. Available from:

https://codingdelight.com/2014/01/16/favor-composition-over-inheritance-part-1/ [Accessed 8th

August 2016]

IBM, I. (2012) Avoid modification of global and static variables [online]. Available from:

http://pic.dhe.ibm.com/infocenter/idshelp/v117/index.jsp?topic=%2Fcom.ibm.dapip.doc%2Fids_da

pip_0673.htm [Accessed 5th September 2013]

Butler, T. (2020a) Insphpect – Code review tool that scans PHP code for poor OO design [online].

Available from: https://news.ycombinator.com/item?id=22550991 [Accessed 20th July 2020]

Butler, T. (2020b) Insphpect – Code review tool that scans PHP code for poor OO design [online].

Available from: https://www.phptoday.org/news/insphpect-new-code-analysis-tool [Accessed 20th

July 2020]

Butler, T. (2020) Insphpect - New code analyis tool [online]. Available from:

https://www.reddit.com/r/PHP/comments/fhoday/insphpect_new_code_analyis_tool_scans_your_c

ode/ [Accessed 20th July 2020]

Butler, T. (2020c) https://www.sitepoint.com/how-to-ensure-flexible-reusable-php-code-with-insphpect

[online]. Available from:

https://www.sitepoint.com/how-to-ensure-flexible-reusable-php-code-with-insphpect [Accessed

20th July 2020]

Twitter, T. (2020) Search results for Insphpect [online]. Available from:

https://twitter.com/search?q=insphpect&src=typed_query&f=live [Accessed 1st August 2020]

Jadad, A., Moore, A., Carroll, D., Jenkinson, C. (1996) Assessing the quality of reports of randomized

clinical trials: Is blinding necessary?. Controlled Clinical Trials 17(1), pp.1-12. ELSEVIER.

181 Thomas Butler

James, G. (1987) The Tao of Programming ISBN: 978-0931137075. Info Books.

Johansson, M. (2015) Composition over Inheritance [online]. Available from:

https://medium.com/humans-create-software/composition-over-inheritance-cb6f88070205

[Accessed 8th August 2016]

Johnson, R., Foote, B. (1988) Desinging Reusable Classes. Journal of Object Oriented Programming ,

pp.22-35.

Gutha, S. (2015) The JSON Data Interchange Standard [online]. Available from: https://www.json.org/

[Accessed 22nd March 2018]

Judis, S. (2017a) The global object in JavaScript: a matter of platforms, unreadable code and not

breaking the internet [online]. Available from:

https://www.contentful.com/blog/2017/01/17/the-global-object-in-javascript/ [Accessed 22nd

August 2018]

Kainulainen, P. (2013) Why I Changed My Mind About Field Injection? [online]. Available from:

http://www.petrikainulainen.net/software-development/design/why-i-changed-my-mind-about-fiel

d-injection/ [Accessed 28th December 2015]

Kernighan, B. (1999) The Practice of Programming ISBN: 978-0201615869. Addison Wesley.

Kitcchenham, B., Pfleeger, S., Fenton, N. (1995) Towards a Framework for Software Measurement

Validation. IEEE Transactions on Software Engineering 21, pp.929-944.

Kofler, P. (2012) Why Singletons Are Evil [online]. Available from:

http://blog.code-cop.org/2012/01/why-singletons-are-evil.html [Accessed 5th September 2013]

Koopman, P. (2010a) Better Embedded System Software ISBN: 978-0-9844490-0-2. Drumnadrochit

Education LLC.

Kaur, A., Singh, S. (2018) Detecting Software Bad Smells from Software Design Patterns using

Machine Learning Algorithms. International Journal of Applied Engineering Research ,

pp.10005-10010.

Lewis, M. (2013) PHP Annotations are a Bad Idea [online]. Available from:

https://www.marclewis.com/2013/10/25/php_annotations_are_a_bad_idea/ [Accessed 6th July

2016]

Liu, H., Cai, C., Zu, C. (2011) An object-oriented serial implementation of a DSMC simulation

package. Journal of Fundamental and Applied Sciences 8, pp.816-825.

Thomas Butler 182

Liu, H., Ma, Z., Shao, W., Niu, Z. (2012) Schedule of bad smell detection and resolution: A new way

to save effort. IEEE Transactions on Software Engineering 38, pp.220-235.

Macefield, R. (2009) How to specify the participant group size for usability studies: a practitioner's

guide. Journal of Usability Studies 5, pp.34-35.

Martin, R. (2000) Design Principles and Design Patterns [online]. Available from:

http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf [Accessed 7th

January 2016]

Martin, R. (2003) SRP: The Single Responsibility Principle [online]. Available from:

https://drive.google.com/file/d/0ByOwmqah_nuGNHEtcU5OekdDMkk/view [Accessed 8th August

2016]

Martin, R. (2008a) Clean Code: A Handbook of Agile Software Craftsmanship ISBN: 978-0132350884.

Prentice Hall.

Martin, R. (2011) Agile Software Development, Principles, Patterns, and Practices ISBN:

978-0132760584. Pearson.

Martin, R. (2014) SingletonVsJustCreateOne [online]. Available from:

http://butunclebob.com/ArticleS.UncleBob.SingletonVsJustCreateOne [Accessed 2nd August 2016]

Martin, R. (2014) The Single Responsibility Principle [online]. Available from:

https://8thlight.com/blog/uncle-bob/2014/05/08/SingleReponsibilityPrinciple.html [Accessed 2nd

August 2016]

McCabe, T. (1976) A metrics suite for object oriented design. IEEE Transactions on software

engineering 4, pp.308-320.

McConnell, S. (2004) Code Complete: A Practical Handbook of Software Construction ISBN:

0735619670. Microsoft Press.

Meyer, B. (1988a) Bidding farewell to globals. JOOP(Journal of Object-Oriented Programming) ,

pp.73-77.

Mindra, D. (2014) Dependency Injection and Abstractions [online]. Available from:

http://blogs.unity3d.com/2014/05/07/dependency-injection-and-abstractions/ [Accessed 2nd

August 2016]

MSDN, M. (2013) Design Warnings [online]. Available from:

https://msdn.microsoft.com/en-us/library/bb429476(v=vs.80).aspx [Accessed 5th September 2013]

183 Thomas Butler

Neelamegam, C., Punithavalli, M. (2009) A survey-object oriented quality metrics. Journal of Object

Oriented Programming , pp.183-186.

Neeraj, S., Sinha, J., Jackson, D. (2005) Using Dependency Models to Manage Complex Software

Architecture.. OOPSLA '05 Proceedings of the 20th annual ACM SIGPLAN conference on Object-oriented

programming, systems, languages and applications .

Nguyen, V., Deeds-Rubin, S., Tan, T., Boehm, B. (2007) A SLOC Counting Standard. Cocomo ii forum

2007, pp.1-16.

Knack-Nielsen, T. (2008) What's so bad about the Singleton? [online]. Available from:

http://www.sitepoint.com/whats-so-bad-about-the-singleton/ [Accessed 7th January 2016]

Noback, M. (2013) Dependency Injection Smells [online]. Available from:

http://php-and-symfony.matthiasnoback.nl/2013/01/dependency-injection-smells/ [Accessed 25th

July 2016]

Nordmann, K. (2011) static considered harmful [online]. Available from:

https://kore-nordmann.de/blog/0103_static_considered_harmful.html [Accessed 6th July 2016]

Olivo, S., Macedo, L., Caroline, I., Fuentes, J., Magee, D. (2008) Scales to assess the quality of

randomized controlled trials: a systematic review.(Research Report). Physical Therapy 88(2), pp.156.

Oracle, O. (2014) JSR 175: A Metadata Facility for the JavaTM Programming Language [online].

Available from: https://www.jcp.org/en/jsr/detail?id=175#2 [Accessed 22nd November 2018]

Oracle, O. (2010) The @Path Annotation and URI Path Templates [online]. Available from:

https://docs.oracle.com/cd/E19798-01/821-1841/ginpw/ [Accessed 6th July 2016]

Oracle, O. (2011) Annotation Type Inject [online]. Available from:

http://docs.oracle.com/javaee/6/api/javax/inject/Inject.html [Accessed 6th July 2016]

Otander, J. (2015) Mixins over Inheritance [online]. Available from:

http://alisoftware.github.io/swift/protocol/2015/11/08/mixins-over-inheritance/ [Accessed 8th

August 2016]

Packagist, P. (n.d.a) Packagist the PHP Package Repository [online]. Available from:

https://packagist.org/ [Accessed 22nd June 2020]

Paul, J. (2012) Difference between Setter vs Constructor Injection in Spring [online]. Available from:

http://javarevisited.blogspot.co.uk/2012/11/difference-between-setter-injection-vs-constructor-inje

ction-spring-framework.html [Accessed 28th December 2015]

Thomas Butler 184

Paul, J. (2013) 5 Reasons to Use Composition over Inheritance in Java and OOP [online]. Available from:

http://javarevisited.blogspot.com/2013/06/why-favor-composition-over-inheritance-java-oops-desi

gn.html [Accessed 8th August 2016]

Peterson, J. (2008) An example of how not to use Java annotations [online]. Available from:

http://jeffvssoftware.blogspot.co.uk/2009/01/example-of-how-not-to-use-java.html [Accessed 6th

July 2016]

PHP Mess Detector, P. (n.d.a) PMD Java Mess Detector [online]. Available from:

https://pmd.github.io/ [Accessed 3rd March 2016]

PHPUnit, P. (n.d.a) Code Coverage Analysis [online]. Available from:

https://phpunit.readthedocs.io/en/9.2/code-coverage-analysis.html [Accessed 12th May 2020]

PHP Mess Detector, P. (n.d.) PMD Java Mess Detector [online]. Available from: https://phpmd.org/

[Accessed 3rd March 2016]

Popov, N. (2014) Don't be STUPID: GRASP SOLID! [online]. Available from:

https://nikic.github.io/2011/12/27/Dont-be-STUPID-GRASP-SOLID.html [Accessed 2nd August 2016]

Qwant, Q. (n.d.) Qwant search engine [online]. Available from: https://www.qwant.com/ [Accessed

28th May 2018]

Radford, M. (2003) Singleton - the anti-pattern. Overload 57. ACCU.

RadialBar, R. (n.d.) Code Coverage Analysis [online]. Available from:

https://github.com/AZbang/RadialBar [Accessed 12th May 2020]

J., R. (2001) Use your singletons wisely [online]. Available from:

https://www.ibm.com/developerworks/library/co-single/ [Accessed 5th September 2013]

Raymond, E. (2003) The Art of Unix Programming ISBN: 978-0131429017. Addison Wesley.

Reddit, R. (2013) [General] Singletons [online]. Available from:

https://www.reddit.com/r/csELI5/comments/1qwey4/eli5general_singletons/ [Accessed 7th

January 2016]

Reigler, G. (2014) An Annotation Nightmare [online]. Available from:

http://www.javacodegeeks.com/2014/01/an-annotation-nightmare.html [Accessed 6th July 2016]

Riley, R., Snell, K., Harrell, F., Martin, G., Reitsma, J. (2020) Calculating the sample size required for

developing a clinical prediction model. BMJ 368.

185 Thomas Butler

Rogers, P. (2001) Encapsulation is not information hiding [online]. Available from:

http://www.javaworld.com/article/2075271/core-java/encapsulation-is-not-information-hiding.html

[Accessed 9th July 2016]

Ronacher, A. (2009) Singletons and their problems in Python [online]. Available from:

http://lucumr.pocoo.org/2009/7/24/singletons-and-their-problems-in-python/ [Accessed 5th

September 2013]

Rybak, M. (2013) Why Static Code is Bad [online]. Available from:

https://objcsharp.wordpress.com/2013/07/08/why-static-code-is-bad/ [Accessed 2nd August 2016]

Sabir, F., Palma, F., Rasool, G., Guéhéneuc, Y., Moha, N. (2018) A systematic literature review on the

detection of smells and their evolution in object oriented and service oriented systems. Software:

Practice and Experience 79(1), pp.3-39.

Sanders, B. (2013) No Time For OOP or Design Patterns [online]. Available from:

http://www.php5dp.com/no-time-for-oop-or-design-patterns/ [Accessed 22nd August 2016]

Sayfan, M. (n.d.) Avoid Global Variables, Environment Variables, and Singletons [online]. Available

from:

https://sites.google.com/site/michaelsafyan/software-engineering/avoid-global-variables-environ

ment-variables-and-singletons [Accessed 5th September 2013]

Schindler, R. (2012) PHP Constructor Best Practices And The Prototype Pattern [online]. Available from:

http://ralphschindler.com/2012/03/09/php-constructor-best-practices-and-the-prototype-pattern

[Accessed 4th October 2015]

Schwarz, N., Lungu, M., Nierstraz, O. (2011) Suess: Better Class Responsibilities through Language-

Based Dependency Injection. Proceedings of the 49th international conference on Objects, models,

components, patterns .

Scrutinizer-CI, S. (n.d.) Scrutinizer [online]. Available from: https://scrutinizer-ci.com [Accessed 5th

September 2016]

Seeman, M. (2010) Service Locator is an Anti-Pattern [online]. Available from:

http://blog.ploeh.dk/2010/02/03/ServiceLocatorisanAnti-Pattern/ [Accessed 5th September 2013]

Seeman, M. (2011) Design Smell: Temporal Coupling [online]. Available from:

https://blog.ploeh.dk/2011/05/24/DesignSmellTemporalCoupling/ [Accessed 5th September 2013]

Seeman, M. (2015) Service Locator violates Encapsulation [online]. Available from:

http://blog.ploeh.dk/2015/10/26/service-locator-violates-encapsulation/ [Accessed 7th January

Thomas Butler 186

2016]

Seguy, D. (2014) Static analysis tools for PHP [online]. Available from:

https://github.com/exakat/php-static-analysis-tools [Accessed 4th October 2018]

SensioLabs Insight, S. (n.d.) SensioLabs Insight [online]. Available from:

https://insight.symfony.com/ [Accessed 3rd March 2016]

Smith, S. (2012) Explicit Dependencies Principle [online]. Available from:

http://deviq.com/explicit-dependencies-principle/ [Accessed 2nd August 2016]

SonarQube, S. (n.d.) Maintainability = Productivity [online]. Available from:

https://www.sonarqube.org/features/maintainability/ [Accessed 1st August 2020]

Sonmez, J. (2010) Static Methods Will Shock You [online]. Available from:

http://simpleprogrammer.com/2010/01/29/static-methods-will-shock-you/ [Accessed 6th July 2016]

Sosnoski, D. (2005) Classworking toolkit: Annotations vs. configuration files [online]. Available from:

http://www.ibm.com/developerworks/library/j-cwt08025/ [Accessed 6th July 2016]

Spring, S. (2018) Spring Framework Annotations [online]. Available from:

https://springframework.guru/spring-framework-annotations/ [Accessed 22nd November 2018]

Kegel, H., Steimann, F. (2008) Systematically Refactoring Inheritance to Delegation in JAVA.

Proceedings of the 30th international conference on Software engineering . ACM.

Stripe, S. (2018) The Developer Coefficient [online]. Available from:

https://stripe.com/files/reports/the-developer-coefficient.pdf [Accessed 28th September 2018]

Summit, S. (1997) Visibility and Lifetime (Global Variables, etc.) [online]. Available from:

https://www.eskimo.com/~scs/cclass/notes/sx4b.html [Accessed 25th July 2016]

Sumpton, B. (2010) Inheritance is evil, and must be destroyed [online]. Available from:

http://blog.berniesumption.com/software/inheritance-is-evil-and-must-be-destroyed/ [Accessed

8th August 2016]

Svennervberg, G. (2012) Global Variables Are Evil [online]. Available from:

http://codecraftingblueprints.com/global-variables-are-evil/ [Accessed 5th September 2013]

Symfony Framework, S. (nd) @Route and @Method [online]. Available from:

http://symfony.com/doc/2.0/bundles/SensioFrameworkExtraBundle/annotations/routing.html

[Accessed 6th July 2016]

187 Thomas Butler

Torchiano, M. (2014) Are Suppress Warning Annotations Bad? [online]. Available from:

https://mtorchiano.wordpress.com/2014/03/31/are-suppress-warning-annotations-bad/ [Accessed

6th July 2016]

Transphporm, T. (n.d.) Transphporm Style Sheets [online]. Available from:

https://github.com/Level-2/Transphporm [Accessed 12th May 2020]

TutsPlus, T. (n.d.) What Is Composer for PHP and How to Install It [online]. Available from:

https://code.tutsplus.com/tutorials/what-is-composer-for-php-and-how-to-install-it--cms-35160

[Accessed 18th June 2020]

Vogt, B. (2008) Alternatives for the singleton pattern? [online]. Available from:

https://stackoverflow.com/questions/3171291/alternatives-for-the-singleton-pattern [Accessed

2nd December 2017]

Waddicor, A. (2014) Understanding dependency injection [online]. Available from:

https://blogs.endjin.com/2014/04/understanding-dependency-injection/ [Accessed 28th December

2015]

Walls, C. (2008) When Good Annotations Go Bad [online]. Available from:

http://java.dzone.com/articles/when-good-annotations-go-bad [Accessed 6th July 2016]

Weaver, R. (2010) Static methods vs singletons: choose neither [online]. Available from:

http://www.phparch.com/2010/03/static-methods-vs-singletons-choose-neither/ [Accessed 5th

September 2013]

Weiskotten, J. (2006) Dependency Injection & Testable Objects [online]. Available from:

http://www.drdobbs.com/tools/dependency-injection-testable-objects/185300375 [Accessed 3rd

January 2016]

Wenger, P. (1995) Interaction as a basis for empirical computer science. ACM Computing Surveys

(CSUR) 27(1), pp.45-48.

Weyuker, E. (1988) Evaluating software complexity measures,. IEEE Transactions on software

engineering 14, pp.1357-1365.

Wulf, W., Shaw, M. (1973) Global varaibles considered harmful. ACM SIGPLAN Notices , pp.28-34.

Yaiser, M. (2011) Object-oriented programming concepts: Objects and classes [online]. Available from:

http://www.adobe.com/devnet/actionscript/learning/oop-concepts/objects-and-classes.html

[Accessed 25th July 2016]

Thomas Butler 188

Yamashita, A., Moonen, L. (2013) Exploring the impact of inter-smell relations on software

maintainability: An empirical study.. Proceedings of the 2013 International Conference on Software

Engineering. IEEE Press .

Yegge, S. (2004) Singleton Considered Stupid [online]. Available from:

https://sites.google.com/site/steveyegge2/singleton-considered-stupid [Accessed 5th September

2013]

Zakas, N. (2006) Global Variables Are Evil [online]. Available from:

http://www.nczonline.net/blog/2006/06/05/global-variables-are-evil/ [Accessed 5th September

2013]

189 Thomas Butler

8. Appendices
Appendix I: MarkDown extensions

Describing the bad practices in text required several extensions to the MarkDown format being

used. These are outlined below. These additions were made to allow dynamic sections to appear in

the document and the document to be rendered in different ways.

8.1.1 References

References are generated on the fly so that they can be embedded in any format necessary. The

MarkDown format was extended to allow the code:

[ref:reference-id]

Quotation style references

[ref:butler-2017]

In the rendered document this can be replaced with a reference like [12] or (Butler, 2017).

In addition for quotes and other attributions, it also supports the following:

[ref-name:butler-2012]

This displays the reference in a quotation style. For example Butler (2017)

Including titles

Reference titles can also be included:

[ref-title:butler-2012]

Will generate a reference in the format: Seven Deadly Sins of Software Flexibility

(Butler, 2017).

Thomas Butler 190

The exact reference formats can be tweaked for targeting conferences and journals with different

referencing styles.

The details about the references, author names, journal names, dates, etc are stored in an

external file in JSON format.

references.json format

A file called references.json was used to store all the references used by the project. Each

reference has a unique ID which is the key in the root level of the JSON object.

A sample reference looks like this:

"butler-2013": { // unique identifier

 "author": ["Tom", "Butler"], //Author names as an array

 "year": "2013", //Publication year

 "title": "PHP: Annotations are an Abomination", //Publication title

 "online": { // "online", "book", "journal"

 "url":

"https://r.je/php-annotations-are-an-abomination.html",

 "accessed": "2016-07-06"

 }

}

Different types of work can also be referenced by changing the online key to book, or journal.

For example:

{

 "raymond-2003": {

 "author": ["Eric", "Raymond"],

 "year": "2003",

 "title": "The Art of Unix Programming",

 "book": {

 "isbn": "978-0131429017",

 "publisher": "Addison Wesley",

191 Thomas Butler

 "page": "20"

 }

 },

 "wulf-1973": {

 "author": [["William", "Wulf"], ["Mary", "Shaw"]],

 "year": "1973",

 "title": "Global variables considered harmful",

 "journal": {

 "month": "02",

 "year": "1973",

 "title": "ACM SIGPLAN Notices",

 "Volume": "8",

 "Number": "2",

 "pages": "28-34"

 }

 }

}

The final document uses the reference ID to generate the complete the in-text reference and

places the full references in the references section at the end of the document.

Advantages of this reference approach

This approach has several advantages over manually embedding the references in the document:

The reference style can be changed easily1.

The reference list at the end of the document can be generated for a subset of the2.

document, e.g. a single chapter. The references used by that single chapter can be included

in the reference list without manually needing to cut and paste the references around.

Missing references can be detected during the compilation process.3.

8.1.2 Example code

For the bad practice sections and additional MarkDown extension was added to allow dynamically

embedding code examples in the text.

Examples are stored in each bad practice and the compiler has a language set before the

MarkDown files are loaded. When the MarkDown compiler encounters code such as:

Thomas Butler 192

[example:1]

If the code format is set to Java it loads the contents of examples/java/1.java from the current

bad practice's directory. If the code format is set to PHP it loads examples/php/1.php. This

method allows generating the documentation for different programming languages and new

programming languages can be easily added by creating the relevant directory.

Advantages of including sample code in this format.

The languages supported can be easily extended.1.

The same document can be generated with code examples from different languages without2.

needing to re-write the document.

193 Thomas Butler

Appendix II. Raw JSON files describing bad practices

Below are the raw json files used to describe each practice as developed in chapter 1.

8.2.3 Service Locator

{

 "name": "Service Locator",

 "severity": "4",

 "categories": ["Unnecessary Coupling", "Broken Single Responsibility

Principle", "Broken Encapsulation", "Broken Law of Demeter"],

 "references": [

 "hevery-2008a", "hevery-2009", "bohlin-2010", "butler-2015",

"johnson-1988", "waddicor-2014", "seeman-2015"

]

}

8.2.4 Singleton

{

 "name": "Singleton",

 "severity": "5",

 "categories": ["Broken Encapsulation", "Action at a Distance",

 "Global State", "Tight Coupling", "Broken Single Responsibility

Principle"],

 "references": [

 "rainsberger-2001", "densmore-2004", "radford-2003",

"yegge-2004", "ronacher-2009", "brown-2013", "kofler-2012", "weaver-2010",

"reddit-2013", "badu-2008", "nielsen-2008", "geary-2003", "hart-2011",

"nordmann-2011", "sonmez-2010", "benharosh-2015", "deshapriya-2011",

"durand-2013", "martin-2014", "hevery-2008c", "hevery-2008f",

"hevery-2008h", "sayfan-nd"

]

}

8.2.7 Object not initliased after constructor finishes (`initialize` and `set`
methods)`

{

 "name": "Object not initliased after constructor finishes

Thomas Butler 194

(`initialize` and `set` methods)`",

 "severity": "3",

 "categories": ["Broken Encapsulation", "Action at a Distance",

"Temporal Coupling"],

 "references": [

 "hevery-2009", "butler-2013", "schindler-2012",

"muhammad-2013", "gierke-2013", "arendsen-2007", "kainulainen-2013",

"paul-2012", "fowler-2004"

]

}

8.2.10 Annotations for configuration

{

 "name": "Annotations for configuration",

 "severity": "4",

 "categories": ["Broken Encapsulation","Broken Single Responsibility

Principle",

 "Action At A Distance", "Unnecessary Coupling"],

 "references": [

 "butler-2013a", "bugayenko-2016", "ahuja-2015",

"uhrig-2015", "davis-2007", "lewis-2013", "sosnoski-2005", "walls-2008",

"peterson-2009", "gilstrap-2010", "fernandez-2011", "bell-2013",

"riegler-2014", "torchiano-2014"

]

}

8.2.11 Use of static methods

{

 "name": "Use of static methods",

 "severity": "4",

 "categories": ["Tight Coupling", "Broken Encapsulation",

 "Unclear Dependencies", "Single Responsibility Principle"],

 "extra": "they break SRP because the class which contains them must

have multiple responsibilities.",

 "references": [

195 Thomas Butler

 "cinneide-1999", "neeraj-2005", "bracha-2007",

"hevery-2008b", "sonmez-2010", "nordmann-2011", "schwarz-2011",

 "butler-2012", "smith-2012", "rybak-2013", "eberlei-2013",

"bergmann-2014", "mindra-2014"

]

}

8.2.12 Using `new` in constructor

{

 "name": "Using `new` in constructor",

 "severity": "3",

 "categories": ["Tight Coupling", "Broken Encapsulation", "Broken

Single Responsibility Principle"],

 "references": [

 "hevery-2008a", "hevery-2009", "bohlin-2010", "butler-2015",

"johnson-1988", "waddicor-2014"

]

}

8.2.13 Inheritance

{

 "name": "Inheritance",

 "severity": "3",

 "categories": ["Tight Coupling", "Broken Encapsulation","Broken

Single Responsibility Principle"],

 "references": [

 "ericson-2014", "supton-2010", "hurn-2014", "dongen-2014",

"otander-2015", "paul-2013", "johansson-2015","srinivasan-2008", "buss-2016"

]

}

8.2.14 Global/Static variables

{

 "name": "Global/Static variables",

 "severity": "5",

 "categories": ["Tight Coupling", "Broken Encapsulation","Broken

Single Responsibility Principle",

Thomas Butler 196

 "Action at a Distance", "Global State"],

 "references": [

 "radford-2003", "densmore-2004", "yegge-2004",

"crockford-2006", "zakas-2006", "hevery-2008g",

 "hevery-2008c", "ronacher-2009", "weaver-2010", "hart-2011",

 "nordmann-2011", "butler-2012", "ibm-2012", "kofler-2012",

"svennerberg-2012", "ferreira-2013", "sayfan-nd"

]

}

197 Thomas Butler

Appendix III. Full explanations of bad practices

Below are the full explanations of why each practice is bad. These explanations can be referenced

in future work or embedded in future tools using this research.

Thomas Butler 198

8.3.1 Service Locator

A service locator is a specific common example of a Law Of Demeter violation (Hevery, 2008). This

causes limited flexibility and code that is difficult to test. The Service Locator pattern looks like this:

class UserModel {

 private serviceLocator;

 public Collaborator(ServiceLocator serviceLocator) {

 this.serviceLocator = serviceLocator;

 }

 public void save(User user) {

 if (user.isValid()) {

 this.serviceLocator.resolve("UserRepository").save(user);

 }

 }

}

Figure 8.1: Service locator example 1

Here the UserModel class requires a ServiceLocator instance as a dependency. The author of

the test must construct a valid ServiceLocator instance and ensure it is populated with any

dependency the code being tested requires. This causes a brittle test, if the save method changes

and requires extra dependencies from the service locator then the test will break unless the

service locator is tested as part of the test.

The ServiceLocator itself cannot be mocked easily, as the service locator will need to be set up to

return a mock UserRepository instance. This will cause broken encapsulation: The author of the

test must be aware of how to configure the serviceLocator and know which services to include, the

only way to do this is to look at the code for the class being tested and set up the mock service

locator accordingly. By contrast, when injecting the specific instances that are needed, a complete

list of required services should be visible in the constructor's method header (and can be picked

up by IDE code completion tools).

there’s no reason to ever use a Service Locator. There’s always a better alternative that

199 Thomas Butler

involves proper inversion of control.

Seeman (2015)

Other problems

Beyond the extra coupling introduced by the Law Of Demter violation, the service locator by its

nature exposes its dependencies to the outside world, breaking encapsulation (Seeman, 2015).

Summary of issues:

Ambiguous portability (Service locator and everything provided to it must be present in a

second project using the class)

Breaks law of Demeter

Unclear dependencies

Action at a distance (changes in the service locator affect any class that depends on it)

Thomas Butler 200

8.3.2 Singleton

for it is true that global variables are often demonised and more recently the Singleton has

befallen the same fate.

Knack-Nielsen (2008)

The singleton has become regarded as an anti-pattern by most developers. This is for several

reasons that don't apply to many other bad practices:

The singleton was one of the patterns mentioned in two very popular and highly referenced

books: Design Patterns: Elements of Reusable Object-Oriented Software. (Gamma et al, 1994) and

Patterns of Enterprise Application Architecture (Fowler, 2002). This caused widespread

knowledge of the pattern and it took some time until the issues it causes were documented.

The pattern was given a formal name and is easy to identify

The pattern has been labeled bad practice for over a decade (Densmore, 2004)

The problems it causes are severe compared to other more subtle patterns so developers

much more quickly identify one of the many issues it introduces.

Like Global Variables, because of abundant use, the problems associated with the pattern are very

well documented.

Densmore (2004), Hevery (2008), Durand (2013) and Martin (2014) all touch on the same root

problems with singletons.

Hidden dependencies and Tight coupling

Hevery (2008) calls singleton's "Pathological Liars" because someone looking at the class cannot

see its true dependencies. There is no way for a developer looking at the code to see what object is

actually being used. Worse still, it's not possible for them to change it. Like all static methods,

singletons introduce tight coupling (Densmore, 2004; Durand, 2013) as there is no way to

substitute the class being used at runtime. Because the call is static, e.g.

singleton::getInstance() the object returned by the getInstance() call will always be

used, making it very difficult to mock, and therefore very difficult to test in isolation.

Any class who uses the singleton (contains the line singleton::getInstance()) has an

201 Thomas Butler

ambiguous API. When using dependency injection, it's clear from the class API what, if any,

collaborators it has. A developer can look at the arguments for the methods (usually the

constructor) and quickly identify the dependencies of a class. When using a singleton, this isn't the

case. When using singletons the only reference to the class is in one or more of the methods,

there is no way to tell that there is a dependency by looking at the API alone. This doesn't directly

affect flexibility, however it does make portability difficult, you cannot just move a class between

projects because it's difficult to tell whether you also need to move the singleton class it relies on.

Single responsibility principle

Singletons break the Single Responsibility Principle. Robert C. Martin, who coined the term Single

Responsibility Principle (Martin, 2011) defines it as:

a class should have one and only one responsibility.

Singletons will always break this, because they have at least two responsibilities:

Whatever the class' job is (for example interacting with a database)1.

Ensuring only one instance can be created2.

Although the Single Responsibility Principle doesn't have a direct impact on flexibility in this instance

it does introduce an obvious limitation. If only one instance of a class can exist, this is a direct

limitation on flexibility. For example a common usage for singletons is a database access class

(Benharosh, 2015; Deshapriya, 2011; Green, 2015). This ensures that only one database connection

is possible throughout the application. There are practical reasons for this, performance and easy

access to the relevant class. However, there is an obvious problem: What if a new requirement is

introduced and now you need to connect to a second database for backup purposes or to retrieve

some data? If a singleton was used, you must write another class to do this, or make changes to

the class to handle multiple connections. Instead, if the singleton pattern was not used in the first

place, multiple database connections could be created without an issue.

Global state

A singleton is global state, it is available everywhere and has the same set of problems that affect

global variables (Hevery, 2008).

Law of Demeter

Singletons break the Law of Demeter (Hevery, 2008) because you have to go via the static method

to access the true dependency.

Thomas Butler 202

203 Thomas Butler

8.3.3 Object not initliased after constructor finishes (`initialize` and `set`
methods)`

Once the constructor has run, the object should be 100% configured. Several common bad

practices have emerged which go against this.

1. initialize methods

These are often included to do further construction after the constructor has run. An example is

included in figure 8.2:

public class House {

 private int number;

 private String streetName;

 private Kitchen kitchen;

 private Bedroom;

 public House(int number, String streetName) {

 this.number = number;

 this.streetName = streetName;

 }

 public void initialize() {

 this.kitchen = new Kitchen();

 this.bedroom = new Bedroom();

 }

 public String displayHouse() {

 return "the house has a kitchen with an area of " + kitchen.getWi

dth() + " by " + kitchen.getLength();

 }

}

Figure 8.2: Inititialize methods

This is sometimes so that the object can be initialized in different ways or alternatively so that

performance heavy tasks (e.g. connecting to a database) can be avoided until they're needed.

Thomas Butler 204

2. Setter injection

Setter injection is also used for this purpose. Either to keep the constructor clean or to reduce the

number of constructor arguments.

public class House {

 private int number;

 private String streetName;

 private Kitchen kitchen;

 private Bedroom;

 public House(int number, String streetName) {

 this.number = number;

 this.streetName = streetName;

 }

 public void setKitchen(Kitchen kitchen) {

 this.kitchen = kitchen;

 }

 public String displayHouse() {

 return "the house has a kitchen with an area of " + kitchen.getWi

dth() + " by " + kitchen.getLength();

 }

}

Figure 8.3: Setter injection

In figure 8.3, for both initialize methods and setter injection, these minor advantages come at

a huge cost in program stability and code flexibility. When using setter injection, methods on the

object must be called in a specific order for it to work causing ambiguity and the internal state of

the object creates action-at-a-distance. The code shown in figure 8.4 will work:

House house = new House();

house.setKitchen(new Kitchen);

205 Thomas Butler

System.out.println(house.display());

Figure 8.4: Setter injection problem demonstration (a)

However, reversing the order of arguments will break the code as demonstrated in figure 8.5:

House house = new House();

//If the display method depends on the kitchen being set this will crash

System.out.println(house.display());

house.setKitchen(new Kitchen);

.

Figure 8.5: Setter injection problem demonstration (b)

This is because the displayHouse method requires a valid Kitchen instance and it may or may

not be set. In this example it's easy to see whether or not the setKitchen method has been called

or not. However, given the following code:

public void processHouse(House house) {

 System.out.println(house.display());

}

Figure 8.6: Setter injection problem demonstration (c)

In figure 8.6, the processHouse method may be given an incomplete house instance. It will crash

if the setter was never called before the house instance was passed in to the processHouse

method. The author of the processHouse method needs to be aware of the state of the house

instance and potentially add code to prevent crashes, breaking encapsulation.

By allowing incomplete objects to exist in the system it opens up the program to potential bugs

and forces methods to be called in a specific order. If that order is not followed, the program will

Thomas Butler 206

crash, indirectly exposing the implementation of the class to developers using the class. This is an

example of [Brittle Code](#brittle-code).

Fowler (2004) sums up this problem:

My long running default with objects is as much as possible, to create valid objects at

construction time. This advice goes back to Kent Beck's Smalltalk Best Practice Patterns:

Constructor Method and Constructor Parameter Method. Constructors with parameters give

you a clear statement of what it means to create a valid object in an obvious place. If there's

more than one way to do it, create multiple constructors that show the different

combinations.

Other problems caused by setter injection

Action at a distance

Setter injection is also a root cause of action-at-a-distance. Any code in the application can change

the dependency of any object it has a reference to at any time during the program's execution. For

example, consider a DataMapper which stores a database connection instance. Any class which is

passed the DataMapper instance can change the database connection and everywhere else in the

application that the DataMapper is being used will now be reading from/writing to a different

database. By using constructor injection, to do this, a new Data Mapper instance must be created

which will not have side effects throughout the application.

Broken encapsulation

By exposing set methods, the implementation of the class is exposed to the client code. If the

client code is calling a set method on an instance, the instance is not polymorphic, the code cannot

be reused with an implementation that does not have the same dependency.

To avoid these problems, code from initailize methods and setter injection methods should

be moved into the constructor as shown in figure 8.7.

public class House {

 private int number;

 private String streetName;

 private Kitchen kitchen;

 private Bedroom;

 public House(int number, String streetName, Kitchen kitchen, Bedroom b

207 Thomas Butler

edroom) {

 this.number = number;

 this.streetName = streetName;

 this.kitchen = kitchen;

 this.bedroom = bedroom;

 }

 public String display() {

 return "the house has a kitchen with an area of " + kitchen.getWi

dth() + " by " + kitchen.getLength();

 }

}

Figure 8.7: Setter injection solution

Summary of issues:

Calling methods in the wrong order can cause crashes or bugs1.

Dependencies can be overwritten during the lifetime of the application and introduce bugs.2.

E.g. changing the database connection an object depends on while that object is being used

in multiple locations

Thomas Butler 208

8.3.4 Annotations for configuration

Annotations are widely adopted in Java (Reigler, 2014) and are slowly being adopted into other

languages (Dohms, 2013), however, in most cases they break the fundamental Object-Oriented

principal of encapsulation and limit flexibility in the process.

When used for configuration as opposed to documentation annotations cause a large set of

problems. For example, a common use-case for annotations is @Inject to tell an external

Dependency Injection Container to set a specific private property to the given dependency (Oracle,

2011):

public class Product {

 @Inject

 private Database db;

}

Figure 8.8: Annotations example

In figure 8.8, @Inject signals to the Dependency Injection Container that a Database instance

must be written to the private property. In a lot of common usage, no constructor is even supplied

(Bugayenko, 2016). This means it's impossible to use the class without a dependency injection

container.

The author of the class has written the code in the expectation that it will be created by a

Dependency Injection Container. This breaks encapsulation as there is implied knowledge of other

parts of the application within this class, knowledge that it will be used in an environment where a

Dependency Injection Container looks for the annotation and supplies the dependency. This

severely limits flexibility because there is no easy way to construct the class without using a

Dependency Injection Container that understands @Inject and knows to look for it.

Encapsulation is broken because the class is no longer in control of its own state, it assumes that it

will be running in a very specific environment.

If the class is moved to a project using a different container, or even no dependency injection

container, it's usefulness is severely limited because there is no way to set the database

dependency.

Instead, the code above should be written as outlined in Figure 8.8.

209 Thomas Butler

public class Product {

 private Database db;

 Product(Database db) {

 this.db = db;

 }

}

Figure 8.9: Annotations solution

Compared with figure 8.8, flexibility has been greatly enhanced because the class has no

knowledge of the environment is is being used in. There may be a dependency injection container,

there may not.

Encapsulation is now maintained, there is no way to instantiate the class without the constructor

being run and dependencies supplied.

By using annotations, a dependency is needlessly introduced on the component which reads the

annotations and the author of the class has indirect control over how external components can

use the class. The class now has two responsibilities: exposing its own interface and telling the

outside rules how it should be used. In the example above it is telling the container which

dependencies it needs. These are two different responsibilities and this breaks the [Single

responsibility principle](#srp) and [Encapsulation](#encapsulation).

Allthough Inject is a common annotation, the problems exist anywhere annotations are used for

application configuration.

They store metadata about the class and how the class should be used. This becomes a problem

when different projects need different configurations for the class, for example annotations are

commonly used for URL routing (Oracle, 2010; Symfony Framework, nd):

@Path("/users/{username}")

public class UserResource {

 @GET

 @Produces("text/xml")

 public String getUser(@PathParam("username") String userName) {

Thomas Butler 210

 ...

 }

}

Figure 8.10: Annotations example 2

In figure 8.10, annotations areused to tell a web-server the URI the class will handle. The

annotation sets the route to users. This tight coupling of the metadata to the class causes

flexibility issues. It's not unreasonable to want to use a class that deals with users on more than

one website. However, because the class uses internal metadata using annotations, it's impossible

to use the class on the URI /users on one website and /members/ on another without changing

the class. This is a violation of the Single Responsibility Principle as the class has more than one

reason to change.

If the class is changed then significant issues are introduced with version control: Once a bug is

fixed on one website, it's then difficult to copy it over to the other website as the sites are using

independent branches.

The solution, shown in figure 8.10, is to separate out the metadata from the class using any

format, for example JSON to map the URI path to the class name

{

 "/users": "UserResource",

 "/Products": "Products"

}

Figure 8.11: Annotations example

Figure 8.11 shows that using external metadata, the metadata can differ per website and the class

can remain identical, allowing for easier bugfixes and sharing of resources between projects.

As Ahuja (2015) writes:

My advice is not to use annotations to configure your applications. Configurations were

never meant to be part of code—that's why they're configurations and not source code. So

211 Thomas Butler

let configurations stay in the configuration files. A small productivity gain in the short term

won't go amount to much when a client asks for a change in a table or a value and you tell

them it's going to take five days of development, testing and deployment.

There is an ongoing debate among developers about if and when annotations should be used.

However, the sole benefit of annotations is being able to edit metadata and code in the same file,

the argument in favour of their use is always at the expense of flexibility. This is a debate of

convenience vs flexibility. From a flexibility point of view, annotations are considerably worse than

available alternatives.

It should also be noted that this only applies to annotations which adjust the program's outcome.

If removing the annotations does not affect how the program works, the annotations are there for

documentation and do not cause any problems with flexibility.

As noted by Walls (2008), annotations also break the law of demeter by adding extra dependencies

to classes:

But, as luck would have it, SearchController also transitively depends on @Searchable and

any other Compass annotations I use in Document. That means that I can't compile the web

module without it having Compass in its build classpath (that is, as a dependency in its POM.

Even though SearchController doesn't know about or need to know about Compass!

Doesn't this violate the law of demeter?

Although this problem is specific to Java, in other languages annotations may not introduce a hard

dependency.

However, there is a remaining issue of comprehension. You could move a class with @Inject or

similar annotation to a project where the annotations are just comments. Anyone looking at the

class in this project will assume that the annotations are used and will be surprised when they

change the annotations and it doesn't affect the configuration. This is not directly an issue of

flexibility but it breaks the Principle of Least Surprise (Raymond, 2003; James, 1987) and makes the

class more difficult to reuse because it's not clear to anyone reading the code.

Summary of problems:

Practical issues

Cannot be debugged easily as you can't print the contents of the configuration

Finding application configuration requires looking across every class in the application

Breaks the Single Responsibility Principle

Thomas Butler 212

Breaks Encapsulation

Breaks Separation of Concerns

Introduces ambiguity/bugs in polymorphic code

Introduces coupling between unrelated components

Makes it more difficult to instantiate an object with different configurations

Makes version control more difficult

Negative traits:

Broken encapsulation

Action at a distance

Hardcoded values

Implicitly breaks Law of Demeter by setting properties outside the class scope

213 Thomas Butler

8.3.5 Use of static methods

Use of static methods always reduces flexibility by introducing tight coupling (Popov, 2014). A

static method tightly couples the calling code to the specific class the method exists in.

public double totalAbs(double value, double value2) {

 return Math.abs(value) + Math.abs(value2);

}

Figure 8.12: Static methods example

In figure 8.12, the method totalAbs has a dependency on the Math class and the .abs() method

will always be called. Although for testing purposes this may not be a problem, the coupling

reduces flexibility because the total method can only work with doubles/integers, as that's all the

Math.abs() function can use. Although type coercion will allow the use of any primitive numeric

type, these types have limitations. It's impossible to use another class such as BigInteger or a

class for dealing with greater precision decimals or even alternative numbering systems such as

Roman numerals.

The totalAbs function takes two doubles and converts them to their absolute values before adding

them. This is inflexible because it only works with doubles. It's tied to doubles because that's what

the Math.abs() static method requires. If, instead, using OOP an interface was created to handle

any number, such as described in figure 8.12:

interface Numeric {

 public Numeric abs();

}

Figure 8.13: Static methods solution

Using code from figure 8.13, would then be possible to rewrite the totalAbs method to work with

any kind of number:

public Numeric totalAbs(Numeric value, Numeric value) {

Thomas Butler 214

 return value.abs() + value2.abs();

}

Figure 8.14: Static methods solution

In figure 8.14, By removing the static method and using an instance method in its place the

totalAbs method is now agnostic about the type of number it is dealing with. It could be called

with any of the following (assuming they implement the Numeric interface).

<?php totalAbs(new Integer(4), new Integer(-53));

totalAbs(new Double(34.4), new Integer(-2));

totalAbs(new BigInteger("123445454564765739878989343225778"), new Integer(

2343));

totalAbs(new RomanNumeral('VII'), new RomanNumeral('CXV'));

Figure 8.15: Removal of static methods offers more flexibility

Figure 8.15 demonstraes how the method can be used in different context by changing the static

methods to instance methods and that flexibility has been enhanced as the method can be used

with any numeric type, not just numeric types that are supported by the Math.abs() method.

Static methods also break encapsulation. Encapsulation is defined by Rogers (2001) as:

the bundling of data with the methods that operate on that data

By passing the numeric value into the abs method, the data being operated on is being separated

from the methods that operate on it, breaking encapsulation. Instead using num.abs() the data is

encapsulated in the num instance and its type is not visible or relevant to the outside world. abs()

will work on the data and work regardless of num's type, providing it implements the abs method.

This is a simple example, but applies to all static methods. Use of polymorphic instance methods

that work on encapsulated data will always be more flexible than static method calls which can

only ever deal with specific pre-defined types.

215 Thomas Butler

Exceptions

The only exception to this rule is when a static method is used for object creation in place of the

new keyword (Sonmez, 2010). This is because the new keyword is already a static call. However,

even here a non-static factory is often preferable for testing purposes (Hevery, 2008; Butler, 2013).

Thomas Butler 216

8.3.6 Using `new` in constructor

If a dependency is constructed inside the object that requires it rather than passed in as a

reference then flexibility is lost (Hevery, 2008; Hevery, 2008)

public class Car {

 private Engine engine;

 public Car() {

 this.engine = new Engine();

 }

}

.

Figure 8.16: New in constructor example

In figure 8.16, the Car constructor creates the Engine instance. This is inflexible as it forces all Car

objects to use the exact same Engine type. Instead, it would encourage reuse if the program

supported different engine types (e.g. DieselEngine, PetrolEngine or HybridEngine).

The same is true when an instance variable is created when the class is defined:

public class Car {

 private Engine engine = new Engine();

}

Figure 8.17: New in constructor example 2

In figure 8.17, by using the new keyword to instantiate a dependency, the specific implementation

of that dependency is hardcoded and cannot be substituted.

Instead, the dependency should be constructed outside the class and injected in:

public class Car {

217 Thomas Butler

 private Engine engine;

 public Car(Engine engine) {

 this.engine = engine;

 }

}

Figure 8.18: New in constructor solution

By using using dependency injection, as demonstrated in figure 8.18, it is possible to pass in any

engine type:

//Instead of

Car myCar = new Car();

//It's now possible to construct different types of car:

Car petrolCar = new Car(new PetrolEngine);

Car electricCar = new Car(new ElectricEngine);

Figure 8.19: Dependency Injection

Figure 8.19 demonstrates how dependency injection can be used to inject any engine type.

A secondary advantage to Dependency Injection with regards to flexibility and encapsulation is

that the class which has the dependency (Car, in this example) it not aware of the dependencies of

the Engine class.

For example, if the Engine class required a Gearbox instance as a constructor argument, the Car

class would need to instantiate and pass in the relevant Gearbox instance. And provide any

dependencies of the Gearbox class when instantiating it.

If the constructor arguments of any of the classes which need to be instantiated are modified

during development, any class which creates an instance of the class must also be modified. A

change to the constructor for Engine would require modifying the Car class. Instead, if the fully

constructed Engine instance

Thomas Butler 218

By loosely coupling the Engine class to the Car class, the author of the Car class does not need to

know anything about the implementation of Engine class or have knowledge of what

dependencies it has.

Exceptions

Using the new keyword is not a problem for the follow cases:

Factory methods - The single concern of the method is constructing and returning a new1.

instance, it should not be able to be substituted.

An immutable object returning a new instance of itself. A class is already tightly coupled to2.

itself, encapsulation is not broken and creating a new representation of itself is the method's

task.

Summary of issues

Tight Coupling

Breaks single responsibility principle

Breaks encapulation (the class with the new keyword knows implementation details e.g.

dependencies of the class being instantiated)

219 Thomas Butler

8.3.7 Inheritance

Inheritance has been pointed at as a source of programming problems since at least 1999. The

popular book Design Patters: Elements of Resusable Object-Oriented Software by Gamma et al (1994)

has a long section on replacing inheritance with composition. Holub (2010) quotes a speech by

James Gosling, the inventor of Java, who said he would leave out inheritance if he were to design

Java again.

The biggest problem with inheritance is the tight coupling it creates:

One of the problems with implementing an abstract class with inheritance is that the derived

class is so tightly coupled to the base class

Martin (2000)

Inheritance creates tight coupling because there is no way to substitute the parent class at

runtime and the subclass is stuck with the same parent class forever.

For example, consider a Car class which has the following subclasses: PetrolCar, DieselCar,

ElectricCar. All 3 subclasses are tightly coupled to the same base-class. It's likely a lot of the

functionality in the PetrolCar class is also applicable to the PetrolBoat class, however, due to

the tight coupling, the only way to share the functionality between the PetrolBoat and

PetrolCar classes is copying/pasting the relevant properties and methods.

Instead, is-a relationships are better expressed as has-a relationships. A boat has-a engine, instead

of a petrol powered boat is-a boat, an employee has-a job instead of an employee is-a person, a cat

has warm blood, fur and paws instead of a cat is-a animal.

For example, consider the classic inheritance Employee-Person example:

class Person {

 public String name;

 public String address;

 public String gender;

 public Date birthdate;

}

class Employee extends Person {

 public String jobTitle;

Thomas Butler 220

 public int salary;

 public Date startDate;

}

Figure 8.20: Inheritance example

The code demonstrating inheritance in figure 8.20 is is inflexible as:

A person cannot ever have more than one job

Only people can have jobs, it is impossible to represent robots in factories or animals who

work (e.g. police dogs)

Instead, by representing the class structure using has-a and composition, these problems can be

avoided as demonstrated in figure figure 8.21:

Person tom = new Person('Tom', new Job('Software Developer', 30000));

Animal rex = new Animal('Rex', new Job('Police Dog'));

Robot curiosityRover = new Robot('Curiosity', new Job('Exploration of Mars

'));

Figure 8.21: Inheritance solution

and the classes could be written to allow multiple jobs as demonstrated in figure 8.22:

<?php Person tom = new Person('Tom');

tom.addJob(new Job('Software Developer'));

tom.addJob(new Job('University Lecturer'));

Figure 8.22: Benefits of removing inheritance

221 Thomas Butler

When developing software it's easy to say The system doesn't need to support an animal with a job,

however requirements change frequently during a project and this reasoning prevents the reuse

of the class in the next project where you may well need this flexibility. By replacing inheritance

with composition, flexibility is always improved by removing tight coupling.

Holub (2010) sums up the problem as:

Why should you avoid implementation inheritance? The first problem is that explicit use of

concrete class names locks you into specific implementations, making down-the-line

changes unnecessarily difficult.

The major problem with inheritance is that is essentially static, there is no way to dynamically

change the base class like you can with composition. When a method is invoked such as

this.drive(), the drive method is a very tight coupling. It is either the method in the same class

or a parent class and there is no way to override it without making a new subclass. However, when

using composition this.engine.drive(), the Engine object can be substituted at runtime and

the drive() method could be any one of an infinite possible number of implementations.

Other problems with inheritance include

The fragile base class problem, inheritance breaks encapsulation

This is a problem that occurs because the author of the base class does not know how it is being

used by subclasses. A simplified version of an example given by Aldrich (2004) is as follows:

Consider two classes written by different authors. The classes act as counters, the first one counts

in steps of 1 or 2 and the second counter, counts in double the speed as demonstrated in figure

8.23:

class Counter {

 private int counter 0;

 public void add1() {

 counter = counter + 1;

 }

 public void add2() {

 counter = counter + 2;

 }

Thomas Butler 222

}

class CountInTwos extends Counter {

 public void add1() {

 add2();

 }

 public void add2() {

 add2();

 add2();

 }

}

Figure 8.23: Fragile base class example

These classes work perfectly. However, there is no way for the author of the parent class to know

how or where their base class is being used. It's not unreasonable for them to re-write their class

at some point, as shown in figure 8.24:

class Counter {

 private int counter 0;

 public void add1() {

 counter = counter + 1;

 }

 public void add2() {

 add1();

 add1();

 }

}

Figure 8.24: Fragile base class problem

223 Thomas Butler

Anywhere Counter is used still works perfectly, all unit tests on the class still pass and the API

hasn't changed. However, this affects CountInTwos: There is now an infinite loop: The add1()

function calls add2(), which calls add1(), creating infinite recursion. The subclass's functionality

has been broken by a seemingly harmless change in the base-class.

This is action at a distance as a change in one place inadvertently breaks code elsewhere.

Aldrich (2004) suggests several solutions to this problem, however they involve careful class

design and requiring the author of the base class to design their class around the problem in

order to prevent it. A simpler solution is avoiding inheritance in the first place (Holub, 2010;

Biberstein et al, 2002; Bloch, 2008; Gamma et al p.20, 1994; van Dongen, 2014) giving more

flexibility to class design.

Because inheritance exposes a subclass to details of its parent's implementation, it's often

said that 'inheritance breaks encapsulation'

Gamma et al (1994)

Though both Composition and Inheritance allows you to reuse code, one of the

disadvantage of Inheritance is that it breaks encapsulation. If sub class is depending on

super class behavior for its operation, it suddenly becomes fragile. When behavior of super

class changes, functionality in sub class may get broken, without any change on its part.

Paul (2013)

The fragile base class problem exists because inheritance subtly breaks encapsulation (Biberstein

et al, 2002; Gamma et al p.20, 1994). In the example above, the CountInTwos class is subtly

exposed to the implementation of the parent class. Changes in the parent class are reflected in

child class meaning the two classes are not self-contained. It is expected API changes will always

have an affect elsewhere no matter the relation type, with inheritance implementation changes in

one class can affect the outcome of another class, even if the arguments and return values of the

method do not change.

Protected and public properties also break encapsulation in a much more obvious way. Protected

properties share data between two classes, breaking encapsulation in a much more obvious way

(Martin p.80, 2008).

The diamond problem

A major problem with inheritance is that it becomes difficult to share code in large inheritance

Thomas Butler 224

trees. The diamond problem is demonstrated in figure 8.25:

class Bird extends FlyingAnimal {

}

class Fish extends SwimmingAnimal {

}

Figure 8.25: The diamond problem

How would a developer model a penguin in this inheritance tree. Hurn (2014) and van Dongen

(2014) also provide detailed examples of this problem. Whenever you get an inheritance hierarchy

you run into this problem when the project becomes large enough, you will find you need to share

some properties of two classes at opposite ends of the hierarchy. The only fix becomes a large

refactoring of the class hierarchy or duplicating code. As duplicating code is a large maintainability

problem[martin-2008 p.173,mcconnel-2004 p.565,hunt-1999 p.48], the first is more favourable,

however the problem can be avoided all together by favouring composition over inheritance at the

start of a project (Otander, 2015).

Some languages do allow for Multiple Inheritance which solves the diamond problem, however it

doesn't fix the static method calls or the situations above e.g. multiple jobs or different things that

can have jobs.

Separation of concerns, single responsibility principle

The final problem with inheritance is that it breaks the single-responsibility-principle. The single

responsibility principle was coined by Martin (2003) who defines it as:

A class should have only one reason to change

And later reiterated it as

Gather together the things that change for the same reasons. Separate those things that

change for different reasons.

Martin (2014)

225 Thomas Butler

If a subclass an a parent class are sharing an API but are otherwise different, they will change at

different times for different reasons. By definition changing the base class will change the

subclass, giving the subclass at least two reasons to change.

In the case of inheritance this has little practical effect and breaking the single responsibility

principle in this way doesn't cause the same issues as it normally would because there is some

separation between classes. However it's worth noting that a subclass will always export two APIs.

As with most programming practices, there are trade-offs when choosing which approach to use.

Inheritance can be easy to use and understand, it can also simplify designs (Gamma et al p.25,

1994), but composition is always more flexible (Gamma et al p.25, 1994) and should be favoured

for flexibility (Paul, 2013; Johansson, 2015; van Gurp et al, 2001)

Summary of problems of Inheritance:

Tightly couples the child to the parent

Breaks Single Responsibility Principle

Diamon Problem

Fragile Base Class Problem

Thomas Butler 226

8.3.8 Global/Static variables

The identification of global variables as a bad practice dates as far back at least as far as Wulf et al

(1973) and are one of the most widespread and well known bad practices related to flexibility. This

is likely due to being available in almost every programming language, ease of use and speed to

learn. They also cause severe problems in code and it's very easy to get caught out by using them,

even in a small application.

Global vairables are widely labelled "bad practice" and have been for some time, for example back

in 1999 Kernighan wrote:

Avoid global variables; wherever possible it is better to pass references to all data through

function arguments

Kernighan (1999)

And Hevery (2008) states:

I hope that by now most developers agree that global state should be treated like GOTO.

This attitude is widespread and Sayfan (n.d.) sums up the problem:

Whenever shared mutable state is involved, it is easy for components to step on each other's

toes.

Although "global variables are bad" is a common thing to here, for novice developers it's not

immediately obvious why this is. However, the reasons have been covered frequently by

developers of varying prominence. While writing about desiging the Eiffel programming language,

(Meyer, 1988) stated several problems with global variables:

Since global variables are shared by different modules, they make each of these modules

more difficult to understand separately, diminishing readability and hence hampering

maintenance.

As global variables constitute a form of undercover dependency between modules, they are

a major obstacle to software evolution, since they make it harder to modify a module

without impacting others.

They are a major source of nasty errors. Through a global variable, an error in a module

may propagate to many others. As a result, the manifestation of the error may be quite

remote from its cause in the software architecture, making it very hard to trace down errors

and correct them. This problem is particularly serious in environments where incorrect array

references may pollute other data.

227 Thomas Butler

This is a good overview but it misses out on some of the more practical problems that developers

face when using global variables. The first issue most people will face is name clashes:

everywhere in the program, you would have to keep track of the names of all the variables

declared anywhere else in the program, so that you didn't accidentally re-use one.

Summit (1997)

The problem of name clashes is magnified by the size of a team. If two people are working on a

piece of software and both use global variables, it's possible they'll write some code using the

same variable names. During execution this might cause the two peices of code to interfere with

each other.

This problem is commonly referred to as action at a distance and described by Hevery (2008) as:

Spooky Action at a Distance is when we run one thing that we believe is isolated (since we

did not pass any references in) but unexpected interactions and state changes happen in

distant locations of the system which we did not tell the object about. This can only happen

via global state as demonstrated in figure 8.26:

class FileReadWrite {

 private static String fileName;

 public FileReadWrite(String file) {

 fileName = file;

 }

 public void read() {

 return new FileReader(fileName);

 }

 public void write(String data) {

 FileWriter writer = new FileWriter(new File(fileName));

 writer.write(data);

 }

}

Thomas Butler 228

//Works as expected:

FileReadWrite file = new FileReadWrite('./one.txt');

file.write('data');

//cause a problem

FileReadWrite file1 = new FileReadWrite('./one.txt');

FileReadWrite file2 = new FileReadWrite('./two.txt');

file1.write('data1');

file2.write('data2');

Figure 8.26: Global variables example

The code in figure 8.26 causes a problem because there is a global variable storing the file name.

Assuming a class requires only one value of a variable across the whole application always limits

flexibility. There are occasionally practical reasons for this such as keeping track of and limiting the

number of open files/connections but flexibility is always reduced. Even in these practical

exceptions, it introduces a new issue of separation of concerns: Should the class be concerned

with the number of open connections throughout the application or should that be managed at an

application level rather than a class level?

Global variables also break encapsulation. Encapsulation is defined by Rogers (2001) as:

Encapsulation refers to the bundling of data with the methods that operate on that data

By making the data globally accessible, encapsulation has been lost. Any part of the program has

access to the data and can modify it. Even when using private static variables, each instance no

longer has control of its own sate.

Finally, global variables introduce coupling. In Object Oriented Programming an object should be

self-contained (Yaiser, 2011; Caromel, 1993). If a class depends on a global variable, then moving

the class to a different project requires defining the required global variables in the new project.

However, instance and static class variables do not have this problem because they are defined as

part of the class.

229 Thomas Butler

Summary of problems introduced by global variables

Coupling of data between every component

One component can accidentally overwrite data required by another component

Adding code requires knowing exactly what variables are already in use

When working in teams, name clashes can be easily introduced

Global state makes it difficult to reuse the code. E.g. having two files open at the same time

would require writing the code twice, three times for three files, etc.

Thomas Butler 230

Appendix IV. Full explanations of negative traits

Below are the full explanations of negative traits which are introduced by bad practices. These

explanations can be referenced in future work or embedded in future tools using this research.

8.4.1 Broken encapsulation

Encapsulation is a fundamental feature of Object-Oriented design. It is generally defined as:

Bulding the data with the methods that act on that data

Encapsulation be broken in many ways. The most obvious is public properties:

class User {

 public Database database;

 public int id;

 public String name;

 public String emai;

public void save() {

 Query query = this.database.query('UPDATE user SET name = ?,

email =? password = ? WHERE id = ?');

 query.bind(this.name);

 query.bind(this.email);

 query.bind(this.id);

 query.execute();

 }

}

Figure 8.27: Broken Encapsulation example

In figure 8.27, the database property is public, anything with access to a User instance can

change the database connection, for example, the code in figures 8.28 or 8.29.

public function processUser(User user) {

 user.database = null;

231 Thomas Butler

 //...

}

Figure 8.28: Demonstration of Broken Encapsulation issue (a)

public function processUser(User user) {

 user.database.disconnect();

 //...

}

Figure 8.29: Demonstration of Broken Encapsulation issue (b)

By exposing properties, an object is no longer in charge of its own state. Any external code can

change the dependency at any point in the execution of the program.

This causes maintainbility as properties cannot be relied upon and the code cannot be rewritten to

no loger use them. For example, a total property cannot be refactored to a getTotal() method

that performs a calculation.

Example 2:

A second example, shown in figure 8.30, is unbundling the behavior and the data being worked

on:

// Take two numbers and add the absolute values together

public int addAbs(int value1, int value2) {

 return Math.abs(value1) + Math.abs(value2);

}

Figure 8.30: Operating on data outside of the scope it is defined in

In figure 8.30, the Math.abs() method is operating on data it does not own and therefore

encapsulation has been broken.

Thomas Butler 232

The data being worked on (value1 and value2) is exposed to the addAbs method rather than

encapsulated.

This is evident because it's impossible to substitute the behaviour for a different type, only

integers will work. The addAbs method cannot ever work with different types. For example,

BigInteger, BigDecimal or RomanNumeral.

With encapsulation, the code would be expressed as shown in figure 8.31 and 8.32.

interface Numeric {

 public Numeric abs();

}

Figure 8.31: Alterantive approach using an interface

// Take two numbers and add the absolute values together

public int addAbs(Numeric value1, Numeric value2) {

 return value1.abs() + value2.abs();

Figure 8.32: Using the interface from figure 2.33

In figure 8.32, aas the data type is never exposed to the method, it is not limited to the types

supported by Math.abs().

In the original version of the code from figure 8.30, the addAbs method would not work with an

instance of BigInteger, BigDecimal or RomanNumeral because encapsulation has been broken

and the only way to add support for it would be to add support in the Math class.

The updated version, using the Numeric interface is now type agnostic. It will work with any class

that implements Numeric as each class provides its own implementation of the abs method, new

numeric types can be easily added.

Static methods like Math.abs() always break encapsulation because they operate on data which

they do not own.

233 Thomas Butler

8.4.2 Single Responsibility Principle

The single responsibility principle was created by Martin (2000) who described it as "An class

should have a single reason to change".

A class which has two or more responsibilities is difficult to maintain because the behaviour is

tightly coupled and difficult to replace.

For example, an object with a serialize() method knows that it is going to be serialized (broken

encapsulation) but it has two responsibilities:

Whatever the class should be doing.1.

Providing the serialization mechanism.2.

If a different serialization format is added, for example JSON, a second method serializeJson()

would be required, for XML, serializeXml() and so on.

If a class has more than one responsibility, it is impossible to substitute one of the responsiblities

(e.g. the serialization method above).

The above example would be better expressed as shown in figure 8.33:

obj.serialize();

Figure 8.33: Broken single responsibility principle

The code in figure 8.34 is preferred as the object is not responsibile for how it is serialized:

serializer.serialize(obj);

Figure 8.34: Demonstrating the single responsibility principle

With this approach, where obj is not in charge of how it is serialized, different serialization

methods can be used on the same object as shown in figure 8.35.

Thomas Butler 234

XMLSerializer.serialize(obj);

JSONSerializer.serialize(obj);

YAMLSerializer.serialize(obj);

Figure 8.35: Advantage of following the single responsibility principle

8.4.3 Unclear dependencies

A class which has dependencies that are not made clear as part of the class API. Someone looking

at the class has to very carefully look through the code to identify the coupled classes.

Why this is an issue

Moving the class between projects is difficult as it requires locating and also moving all the classes

which

Example

This is often a result of a Law of Demeter violation or service locator: a.getB().c(), it is not clear

that the class has a dependency on the type returned by getB().

8.4.4 Temporal Coupling

Temporal Coupling is a situation where the order in which methods are called on an object has a

negative effect if one method must be called before another for the object to fulfil its contracts.

(Seeman, 2011; Bugayenko, 2015).

This happens commonly with init and initialize methods. For example:

class Car {

 private Engine engine;

public void initialize(Engine engine) {

 this.engine = engine;

 }

public void drive() {

 this.engine.start();

 }

}

235 Thomas Butler

Figure 8.36: Temporal Coupling example

In figure 8.36, when the Car class is used, if the drive method is called before the initialize

method, the object will not work correctly.

If an object can reach such a state, where methods must be called in a 'correct' order and

'incorrect' order, then it suffers from Temporal Coupling.

8.4.5 Law of Demeter

The law of demter is closely related to [encapsulation](#encapsulation) and [tight coupling](#tight-

coupling) and a subset of Unnecessary Coupling. It involves breaking encapsulation by exposing

dependencies (Hevery, 2008; Grimm, 2014; Haack, 2009). This is demonstrated in figure 8.37:

public void refuel(Car car) {

 car.getEngine().addFuel(new Diesel);

}

Figure 8.37: Law of Demeter example

This creates coupling between the calling code (the refuel method) and the engine class. The

calling code is now exposed to all the methods in the car class and all the methods in the engine

class.

This means that because the car is exposing the engine class to the calling code, the car class

cannot have its implementation changed to use a different engine.

For example, a car may have an electric engine that has a charge() method and not a refuel()

method. However, the calling code here is coupled to a diesel engine not an electric engine. By

properly encapsulating the engine inside the car class and not exposing it to calling code, the

client code that is using the car instance is only coupled to the car class. To anyone looking at the

code it's easy to see what dependencies the car class has (As they should be listed in the

constructor). The engine class can change both its implementation and its API without breaking

any classes other than the ones that use it directly and the car class can be rewritten to use a

different engine type (or no engine at all) and the calling code will still work. The fact that the car

even has an engine should be hidden from the outside world.

Thomas Butler 236

This makes testing difficult. To test the refuel method above, a Car instance needs to be created

just so it can return the real Engine instance. If there are other classes being used by the car class

(Door, Seat, Wheel, etc) these all need to be created (or mocked) just to test the engine's refuel

method. This leads to very verbose and messy tests. If the test fails, is it due to a problem in the

Car class or the Engine class?

Instead, if the code was rewritten as shown in figure 8.38 to only use the engine object then the

test only needs to create an Engine instance and not the whole object stack starting from the Car

instance. This also greatly enhances the flexibility of the refuel method because it can work on

an engine that isn't stored inside a Car instance. For example, inside the application the Engine

could be part of a Boat or Plane or Car, but there is no reason for the method to know this.

public void refuel(Engine engine) {

 engine.addFuel(new Diesel);

}

Figure 8.38: Avoiding breaking the Law of Demter

The problems created by breaking the Law of Demeter are exacerbated by digging further into the

object graph as shown in figure 8.39.

public void refuel(Driver driver) {

 driver.getVehicle().getEngine().addFuel(new Diesel);

}

Figure 8.39: Digging deeper into the object graph

To test the method shown in figure 8.39, the object graph shown in figure 8.40 must be created.

new Driver(new Car(new Engine));

Figure 8.40: Object graph required to test the code shown in figure 2.41

237 Thomas Butler

If the test using the object graph from figure 8.40 fails, it's not clear which class the problem exists

in. If the only object that is created is the Engine class and the test fails, the developer

immediately knows where to look for the bug.

Although this is an example of loose coupling, loose coupling is less flexible than entirely

decoupled code.

Because the refuel method is coupled to both the Car class and the Engine class, there are

some practical problems:

It cannot be used to add fuel to an engine that's not in a car, e.g. refueling a boat.

To move the Engine class and refuel method to another project, the Car class must also

be moved, even if only the Engine class is required.

The same underlying idea is also expressed by Fowlwer (2013) as "Tell, Don't ask"

8.4.6 Tight Coupling

Coupling, with objects, is much like "Coupling" with people, it describes how a pair of objects

interact with one another.

There are two different types of coupling: Tight coupling and Loose coupling. These describe the

different types of relationships between objects.

A married couple can be said to be tightly coupled because they are only allowed to date one

another. A single person can date anyone they like. In php the married couple who are tightly

coupled can be demonstrated as:

class Dave {

 private Kate partner;

public Dave() {

 this.partner = new Kate();

 }

public void date() {

 this.partner.takeOut();

 }

Thomas Butler 238

}

Figure 8.41: Example of Tight Coupling

In figure 8.41, Dave can only ever take Kate out on a date. Whenever dave.date() is called, the

takeOut() method will be called on an instance of Kate. There is no way for Dave to take a

different partner on a date.

Dave dave = new Dave();

dave.date();

Figure 8.42: No dependencies are visible externally

In figure 8.42, no dependencies are visible outside of the class. This is the essence of tight

coupling. Dave is tightly coupled to Kate because there is no way for Dave to take anyone else on a

date in this code.

Bob, shown in figure 2.45, represents a single person:

class Bob {

 private Partner partner;

public Bob(Partner partner) {

 this.partner = partner;

 }

public void date() {

 this.partner.takeOut();

 }

}

Figure 8.43: Example of loose coupling (a)

There's only one difference between Dave and Bob, and that is, Bob can have his parter assigned

when the instance is created using Dependency Injection. This gives Bob more flexibility because

239 Thomas Butler

he can go on a date with anyone.

Bob bob = new Bob(new Amy);

bob->date();

Bob bob = new Bob(new Kate);

bob->date();

Bob bob = new Bob(new Dave);

bob->date();

Bob bob = new Bob(new Bob);

bob->date();

Figure 8.44: Example of loose coupling (b)

Figure 8.44 shows how the Bob instance can be configured with any partner. This is the difference

between tight and loose coupling in Object-Oriented Programming.

Real world example

The above example is contrived. In real programs loose coupling is incredibly useful as it allows

programmers to build code that can work with different collaborators. Consider the program in

figure 8.45 which acts as a newsletter signup form. It takes some data from the user via

formSubmission and saves it to a file:

class Signup {

 private File file;

public Signup() {

 this.file = new File('./signups.txt');

 }

public void process(FormSubmission formSubmission) {

 this.file.writeObject(formSubission);

 }

}

Figure 8.45: Real world example of tight coupling

Thomas Butler 240

The file class used in figure 8.45 has a writeObject method that takes an object and writes it to a

file. How that works is not important for this example but it could be assumed that it writes it in

JSON: {"name": "Bob", "email": "bob@example.org"}.

One immediately obvious problem with this approach is that it can only ever write to signups.txt.

To change the file being written to, the class must be edited. This prevents me having two

instances of the Signup class that write to different files. It's not unreasonable that the system

could be extended to have have multiple newsletters that the user wants to sign up to, if all the

sign up data is stored in the same file it wouldn't be possible to know which user wants to sign up

for which newsletter

Figure 8.46 shows how this can be overcome by passing the file name as a constructor argument.

class Signup {

 private File file;

public Signup(string fileName) {

 this.file = new File(fileName);

 }

public void process(FormSubmission formSubmission) {

 this.file.writeObject(formSubission);

 }

}

Figure 8.46: Enhanced Signup example class

Figure 8.47 demostrates the added flexibility, as an instance of Signup is created, the file name can

be set to the file for the particular mailing list being signed up to.

new Signup('./news.txt');

new Signup('./specialoffers.txt');

Figure 8.47: Enhanced Signup example class usage

Figure 8.47 shows an improvement over the previous version, however it is still less flexible than it

241 Thomas Butler

could be. In this version, newsletter sign ups can only be written to a file because the constructor

instantiates a File instance. Instead, as demonstrated in figure 8.48, if the instance was passed in

using dependency injection it would be possible to use any storage mechanism. For example,

swapping out file storage for database storage:

class Signup {

 private Storage storage;

public Signup(Storage storage) {

 this.storage = storage;

 }

public void process(FormSubmission formSubmission) {

 this.storage.writeObject(formSubission);

 }

}

Figure 8.48: Signup class using loose coupling

The code is almost exactly the same, the only difference is that the coupling of the storage

instance has been changed the coupling from tight to loose. The signup class still requires a

storage mechanism but it isn't coupled to the specific implementation that writes to a file. Figure

8.50 demonstrates the flexibility of using the Signup class with any storage mechanism:

new Signup(new File('./news.txt'));

new Signup(new File('./specialoffers.txt'));

new Signup(new Database('127.0.0.1', 'username', 'password', 'tablename'));

new Signup(new Database('127.0.0.1', 'username', 'password',

'another_table'));

new Signup(new RESTApi('rest.example.org'));

Figure 8.49: Signup class using loose coupling usage

Other forms of tight coupling

In addition to using the new keyword as above, there are other ways of introducing tight coupling

Thomas Butler 242

into Object-Oriented code.

Inheritance

Inheritance is another method of tightly coupling classes. When using inheritance, it's impossible

to substitute the base class at runtime and the relationship is incredibly rigid.

The example from figure 8.41 could be modeled using inheritance as shown in figure 8.50:

class Dave extends Kate {

 public void date() {

 super.takeOut();

 }

}

Figure 8.50: Tight coupling with inheritance

Whenever the date() method is called, the takeOut() method from the Kate class is called and

there is no way of substituting this without rewriting the class. Once again, Dave can only date

Kate because they are tightly coupled.

Figure 8.51 demonstrates how the Signup class could also be modeled using inheritance:

class Signup extends File {

 public void process(FormSubmission formSubmission) {

 super.writeObject(formSubission);

 }

}

Figure 8.51: The Signup class modeled using inheritance

The same problem occurs in figure 8.51 as it does in figure 8.46. The only writeObject

implementation that can be used without rewriting the class is the implementation in the File

class because of the tight coupling which has been introduced, this time using inheritance. There

is no way to substitute the implementation at runtime.

243 Thomas Butler

Although it's possible to override the writeObject method in the Signup class, the Signup class

would still be locked to a single implementation (the one in the Signup class). There would be no

way to replace the implementation without physically altering the code, either by changing the

Signup class or adding a new subclass which overrides the behaviour.

Inheritance and using new in a constructor are identical in the way the limit flexibility and in the

way they force class design. They both prevent runtime substitution and require modifying the

code in the class to alter the execution of the method.

Static Methods

Tight coupling is also introduced via static methods. The above examples could also be re-written

using static methods as show in in figures 8.53 and 8.54:

class Dave {

 public void date() {

 Kate.takeOut();

 }

}

Figure 8.52: Tight coupling using static methods

class Signup {

 public void process() {

 File.writeObject($signup);

 }

}

Figure 8.53: Using static methods to model the Signup class

Static methods introduce exactly the same problem as inheritance and using the new keyword.

There's no way to substitute where the data is being written without changing the code.

Thomas Butler 244

Solution

The solution, for all three of these issues is to use loose coupling via dependency injection as shown

in figures 8.54 and 8.55.

class Dave {

 private $partner;

public function __construct($partner) {

 $this->partner = $partner;

 }

public function date() {

 $this->partner->takeOut();

 }

}

//...

Dave dave = new Dave(new Amy);

dave.date();

Dave dave = new Dave(new Kate);

$dave.date();

Dave dave = new Dave(new Dave);

$dave.date();

Dave dave = new Dave(new Bob);

dave.date();

Figure 8.54: Loosely coupled Dave class

class Signup {

 private Storage storage;

public Signup(Storage storage) {

 this.storage = storage;

 }

public void process(FormSubmission formSubmission) {

 this.storage.writeObject(formSubission);

 }

245 Thomas Butler

}

//...

new Signup(new File('./news.txt'));

new Signup(new File('./specialoffers.txt'));

new Signup(new Database('127.0.0.1', 'username', 'password', 'tablename'));

new Signup(new Database('127.0.0.1', 'username', 'password',

'another_table'));

new Signup(new RESTApi('rest.example.org'));

Figure 8.55: Loosely coupled Signup class

This alternative is much more flexible as:

The storage mechanism can be replaced at runtime new Signup(new Database)

Multiple instances of Signup can be created, each with a different storage mechanism

The code can be moved between different projects and different projects can use different

storage mechanisms (a file on one project, a database on another, all with the same Signup

class)

How to identify tight coupling

Tight coupling exists whenever a class named is explicitly used inside another class. Whether that's

a static method call, extends or the new keyword. The result is the same, the relationship between

the two classes is rigid and it's impossible to substitute the dependency for a different

implementation.

Conclusion

When defining relationships between classes there are multiple approaches which can be taken:

instantiating one object inside another, inheritance, static methods, singletons or dependency

injection.

Dependency Injection is by far the most flexible as it doesn't define a hardcoded relationship

between the classes and objects can be used with different dependencies.

Loose coupling makes classes far more flexible with little to no extra effort required. Using loose

coupling, as the requirements of the project inevitably change it's very easy to implement the

updates. With tight coupling it can be incredibly difficult, especially when the program needs to be

achieve two methods of doing the same thing (e.g. having the signup write to a file in one place

Thomas Butler 246

and a database in another.)

By using Dependency Injection, the object can be instantiated with as many different

configurations as required and isn't tied to a specific implementation. With tight coupling, the

configuration is explicitly defined inside the class and there is no way to override it.

Considering this very useful benefit and zero extra development time or drawbacks, using loose-

coupling is a no-brainer!

8.4.7 Global State

Global state exists when a variable is available in global scope and can be altered by any part of

the application.

Example

A database connection in global scope could be disconnected in one part of the application,

inadvertently breaking another part of the application that expects the connection to still be

active.

Issues

This causes buggy applications because one part of the application can accidentally overwrite a

variable being used for a completely different purpose elsewhere.

In addition, it is very difficult to remove global variables from an application once they exist

because it's hard for the developer to know where or if the variable is being used.

Solution

All variables should be private instance variables. It is then clear to someone looking at the code

that the variable can only ever be used in the class in which it is defined. If the variable is no longer

used in the class, it can be safely removed.

8.4.8 Unnecessary Coupling

Unnecessary Coupling exists when one class is coupled to a class but does not need to be. This

usually happens when one class is used as a 'kitchen sink' object and passed around to

dependencies.

Figure 8.56 shows a Car class which accesses an Engine instance via a CarParts container.

247 Thomas Butler

class Car {

 private CarParts parts;

public Car(CarParts parts) {

 this.parts = parts;

 }

public function drive() {

 Engine engine = this.parts.getEngine();

 engine.start();

 }

}

Figure 8.56: Unnecessary Coupling example

In this example, the Car class doesn't have a dependency on CarParts, it has a dependency on

the Engine class and Car and CarParts can be decoupled entirely as showin in figure 8.58.

class Car {

 private Engine engine;

public Car(Engine engine) {

 this.engine = engine;

 }

public function drive() {

 this.engine.start();

 }

}

///

Car car = new Car(parts.getEngine());

Figure 8.57: Removing Unnecessary Coupling

8.4.9 Action at a Distance

Action at a distance is a type of broken encapsulation where one part of the application can

accidentally affect the way a different part of the program runs.

This is usually happens due to global state as showin in figure 8.58.

Thomas Butler 248

class ShoppingBasket {

 public static double taxRate = 0.2;

public void getSubtotal() {

 //loop through items and calcualte subtotal

 }

public void getTotal() {

 return this.getSubTotal() * (1 + this.taxRate);

 }

}

///...

public void getBasketTotal(User user, ShoppingBasket shoppingBasket) {

 if (user.country == 'Ireland') {

 ShoppingBasket.taxRate = 0.23;

 }

//...

}

Figure 8.58: Global state and action at a distance

Because of the global taxRate variable, the entire application's taxRate has changed after the

first user from Ireland places an order. This may cause bugs if when a user from another country

places an order, the tax rate is not reset.

249 Thomas Butler

Appendix V. Paper: Seven Deadly Sins of Software Flxibility

The paper below was presented at the China-Europe International Symposium on Software

Engineering Education conference in 2017 (Athens). The paper is a cut down version of chapter 2

of this thesis to meet the conference's word limit.

Seven Deadly Sins of Software Flexibility

Thomas Butler1 and Mark Johnson1

1University of Northampton, Northampton, United Kingdom
thomas.butler@northampton.ac.uk

Abstract. As software development techniques evolve, practices emerge
which both help and hinder software development. These practices are often
identified first by industry experts who work with large codebases in big
teams. There are many software development techniques that have been
labelled "bad practice" by these industry experts that aren't formally
recognised in academia. This paper briefly describes some of these bad
practices.

1. Introduction

When teaching programming the primary goal is giving students the tools they need
to be able to write code. From the very basics of variables and if statements through
to Objects and Classes, all the while the teaching focus tends to be on "how". "How to
write a class", "How to write a static method" with less focus on arguably more
important questions beginning with "Why": "Why do those methods belong in that
class?", "Why did you use a static method there?", "Why should global variables be
avoided?". These are questions which typically come up during industry code
reviews[1-2].

Although there is some emphasis on code structure, usually it's only as far as
Separation of Concerns (For example, MVC), there is often little to no discussion of
best practices and the avoidance of known bad practices. The choices made by the
developer to use one language tool over another can heavily impact the
maintainability and flexibility of the final product.

Certain practices have been labeled as "bad" for many years. Practices such as
global variables have been widely identified as impacting the flexibility of code
going back at least as far as Wulf et al[3]. Others have highlighted problems with
their use since[4-6].

Other bad practices have been identified as the complexity of programs and
development methodology grows. For example Hevery[7], a programing coach at
Google, has identified several bad practices which have emerged due to a shift
towards Test-Driven-Development (TDD) among developers. These practices were
still problematic before the widespread use of TDD, however because TDD requires
an extra level of flexibility, practices which limit flexibility become apparent to the
developer considerably faster than when using alternative development methods.

1.1 Case Study: Singleton Pattern

One such bad practice is the Singleton Pattern, which to most developers is regarded
as bad practice[9]. Despite this being identified as a bad practice by developers at

Thomas Butler 250

2

IBM[10], Microsoft[11], Google[12] and by many other industry
professionals[12-14]. The singleton is one of the most commonly discussed and
derided "anti-patterns".

Despite the widespread derision of the pattern in industry, the singleton can still be
found in academic teaching materials[15-17] and academic papers [18-19]. Even
papers which specifically discuss the merits of design patterns[20-21] fail to mention
that it's a widely discouraged pattern. The singleton is one of the most commonly
described bad practices yet it still appears in academic materials.

There is a gap between industry and academia which this paper attempts to bridge
by formally describing the bad practices in an academic setting.

This paper briefly outlines seven practices which have been identified by industry
experts as "bad practice" in regards to software flexibility. Each identified practice is
labeled as such because it makes the code difficult to test, adapt or change to meet
new requirements. This paper does not attempt to weigh in on the pros/cons of
flexibility[23] or possible performance/design trade-offs when building software in a
flexible way.

2. Sins of Software Engineering

Fig 1. Seven Deadly Sins of Software Flexibility

The following are seven of the most commonly discussed bad practices, however this
is not a comprehensive list and other developers may prioritise other bad practices.

2.1 Global/Static Variables

Global vairables are widely labelled "bad practice" and have been for some time, for

251 Thomas Butler

3

example in 1999 Kernighan[23] wrote:
Avoid global variables; wherever possible it is better to pass references to all data
through function arguments
And Hevery[24] states:
I hope that by now most developers agree that global state should be treated like
GOTO.
Although "global variabls are bad" is a common thing to hear, for novice developers,
it's not immediately obvious why this is. The underlying issue is that global state can
cause "action at a distance"[26]. By relying on shared state across the application,
changes to this state can have knock on effects throughout the entire application. If,
for example a global or static variable is used to store a database connection, a
disconnection command in one part of the application will cause any other part of the
program that needs an active connection to stop working.

2.2 Singleton

for it is true that global variables are often demonised and more recently the
Singleton has befallen the same fate.
Knack-Nielsen[8]

The singleton has become regarded as an anti-pattern in the minds of most
developers. This is for several reasons that don't apply to many other bad practices:

The singleton was one of the patterns mentioned in two very popular and
highly referenced books: Design Patterns: Elements of Reusable Object-
Oriented Software[26] and Patterns of Enterprise Application
Architecture[27]. This caused widespread knowledge of the pattern and it took
some time until the issues it causes were documented.
The pattern was given a formal name and is easy to identify
The pattern has been labeled bad practice for over a decade [10]
The problems it causes are severe compared to other more subtle patterns so
developers much more quickly identify one of the many issues it introduces.

Like Global Variables, because of abundant use, problems associated with the pattern
are very well documented.

2.3 Inheritance

Inheritance has been pointed at as a source of programming problems for a log time.
The popular book Design Patters: Elements of Resusable Object-Oriented Software
by Gamma et al[26] has a section on replacing inheritance with composition.
Holub[28] quotes a speech by James Gosling, the inventor of Java who said he would
leave out inheritance if he had to design Java again.

The biggest problem with inheritance is the tight coupling it creates[30] as there is
no way to substitute the parent class at runtime. From a TDD perspective, this means
that testing the subclass also means testing the parent class. Instead, is-a relationships
are better expressed as has-a relationships. A boat has-a engine, instead of a petrol
powered boat is-a boat, an employee has-a job instead of an employee is-a person, a
cat has warm blood, fur and paws instead of a cat is-a animal.

Thomas Butler 252

4

Inheritance also creates the the Fragile Base Class problem[31] where making a
change to a child class can break functionality in the parent class and problems with
inheritance in regards to encapsulation[26][32].

2.4 Using The New Keyword in Constructors

Tight coupling has been identified as a limitation on flexbility by numerous
developers[32-33] over the last decade or so. It causes a problem because it makes it
impossible to substitute one part of the system for another. [34][36] has identified a
specific technique which introduces tight coupling that makes code hard to test, that is
the new keyword.

If, when an object is instantiated, it instantiates 5 other objects it's impossible to
isolate that initial object for testing purposes. If a unit test fails, there is no way to
know whether the bug is in the object we're testing or one of the objects it
instantiated. Instead, the objects should be instantiated once at the top level and
passed in as constructor arguments. A practice known as Dependency
Injection[36-37]. By injecting dependencies into a constructor, those dependencies
can be mocked for testing purposes.

2.5 Service Locator

A service locator is a specific common example of a Law Of Demeter violation[39].
Flexibility is reduced as the service locator introduces coupling between the service
locator and the code which uses it.
there’s no reason to ever use a Service Locator. There’s always a better alternative
that involves proper inversion of control.
Seeman[39]

As with New in constructor, the solution is to inject dependenceis to the
constructor.

2.6 Object Not Initliased After Constructor Finishes (Initialize/Set Methods)

Once the constructor has run, the object should be 100% configured. Several common
bad practices have emerged which go against this but all lead to the same issue. The
practices are:

Initialize Methods Some developers will create initialize methods[35] which
are intended to be called immediately after the constructor to provide some additional
setup.

Setter Injection which is used to provide dependencies using individual function
calls rather than as part of the constructor[41].

In both instances the same problem is introduced: It's possible to have an object in
an unusable state. If an object is passed into a method, calling a function on it may or
may not work depending on whether other methods have been called on the object to
set up the dependencies or initialize it with default values.

2.7 Use of Static Methods

Use of static methods always reduces flexibility by introducing tight coupling[42]. A

253 Thomas Butler

5

static method tightly couples the calling code to the specific class the method exists
in.

A static method cannot be mocked for testing purposes[43] leading to difficult to
test code. It's also impossible to substitute the method heavily reducing flexibility.
Math.abs(num) will only work with some types, those which have a method in the
Math class, to make the abs() method work with a new type (e.g. BigInt) the Math
class must be amended with a new method. A better solution is polymorphism.
Instead of a static method num.abs() would allow extending the code with new
numeric types without needing to update the Math class.

Any value for num that was passed into a method would supply the abs() method
which dealt with that particular type. Static methods always break encapsulation
because they decouple the data from the methods working on the data.

3. Conclusion

This list of sins is incomplete and does not represent all the bad practices which are
either commonly derided or widely discussed among industry professionals, however
these are the most common. Although there is ample discussion among academics
about global variables, the same rigor is not taken with other practices which are
known to cause similar problems, which has a knock on effect to teaching and
learning.
Moving forward the following steps can be taken to bridge the gap between industry
professionals and academics:

Alongside exercises that ask students to write a program that performs a task, ask1.
them to evaluate different implementations of the code.
Set assignments and exercises that focus on testing and maintaining existing code,2.
with an emphasis on asking where improvements can be made and problems with
current approaches
Shift the focus from exercises that result in dozens of small programs to building a3.
single larger program over a course; the students will encounter these kind of
problems themselves
Introduce the concept of code reviews to students during the academic course4.
Specifically teach how to identify bad practices and alternative approaches.5.
Develop tools that can detect flexibility limitations in source code. This could be6.
done in a similar vein to the W3 HTML Validator[44], online accessibility
checkers or code quality metric tools such as Scrutinizer[45] which check for
problems such as unused variables, inaccessible code blocks but do not check for
known bad practices such as singletons.
Finally, develop tools that can provide suggestions or automate fixes for removing7.
bad practices from existing code.

4. References

Hevery, M. (2008) Code Reviewers Guide [online]. Available from:1.
http://misko.hevery.com/code-reviewers-guide/
Gutha, S. (2015) Code Review Checklist – To Perform Effective Code Reviews [online].2.

Thomas Butler 254

6

Available from:
http://www.evoketechnologies.com/blog/code-review-checklist-perform-effective-code-revi
ews/
Wulf, W., Shaw, M. (1973) Global varaibles considered harmful. ACM SIGPLAN Notices ,3.
pp.28-34.
Ferreira, G. (2013) Best C Coding Practices – Global variables [online]. Available from:4.
http://guilhermemacielferreira.com/2013/06/01/best-c-coding-practices-global-variables/
IBM, I. (2012) Avoid modification of global and static variables [online]. Available from:5.
http://pic.dhe.ibm.com/infocenter/idshelp/v117/index.jsp?topic=%2Fcom.ibm.dapip.doc%2
Fids_dapip_0673.htm
Crockford, D. (2006) Global Domination [online]. Available from:6.
http://www.yuiblog.com/blog/2006/06/01/global-domination/
Hevery, M. (2008) Guide: Writing Testable Code [online]. Available from:7.
http://misko.hevery.com/code-reviewers-guide/
Knack-Nielsen, T. (2008) What's so bad about the Singleton? [online]. Available from:8.
http://www.sitepoint.com/whats-so-bad-about-the-singleton/
J., R. (2001) Use your singletons wisely [online]. Available from:9.
https://www.ibm.com/developerworks/library/co-single/
Densmore, S. (2004) Why Singletons Are Evil [online]. Available from:10.
http://blogs.msdn.com/b/scottdensmore/archive/2004/05/25/140827.aspx
Hevery, M. (2008) Singletons are Pathological Liars [online]. Available from:11.
http://misko.hevery.com/2008/08/17/singletons-are-pathological-liars/
Geary, D. (2003) Simply Singleton [online]. Available from:12.
http://www.javaworld.com/article/2073352/core-java/simply-singleton.html
Durand, W. (2013) From STUPID to SOLID Code! [online]. Available from:13.
http://williamdurand.fr/2013/07/30/from-stupid-to-solid-code/
Martin, R. (2014) SingletonVsJustCreateOne [online]. Available from:14.
http://butunclebob.com/ArticleS.UncleBob.SingletonVsJustCreateOne
Adamek, M. (2016) Computer Sience III Programming Patterns [online]. Available from:15.
http://vega.cs.kent.edu/~mikhail/classes/cs3/
Harle, R. (2016) Object-Oriented Programming [online]. Available from:16.
https://www.cl.cam.ac.uk/teaching/1516/OOProg/
Tarr, B. (2013) The Singleton Pattern [online]. Available from:17.
http://www.dcs.bbk.ac.uk/~oded/OODP13/Sessions/Session6/Singleton.pdf
Hamie, A. (2002) Pattern-based mapping of OCL specifications to JML contracts. Model-18.
Driven Engineering and Software Development (MODELSWARD), 2014 2nd International
Conference , pp.193-200. IEEE.
Delic, E., Schreiber, M., Hayek, A., Börcsök, J. (2013) Pattern-based mapping of OCL19.
specifications to JML contracts. Information & Communication Technology Electronics &
Microelectronics (MIPRO) , pp.85-90. IEEE.
Gui-lan, H., Wu, S., Yao, J. (2013) Application of design pattern in the JDBC programming.20.
8th International Conference on Computer Science & Education , pp.85-90. IEEE.
Raja, W., Nirmala, K., Yao, J. (2016) Agile Development Methods for Online Training21.
Courses Web Application Development. International Journal of Applied Engineering
Research 11, pp.2601-2606. Research India Publications.
Eden, A., Tom, M. (2006) Measuring software flexibility.. IEE Software 153, pp.133-126.22.
Kernighan, B. (1999) The Practice of Programming ISBN: 978-0201615869. Addison23.
Wesley.
Hevery, M. (2008) Top 10 things which make your code hard to test [online]. Available24.
from:

255 Thomas Butler

7

http://misko.hevery.com/2008/07/30/top-10-things-which-make-your-code-hard-to-test/
Meyer, B. (1988) Bidding farewell to globals. JOOP(Journal of Object-Oriented25.
Programming) , pp.73-77.
Gamma, E., Helm, R., Johnson, R., Vlissides, J. (1994) Design Patterns: Elements of26.
Reusable Object-Oriented Software. ISBN: 0201633612. Addison Wesley.
Fowler, M. (2002) Patterns of Enterprise Application Architecture ISBN: 0321127420.27.
Addison Wesley.
Holub, A. (2010) Why extends is evil [online]. Available from:28.
http://www.javaworld.com/article/2073649/core-java/why-extends-is-evil.html
Martin, R. (2000) Design Principles and Design Patterns [online]. Available from:29.
http://www.objectmentor.com/resources/articles/Principles_and_Patterns.pdf
Aldrich, J. (2004) Selective Open Recursion: A Solution to the Fragile Base Class Problem.30.
Carnegie Mellon University .
Paul, J. (2013) 5 Reasons to Use Composition over Inheritance in Java and OOP [online].31.
Available from:
http://javarevisited.blogspot.com/2013/06/why-favor-composition-over-inheritance-java-oop
s-design.html
Karatoprak, Y. (2012) Difference Between Loose Coupling and Tight Coupling [online].32.
Available from:
http://www.c-sharpcorner.com/uploadfile/yusufkaratoprak/difference-between-loose-couplin
g-and-tight-coupling/
Sharma, A. (2014) Understanding Loose Coupling and Tight Coupling [online]. Available33.
from:
http://www.dotnet-stuff.com/tutorials/c-sharp/understanding-loose-coupling-and-tight-coupl
ing#
Hevery, M. (2008) Flaw: Constructor Does Real Work [online]. Available from:35.
http://misko.hevery.com/code-reviewers-guide/flaw-constructor-does-real-work/
Seeman, M. (2010) Dependency Injection is Loose Coupling [online]. Available from:36.
http://blog.ploeh.dk/2010/04/07/DependencyInjectionisLooseCoupling/
Butler, T. (2015) Slutty Software is good software: Tight and loose coupling in OOP37.
[online]. Available from: https://r.je/slutty-software-tight-and-loose-coupling.html
Hevery, M. (2008) Breaking the Law of Demeter is Like Looking for a Needle in the38.
Haystack [online]. Available from:
http://misko.hevery.com/2008/07/18/breaking-the-law-of-demeter-is-like-looking-for-a-need
le-in-the-haystack/
Seeman, M. (2015) Service Locator violates Encapsulation [online]. Available from:39.
http://blog.ploeh.dk/2015/10/26/service-locator-violates-encapsulation/
Arendsen, A. (2007) Setter injection versus constructor injection and the use of @Required40.
[online]. Available from:
http://spring.io/blog/2007/07/11/setter-injection-versus-constructor-injection-and-the-use-of-
required/
Popov, N. (2014) Don't be STUPID: GRASP SOLID! [online]. Available from:41.
https://nikic.github.io/2011/12/27/Dont-be-STUPID-GRASP-SOLID.html
Hevery, M. (2008) Static Methods are Death to Testability [online]. Available from:42.
http://misko.hevery.com/2008/12/15/static-methods-are-death-to-testability/
W3C, W. (n.d.) W3C HTML Validator [online]. Available from: http://validator.w3.org/43.
Scrutinizer-CI, S. (n.d.) Scrutinizer [online]. Available from: https://scrutinizer-ci.com44.

Thomas Butler 256

257 Thomas Butler

Appendix VI. Meta-Analysis Raw Data

This appendix contains the raw data used for the meta-analyses in chapter 3 of this thesis.

Singleton
URL Describe Example Implications Alternatives Comparison

code
Pros/Cons Recommendation Recommendation

scale
Jadad

http://www.fssnip.net/7p/title/Singleton-Pattern 1 3 1 -3

https://www.hackerrank.com/challenges/java-singleton/forum 1 3 1 -3

https://gist.github.com/mssola/6138155 1 3 1 -3

http://fortranwiki.org/fortran/show/Singleton+pattern 1 3 1 -3

http://www.adam-bien.com/roller/abien/entry/singleton_pattern_in_es6_and 1 3 1 -3

https://coderwall.com/p/iemfbg/objective-c-singleton-pattern-with-arc 1 3 1 -3

http://cruise.eecs.uottawa.ca/umple/SingletonPattern.html 1 3 1 -3

http://www.netobjectives.com/resources/books/design-patterns-explained/java-code-examples/chapter21 1 3 1 -3

https://www.dotnetperls.com/singleton-static 1 1 2 2 -2

https://www.tutorialspoint.com/design_pattern/singleton_pattern.htm 1 1 3 2 -3

https://msdn.microsoft.com/en-gb/library/ff650316.aspx 1 1 3 2 -3

https://www.javaworld.com/article/2073352/core-java/simply-singleton.html 1 1 3 2 -3

http://www.oodesign.com/singleton-pattern.html 1 1 3 2 -3

https://code.tutsplus.com/tutorials/android-design-patterns-the-singleton-pattern--cms-29153 1 1 3 2 -3

http://www.dofactory.com/javascript/singleton-design-pattern 1 1 3 2 -3

https://www.techopedia.com/definition/15830/singleton 1 1 3 2 -3

https://www.geeksforgeeks.org/singleton-design-pattern/ 1 1 3 2 -3

https://dzone.com/articles/singleton-pattern-a-deep-dive 1 1 3 2 -3

https://www.javatpoint.com/singleton-design-pattern-in-java 1 1 3 2 -3

https://developer.salesforce.com/page/Apex_Design_Patterns_-_Singleton 1 1 3 2 -3

https://fullstack-developer.academy/singleton-pattern-in-typescript/ 1 1 3 2 -3

http://jargon.js.org/_glossary/SINGLETON_PATTERN.md 1 1 3 2 -3

https://dalibornasevic.com/posts/9-ruby-singleton-pattern 1 1 3 2 -3

http://marcio.io/2015/07/singleton-pattern-in-go/ 1 1 3 2 -3

https://basarat.gitbooks.io/typescript/docs/tips/singleton.html 1 1 3 2 -3

http://www.vogella.com/tutorials/DesignPatternSingleton/article.html 1 1 3 2 -3

https://www.nada.kth.se/kurser/kth/2D1359/01-02/contents/forelasningar/lecture10.ppt 1 1 3 2 -3

https://www.linkedin.com/pulse/singleton-pattern-eager-lazy-enum-ramasamy-kasiviswanathan 1 1 3 2 -3

https://www.avajava.com/tutorials/lessons/singleton-pattern.html 1 1 3 2 -3

http://ftp.mak.com/out/classdocs/vrforces4.4.1/classref/vrv_the_rooted_singleton_pattern.html 1 1 3 2 -3

http://www.galloway.me.uk/tutorials/singleton-classes/ 1 1 3 2 -3

https://wiki.base22.com/btg/singleton-pattern-3459.html 1 1 3 2 -3

https://coffeescript-cookbook.github.io/chapters/design_patterns/singleton 1 1 3 2 -3

https://blogs.sap.com/2012/04/06/singleton-pattern-in-abap/ 1 1 3 2 -3

http://docs.ros.org/indigo/api/typelib/html/group__singleton.html 1 1 3 2 -3

https://learnswiftwithbob.com/course/object-oriented-swift/singleton-pattern.html 1 1 3 2 -3

https://www.visual-paradigm.com/tutorials/singletonpattern.jsp 1 1 3 2 -3

https://medium.freecodecamp.org/lets-talk-about-you-and-the-singleton-design-pattern-bb2e160fa952 1 1 3 2 -3

https://www.htmlgoodies.com/beyond/javascript/implementing-the-singleton-design-pattern-in-javascript.html 1 1 3 2 -3

http://web.science.mq.edu.au/~mattr/courses/object_oriented_development_practices/6/notes.html 1 1 3 2 -3

http://www.jot.fm/issues/issue_2007_03/column2/ 1 1 3 2 -3

https://itexico.com/blog/bid/99247/Software-Development-The-Singleton-Design-Pattern-and-other-Creational-Patterns 1 1 3 2 -3

http://code.activestate.com/recipes/52558-the-singleton-pattern-implemented-with-python/ 1 1 3 2 -3

https://alvinalexander.com/scala/how-to-implement-singleton-pattern-in-scala-with-object 1 1 3 2 -3

http://wiki.unity3d.com/index.php/Singleton 1 1 3 2 -3

https://locklessinc.com/articles/singleton_pattern/ 1 1 3 2 -3

http://www.tothenew.com/blog/singleton-pattern-with-javascript/ 1 1 3 2 -3

https://sweetcode.io/singleton-design-pattern-using-java/ 1 1 3 2 -3

http://elbenshira.com/blog/singleton-pattern-in-python/ 1 1 3 2 -3

https://php.earth/docs/php/ref/oop/design-patterns/singleton 1 1 3 2 -3

https://www.ibm.com/developerworks/library/j-dcl/ 1 1 3 2 -3

https://amir.rachum.com/blog/2012/04/26/implementing-the-singleton-pattern-in-python/ 1 1 3 2 -3

https://krakendev.io/blog/the-right-way-to-write-a-singleton 1 1 3 2 -3

http://moddb.wikia.com/wiki/Singleton_Pattern 1 1 3 2 -3

http://rcardin.github.io/design/programming/2015/07/03/the-good-the-bad-and-the-singleton.html 1 1 3 2 -3

http://csharpindepth.com/Articles/General/Singleton.aspx 1 1 1 3 3 -3

https://www.journaldev.com/1377/java-singleton-design-pattern-best-practices-examples 1 1 1 3 3 -3

http://best-practice-software-engineering.ifs.tuwien.ac.at/patterns/singleton.html 1 1 1 3 3 -3

https://refactoring.guru/design-patterns/singleton 1 1 1 3 3 -3

https://www.techrepublic.com/blog/software-engineer/using-the-singleton-pattern-in-java/ 1 1 1 3 3 -3

https://www.gamasutra.com/blogs/MattChristian/20101013/88205/OOPsie_Patterns_The_Singleton_Pattern.php 1 1 1 3 3 -3

https://pdfs.semanticscholar.org/presentation/f1dc/667b86aac3f5db63c26a67d30d586d2244a6.pdf 1 1 1 3 3 -3

https://www.implementingquantlib.com/2017/09/odds-and-ends-singleton.html 1 1 1 3 3 -3

https://8thlight.com/blog/josh-cheek/2012/10/20/implementing-and-testing-the-singleton-pattern-in-ruby.html 1 1 1 4 3 -4

http://csc.columbusstate.edu/woolbright/java/singleton.html 1 1 1 1 3 4 -3

https://www.codeproject.com/Articles/307233/Singleton-Pattern-Positive-and-Negative-Aspects 1 1 1 1 3 4 -3

https://sourcemaking.com/design_patterns/singleton 1 1 1 1 4 4 -4

https://www.gofpatterns.com/design-patterns/module3/consequences-effects-singleton-pattern.php 1 1 1 1 4 4 -4

http://wiki.c2.com/?SingletonPattern 1 1 1 1 4 4 -4

https://medium.com/if-let-swift-programming/the-swift-singleton-pattern-442124479b19 1 1 1 1 4 4 -4

http://2ality.com/2011/04/singleton-pattern-in-javascript-not.html 1 1 1 1 4 4 -4

https://ieftimov.com/singleton-pattern 1 1 1 1 4 4 -4

https://addyosmani.com/resources/essentialjsdesignpatterns/book/ 1 1 1 1 4 4 -4

https://phpenthusiast.com/blog/the-singleton-design-pattern-in-php 1 1 1 1 4 4 -4

https://www.perl.com/article/52/2013/12/11/Implementing-the-singleton-pattern-in-Perl/ 1 1 1 1 4 4 -4

http://www.bogotobogo.com/DesignPatterns/singleton.php 1 1 1 1 5 4 -5

Thomas Butler 258

URL Describe Example Implications Alternatives Comparison
code

Pros/Cons Recommendation Recommendation
scale

Jadad

https://www.infoworld.com/article/3112025/application-development/design-patterns-that-i-often-avoid-singleton.html 1 1 1 1 5 4 -5

https://codeburst.io/design-patterns-for-modern-web-development-singletons-bf7bc06bd17d 1 1 1 1 5 4 -5

https://anasshekhamis.com/2017/07/27/the-singleton-design-pattern-es5-and-es2015/ 1 1 1 1 5 4 -5

https://tommcfarlin.com/singleton-design-pattern-1/ 1 1 1 1 1 4 5 -4

https://php.earth/docs/php/ref/oop/design-patterns/singleton 1 1 1 1 1 4 5 -4

https://torquemag.io/2016/11/singletons-wordpress-good-evil/ 1 1 1 1 1 4 5 -4

http://adamschepis.com/2011/05/02/im-adam-and-im-a-recovering-singleton-addict.html 1 1 1 1 1 4 5 -4

http://www.phptherightway.com/pages/Design-Patterns.html 1 1 1 1 1 5 5 -5

http://beust.com/weblog/2011/03/10/rehabilitating-the-singleton-pattern/ 1 1 1 1 1 5 5 -5

https://code.tutsplus.com/tutorials/design-patterns-the-singleton-pattern--cms-23073 1 1 1 1 1 1 3 6 -3

http://wiki.freepascal.org/Singleton_Pattern 1 1 1 1 1 1 4 6 -4

https://cocoacasts.com/are-singletons-bad/ 1 1 1 1 1 1 5 6 -5

http://robdodson.me/javascript-design-patterns-singleton/ 1 1 1 1 1 1 5 6 -5

https://www.vojtechruzicka.com/singleton-pattern-pitfalls/ 1 1 1 1 1 1 5 6 -5

https://whydoesitsuck.com/why-the-singleton-pattern-sucks-and-you-should-avoid-it/ 1 1 1 1 1 1 5 6 -5

https://theburningmonk.com/2013/09/dart-implementing-the-singleton-pattern-with-factory-constructors/ 1 1 1 1 1 1 1 4 7 -4

http://enterprisecraftsmanship.com/2016/05/03/singleton-vs-dependency-injection/ 1 1 1 1 1 1 1 4 7 -4

http://gameprogrammingpatterns.com/singleton.html 1 1 1 1 1 1 1 5 7 -5

https://blog.ndepend.com/singleton-pattern-costs/ 1 1 1 1 1 1 1 5 7 -5

https://www.michaelsafyan.com/tech/design/patterns/singleton 1 1 1 1 1 1 1 5 7 -5

https://www.zaraffasoft.com/2016/10/14/singleton-pattern-the-light-or-the-dark-side-of-the-force/ 1 1 1 1 1 1 1 5 7 -5

https://carlalexander.ca/singletons-in-wordpress/ 1 1 1 1 1 1 1 5 7 -5

https://krakendev.io/blog/antipatterns-singletons 1 1 1 1 1 1 1 5 7 -5

https://www.objc.io/issues/13-architecture/singletons/ 1 1 1 1 1 1 1 5 7 -5

3.5

42 26

Dependency Injection
URL Describe Example Implications Alternatives Comparison

code
Pros/Cons Recommendation Recommendation

scale
Jadad

https://deviq.com/dependency-injection/ 1 3 1 -3

https://blog.angularindepth.com/angular-dependency-injection-and-tree-shakeable-tokens-4588a8f70d5d 1 3 1 -3

http://blog.thecodewhisperer.com/permalink/keep-dependency-injection-simple 1 3 1 -3

https://struts.apache.org/core-developers/dependency-injection.html 1 3 1 -3

https://dzone.com/articles/optional-dependency-injection-with-spring 1 3 1 -3

http://picocontainer.com/injection.html 1 3 1 -3

https://proandroiddev.com/better-dependency-injection-for-android-567b93353ad 1 3 1 -3

https://getakka.net/articles/actors/dependency-injection.html 1 3 1 -3

https://docs.litium.com/documentation/architecture/dependency-injection 1 3 1 -3

https://arrow-kt.io/docs/patterns/dependency_injection/ 1 3 1 -3

https://blog.mexia.com.au/dependency-injections-on-azure-functions-v2 1 1 1 1 1 3 1 -3

http://jbehave.org/reference/stable/dependency-injection.html 1 3 1 -3

https://dotnet.github.io/orleans/Documentation/Core-Features/Dependency-Injection.html 1 1 3 2 -3

https://aurelia.io/docs/fundamentals/dependency-injection/ 1 1 3 2 -3

https://symfony.com/doc/current/components/dependency_injection.html 1 1 3 2 -3

https://guides.emberjs.com/release/applications/dependency-injection/ 1 1 3 2 -3

https://itnext.io/typescript-dependency-injection-setting-up-inversifyjs-ioc-for-a-ts-project-f25d48799d70 1 1 3 2 -3

https://www.drupal.org/docs/8/api/services-and-dependency-injection/services-and-dependency-injection-in-drupal-8 1 1 3 2 -3

https://devdocs.magento.com/guides/v2.2/extension-dev-guide/depend-inj.html 1 1 3 2 -3

https://blog.kotlin-academy.com/dependency-injection-the-pattern-without-the-framework-33cfa9d5f312 1 1 3 2 -3

http://docs.automapper.org/en/stable/Dependency-injection.html 1 1 3 2 -3

https://pimcore.com/docs/4.6.x/Development_Documentation/Extending_Pimcore/Dependency_Injection.html 1 1 3 2 -3

https://www.mvvmcross.com/documentation/fundamentals/dependency-injection 1 1 3 2 -3

https://blog.carbonfive.com/2018/03/19/lightweight-dependency-injection-in-elixir-without-the-tears/ 1 1 3 2 -3

https://learn-blazor.com/architecture/dependency-injection/ 1 1 3 2 -3

https://medium.com/scribd-data-science-engineering/weaver-a-painless-dependency-injection-framework-for-swift-7c4afad5ef6a 1 1 3 2 -3

https://www.javatpoint.com/dependency-injection-in-spring 1 1 3 2 -3

https://www.yiiframework.com/doc/guide/2.0/en/concept-di-container 1 1 3 2 -3

https://docs.silverstripe.org/en/4/developer_guides/extending/injector/ 1 1 3 2 -3

https://www.pacoworks.com/2018/02/25/simple-dependency-injection-in-kotlin-part-1/ 1 1 3 2 -3

http://docs.drush.org/en/master/dependency-injection/ 1 1 3 2 -3

https://devdocs.magento.com/guides/v2.2/extension-dev-guide/depend-inj.html 1 1 3 2 -3

https://doc.sitecore.net/sitecore_experience_platform/developing/developing_with_sitecore/dependency_injection 1 1 3 2 -3

http://www.dotnetcurry.com/aspnet-core/1426/dependency-injection-di-aspnet-core 1 1 3 2 -3

https://framework.zend.com/manual/2.4/en/tutorials/quickstart.di.html 1 1 3 2 -3

https://www.future-processing.pl/blog/introduction-to-dependency-injection/ 1 1 3 2 -3

https://docs.particular.net/nservicebus/dependency-injection/ 1 1 3 2 -3

https://www.oreilly.com/ideas/handling-dependency-injection-using-java9-modularity 1 1 3 2 -3

https://blog.nrwl.io/essential-angular-dependency-injection-a6b9dcca1761 1 1 3 2 -3

https://toddmotto.com/angular-dependency-injection 1 1 3 2 -3

https://chromatichq.com/blog/dependency-injection-drupal-8-plugins 1 1 3 2 -3

https://www.infoworld.com/article/2974298/application-architecture/exploring-the-dependency-injection-principle.html 1 1 3 2 -3

https://www.codeproject.com/Articles/615139//Articles/615139/An-Absolute-Beginners-Tutorial-on-Dependency-Inver 1 1 3 2 -3

259 Thomas Butler

URL Describe Example Implications Alternatives Comparison
code

Pros/Cons Recommendation Recommendation
scale

Jadad

https://documentation.magnolia-cms.com/display/DOCS56/Dependency+injection+and+inversion+of+control 1 1 1 2 -1

https://docs.oracle.com/javaee/6/tutorial/doc/giwhl.html 1 1 1 2 -1

http://best-practice-software-engineering.ifs.tuwien.ac.at/patterns/dependency_injection.html 1 1 1 3 3 -3

http://www.vogella.com/tutorials/DependencyInjection/article.html 1 1 1 3 3 -3

https://loopback.io/doc/en/lb4/Dependency-injection.html 1 1 1 3 3 -3

https://docs.phalconphp.com/hr/3.3/di 1 1 1 3 3 -3

https://vuejs.org/v2/guide/components-edge-cases.html 1 1 1 2 3 -2

https://medium.com/makingtuenti/dependency-injection-in-swift-part-1-236fddad144a 1 1 1 1 3 -1

https://blog.drewolson.org/dependency-injection-in-go/ 1 1 1 1 3 -1

https://www.swiftbysundell.com/posts/dependency-injection-using-factories-in-swift 1 1 1 1 3 -1

https://docs.sitefinity.com/use-constructor-dependency-injections-mvc 1 1 1 1 3 -1

https://www.guru99.com/angularjs-dependency-injection.html 1 1 1 1 3 -1

http://www.baeldung.com/inversion-control-and-dependency-injection-in-spring 1 1 1 1 3 4 -3

https://exceptionnotfound.net/using-entity-framework-dbcontext-with-dependency-injection/ 1 1 1 1 3 4 -3

http://tutorials.jenkov.com/dependency-injection/index.html 1 1 1 1 3 4 -3

https://blog.gojekengineering.com/the-many-flavours-of-dependency-injection-in-go-25aa070d79a0 1 1 1 1 2 4 -2

https://www.eclipse.org/che/docs/guice.html 1 1 1 1 2 4 -2

https://www.dotnettricks.com/learn/dependencyinjection/implementation-of-dependency-injection-pattern-in-csharp 1 1 1 1 1 4 -1

https://stackify.com/dependency-injection/ 1 1 1 1 1 4 -1

https://www.techyourchance.com/dependency-injection-android/ 1 1 1 1 1 4 -1

https://codeshare.co.uk/blog/how-to-start-using-dependency-injection-in-mvc-and-umbraco/ 1 1 1 1 1 4 -1

https://samueleresca.net/2017/07/inversion-of-control-and-unit-testing-using-typescript/ 1 1 1 1 1 4 -1

https://developer.telerik.com/featured/three-ds-web-development-3-dependency-injection/ 1 1 1 1 1 4 -1

https://codeburst.io/dependency-injection-with-vue-js-f6b44a0dae6d 1 1 1 1 1 1 5 -1

https://www.tomasvotruba.cz/blog/2018/05/07/why-you-should-combine-symfony-console-and-dependency-injection/ 1 1 1 1 1 1 5 -1

https://hackernoon.com/you-dont-need-to-know-dependency-injection-2e9d2ba1978a 1 1 1 1 1 1 5 -1

https://www.playframework.com/documentation/2.6.x/ScalaDependencyInjection 1 1 1 1 1 1 5 -1

http://flowframework.readthedocs.io/en/stable/TheDefinitiveGuide/PartIII/ObjectManagement.html 1 1 1 1 1 1 2 6 -2

https://www.theserverside.com/news/1321158/A-beginners-guide-to-Dependency-Injection 1 1 1 1 1 1 1 6 -1

http://krasimirtsonev.com/blog/article/Dependency-injection-in-JavaScript 1 1 1 1 1 1 1 6 -1

https://learnappmaking.com/dependency-injection-swift/ 1 1 1 1 1 1 1 6 -1

https://enterprisecraftsmanship.com/2016/05/03/singleton-vs-dependency-injection/ 1 1 1 1 1 1 1 2 7 -2

https://msdn.microsoft.com/en-us/library/hh323705(v=vs.100).aspx 1 1 1 1 1 1 1 1 7 -1

https://angular.io/guide/dependency-injection-pattern 1 1 1 1 1 1 1 1 7 -1

https://martinfowler.com/articles/injection.html 1 1 1 1 1 1 1 1 7 -1

https://medium.freecodecamp.org/demystifying-dependency-injection-49d4b6fe6536 1 1 1 1 1 1 1 1 7 -1

http://www.tutorialsteacher.com/ioc/dependency-injection 1 1 1 1 1 1 1 1 7 -1

https://www.codeguru.com/csharp/.net/net_asp/mvc/understanding-dependency-injection.htm 1 1 1 1 1 1 1 1 7 -1

https://www.devbridge.com/articles/dependency-injection-in-javascript/# 1 1 1 1 1 1 1 1 7 -1

https://codecraft.tv/courses/angular/dependency-injection-and-providers/overview/ 1 1 1 1 1 1 1 1 7 -1

https://aspnetboilerplate.com/Pages/Documents/Dependency-Injection 1 1 1 1 1 1 1 1 7 -1

https://webdev.dartlang.org/angular/guide/dependency-injection 1 1 1 1 1 1 1 1 7 -1

https://doc.nette.org/en/2.4/dependency-injection 1 1 1 1 1 1 1 1 7 -1

https://android.jlelse.eu/android-mvp-architecture-with-dependency-injection-dee43fe47af0 1 1 1 1 1 1 1 1 7 -1

https://nehalist.io/dependency-injection-in-typescript/ 1 1 1 1 1 1 1 1 7 -1

https://www.raywenderlich.com/171327/dependency-injection-android-dagger-2 1 1 1 1 1 1 1 1 7 -1

https://matthiasnoback.nl/2018/06/road-to-dependency-injection/ 1 1 1 1 1 1 1 1 7 -1

https://www.getopensocial.com/blog/open-source-technology/dependency-injection-php 1 1 1 1 1 1 1 1 7 -1

https://www.tutorialspoint.com/spring/spring_dependency_injection.htm 1 1 1 1 1 1 1 1 7 -1

https://fsharpforfunandprofit.com/posts/dependency-injection-1/ 1 1 1 1 1 1 1 1 7 -1

http://fabien.potencier.org/what-is-dependency-injection.html 1 1 1 1 1 1 1 1 7 -1

https://www.bignerdranch.com/blog/dependency-injection-ios/ 1 1 1 1 1 1 1 1 7 -1

https://code.tutsplus.com/tutorials/dependency-injection-in-php--net-28146 1 1 1 1 1 1 1 1 7 -1

http://andrewembler.com/2018/03/concrete-guide-dependency-injection 1 1 1 1 1 1 1 1 7 -1

https://php.earth/docs/php/ref/oop/design-patterns/dependency-injection 1 1 1 1 1 1 1 1 7 -1

https://appliedgo.net/di/ 1 1 1 1 1 1 1 1 7 -1

http://rubyblog.pro/2016/10/ruby-dependency-injection 1 1 1 1 1 1 1 1 7 -1

2.04

50 35

Annotations for configuration
URL Describe Example Implications Alternatives Comparison

code
Pros/Cons Recommendation Recommendation

scale
Jadad

https://www.tutorialspoint.com/spring/spring_java_based_configuration.htm 1 1 3 2 -3

https://www.tutorialspoint.com/spring/spring_annotation_based_configuration.htm 1 3 1 -3

https://docs.jboss.org/hibernate/orm/3.5/api/org/hibernate/cfg/AnnotationConfiguration.html 1 3 1 -3

https://docs.spring.io/spring-framework/docs/4.0.4.RELEASE/javadoc-api/org/springframework/context/annotation/Configuration.html 1 1 3 2 -3

https://www.dineshonjava.com/annotations-in-spring-and-based/ 1 1 3 2 -3

https://msdn.microsoft.com/en-us/library/jj591583(v=vs.113).aspx 1 3 1 -3

https://mcforge.readthedocs.io/en/latest/config/annotations/ 1 3 1 -3

https://medium.com/omarelgabrys-blog/spring-a-head-start-beans-configuration-part-2-4a8c239b070a 1 1 1 1 3 4 -3

https://dzone.com/articles/a-guide-to-spring-framework-annotations 1 1 3 2 -3

https://www.baeldung.com/spring-bean-annotations 1 3 1 -3

https://www.journaldev.com/21033/spring-configuration-annotation 1 3 1 -3

https://www.theserverside.com/tip/How-the-Java-Config-Module-Pounced-on-Spring-30 1 1 1 1 3 4 -3

https://scotch.io/@ethanmillar/spring-mvc-component-scan-annotation-config-annotation-driven 1 1 1 1 3 4 -3

https://howtodoinjava.com/spring-core/configure-beans-in-spring-3-x-using-configuration-annotation/ 1 1 3 2 -3

http://www.springboottutorial.com/spring-boot-java-xml-context-configuration 1 1 3 2 -3

https://www.bignerdranch.com/blog/dependency-injection-ios/
https://www.tutorialspoint.com/spring/spring_java_based_configuration.htm

Thomas Butler 260

URL Describe Example Implications Alternatives Comparison
code

Pros/Cons Recommendation Recommendation
scale

Jadad

http://www.javarticles.com/2016/01/spring-configuration-annotation-example.html 1 1 3 2 -3

https://www.petrikainulainen.net/programming/spring-framework/spring-from-the-trenches-injecting-property-values-into-configuration-beans/ 1 1 3 2 -3

https://objectpartners.com/2015/12/07/avoiding-a-common-spring-annotation-configuration-mistake/ 1 1 3 2 -3

https://symfony.com/doc/4.0/bundles/SensioFrameworkExtraBundle/index.html 1 1 3 2 -3

https://oroinc.com/b2b-ecommerce/doc/1.6/dev-guide/reference 1 1 3 2 -3

+”Best Practice” 0 0

https://symfony.com/doc/current/best_practices/security.html 1 1 3 2 -3

https://symfony.com/doc/current/best_practices/controllers.html 1 1 3 2 -3

http://www.springboottutorial.com/spring-boot-profiles 1 3 1 -3

https://docs.gradle.org/4.6/release-notes.html 1 3 1 -3

https://thephp.cc/news/2016/02/questioning-phpunit-best-practices 1 1 1 1 1 4 5 -4

https://dzone.com/articles/using-the-spring-requestmapping-annotation 1 1 3 2 -3

https://www.ibm.com/support/knowledgecenter/en/SSAW57_9.0.0/com.ibm.websphere.nd.multiplatform.doc/ae/cdat_rarbeabval.html 1 3 1 -3

https://springframework.guru/spring-boot-restful-api-documentation-with-swagger-2/ 1 3 1 -3

https://reef.apache.org/tang.html 1 3 1 -3

https://www.mkyong.com/jsf2/configure-managed-beans-in-jsf-2-0/ 1 1 1 1 1 1 5 6 -5

http://www.kyleblaney.com/junit-best-practices/ 1 1 3 2 -3

http://best-practice-software-engineering.ifs.tuwien.ac.at/repository/net/sf/oval/oval/1.61/tmp/docs/userguide.html#d4e149 1 1 3 2 -3

http://www.cdi-spec.org/faq/ 1 1 3 2 -3

http://www.mybatis.org/mybatis-3/java-api.html 1 1 3 2 -3

https://howtodoinjava.com/spring-cloud/spring-cloud-config-server-git/ 1 1 3 2 -3

http://shengwangi.blogspot.com/2015/07/how-to-set-dev-test-prod-in-spring-javaconfig.html 1 1 3 2 -3

https://www.codejava.net/frameworks/hibernate/hibernate-one-to-many-association-on-join-table-annotations-example 1 1 3 2 -3

https://www.toptal.com/java/rest-security-with-jwt-spring-security-and-java 1 1 3 2 -3

https://scotch.io/tutorials/build-a-spring-boot-app-with-user-authentication 1 1 3 2 -3

https://xebia.com/blog/using-springs-java-configuration-on-google-app-engine/ 1 1 3 2 -3

https://flowframework.readthedocs.io/en/stable/TheDefinitiveGuide/PartIII/Configuration.html 1 1 3 2 -3

https://blog.codecentric.de/en/2014/11/extending-spring-boot-five-steps-writing-spring-boot-starter/ 1 3 1 -3

https://crunchify.com/spring-framework-4-order-annotation-tutorial-sort-order-for-an-annotated-component/ 1 3 1 -3

https://www.thoughts-on-java.org/5-ways-to-initialize-lazy-relations-and-when-to-use-them/ 1 1 3 2 -3

https://technologyconversations.com/2013/12/24/test-driven-development-tdd-best-practices-using-java-examples-2/ 1 3 1 -3

https://memorynotfound.com/asynchronous-service-with-spring-async-and-java-future/ 1 3 1 -3

https://memorynotfound.com/asynchronous-service-with-spring-async-and-java-future/ 1 3 1 -3

https://stormpath.com/blog/spring-mvc-rest-exception-handling-best-practices-part-2 1 3 1 -3

https://www.dropwizard.io/1.1.4/docs/manual/core.html 1 3 1 -3

https://phraseapp.com/blog/posts/internationalization-spring-mvc/ 1 3 1 -3

http://www.javasavvy.com/spring-4-mvc-maven-example/ 1 3 1 -3

https://www.blazemeter.com/blog/how-to-automatically-document-api-endpoints-via-swagger 1 3 1 -3

http://docs.grails.org/latest/guide/single.html 1 3 1 -3

https://stripesframework.atlassian.net/wiki/spaces/STRIPES/pages/492099/Stripes+Spring+JPA 1 3 1 -3

https://proandroiddev.com/android-architecture-components-cb1ea88d3835 1 3 1 -3

https://docs.gigaspaces.com/xap/9.7/dev-java/java-tutorial-part1.html 1 3 1 -3

http://blog.patouchas.net/technology/hibernate-dao-java-tutorial/ 1 3 1 -3

+ “good practice” 0

https://tuhrig.de/why-using-springs-value-annotation-is-bad/ 1 1 1 1 5 4 -5

https://r.je/php-annotations-are-an-abomination.html 1 1 1 1 1 5 5 -5

https://netjs.blogspot.com/2016/11/how-to-read-properties-file-in-spring-framework.html 1 1 3 2 -3

https://dzone.com/articles/unit-and-integration-tests-in-spring-boot 1 3 1 -3

https://howtodoinjava.com/spring-core/spring-beans-autowiring-concepts/ 1 1 3 2 -3

http://www.vogella.com/tutorials/DependencyInjection/article.html 1 1 3 2 -3

http://websystique.com/spring-security/spring-security-4-logout-example/ 1 3 1 -3

https://stackify.com/spring-security-java-configuration/?utm_referrer=https%3A%2F%2Fwww.google.com%2F 1 3 1 -3

https://www.future-processing.pl/blog/exploring-spring-boot-and-spring-security-custom-token-based-authentication-of-rest-services-with-spring-security-and-pinch-of-spring-java-configuration-and-spring-integration-testing/ 1 1 3 2 -3

http://checkstyle.sourceforge.net/config_design.html 1 3 1 -3

https://www.codejava.net/frameworks/spring/14-tips-for-writing-spring-mvc-controller 1 3 1 -3

https://www.mkyong.com/spring-security/spring-security-remember-me-example/ 1 3 1 -3

https://www.javacodegeeks.com/2013/09/spring-configurable-magic.html 1 3 1 -3

https://blog.frankel.ch/spring-profiles-or-maven-profiles/ 1 3 1 -3

http://www.theunraveler.com/blog/2012/php-annotations-are-a-horrible-idea/ 1 1 1 1 1 5 5 -5

https://blogs.oracle.com/darcy/properties-via-annotation-processing 1 3 1 -3

https://www.thoughts-on-java.org/hibernate-best-practices/ 1 3 1 -3

https://blog.jooq.org/2016/11/24/the-java-ecosystems-obsession-with-nonnull-annotations/ 1 1 1 1 4 4 -4

https://knpuniversity.com/screencast/symfony-best-practices/route-annotation-templates 1 1 3 2 -3

https://engineering.wework.com/custom-annotations-in-android-af43514f2f1b 1 1 3 2 -3

https://jodd.org/madvoc/injection.html 1 1 3 2 -3

https://concordion.org/coding/java/markdown/ 1 1 3 2 -3

https://www.codesandnotes.be/2014/12/18/validating-spring-rest-controllers-beans-using-the-bean-validation-api-and-writing-the-tests-for-it/ 1 3 1 -3

https://docs.objectbox.io/entity-annotations 1 3 1 -3

http://www.javacreed.com/why-should-we-use-dependency-injection/ 1 1 3 2 -3

https://neo4j.com/docs/ogm-manual/current/reference/ 1 3 1 -3

https://tedvinke.wordpress.com/2017/04/04/grails-anti-pattern-everything-is-a-service/ 1 3 1 -3

https://steveschols.wordpress.com/2012/06/05/i-was-wrong-constructor-vs-setter-injection/ 1 3 1 -3

https://morevaadin.com/content/springboot-integration 1 3 1 -3

https://www.accelebrate.com/blog/have-a-groovy-spring/ 1 3 1 -3

https://openliberty.io/guides/rest-client-java.html 1 3 1 -3

https://www.sgalinski.de/typo3-agentur/technik/how-to-create-a-basic-rest-api-in-symfony/ 1 3 1 -3

https://marclewis.com/2013/10/25/php_annotations_are_a_bad_idea/ 1 1 1 5 3 -5

https://malalanayake.wordpress.com/2014/07/27/spring-mvc-with-spring-hibernate/ 1 3 1 -3

+”bad Practice” 0

https://octoperf.com/blog/2018/02/08/spring-autowiring/ 1 1 3 2 -3

https://dzone.com/articles/how-to-mock-spring-bean-version-2 1 3 1 -3

http://jeffvssoftware.blogspot.com/2009/01/example-of-how-not-to-use-java.html 1 1 1 1 5 4 -5

https://www.thoughts-on-java.org/common-hibernate-mistakes-cripple-performance/ 1 3 1 -3

https://docs.rencore.com/spcaf/v7/NG1010203_UseExplicitDependencyInjectionAnnotationWithStrictDiEnabledInModuleConfigs.html 1 3 1 -3

https://jaxenter.com/integrating-bean-validation-with-jax-rs-2-106887.html 1 3 1 -3

https://tamasgyorfi.net/2013/11/13/spring-dependency-injection-configurable/ 1 3 1 -3

http://www.ninjaframework.org/documentation/basic_concepts/sessions.html 1 3 1 -3

https://medium.com/oril/secure-your-spring-boot-api-with-json-web-tokens-44aa9dc51fdc 1 3 1 -3

https://www.schibsted.pl/blog/dependency-injection-play-framework-scala/ 1 3 1 -3

+”anti pattern” 0

https://www.yegor256.com/2016/04/12/java-annotations-are-evil.html 1 1 1 1 1 1 5 6 -5

https://dzone.com/articles/are-annotations-bad 1 1 1 1 1 1 5 6 -5

https://www.toptal.com/symfony/true-dependency-injection-symfony-components 1 3 1 -3

http://www.captaindebug.com/2012/ 1 3 1 -3

https://dzone.com/articles/java-annotations-are-a-big-mistake 1 1 1 1 1 1 1 5 7 -5

https://iamninad.com/service-factory-using-spring-framework/ 1 1 3 2 -3

https://www.infoq.com/articles/ddd-in-practice 1 1 1 1 4 4 -4

https://github.com/Netflix/governator/wiki/Lifecycle-Management 1 3 1 -3

14 9

Global Variables
URL Describe Example Implications Alternatives Comparison

code
Pros/Cons Recommendation Recommendation

scale
Jadad

https://www.ibm.com/support/knowledgecenter/en/SSD29G_2.0.0/com.ibm.swg.ba.cognos.tm1_ref.2.0.0.doc/c_turbointegratorglobalvariables_n8069c.html 1 3 1 -3

https://www.getpostman.com/docs/v6/postman/environments_and_globals/manage_globals 1 3 1 -3

http://zone.ni.com/reference/en-XX/help/371361P-01/lvconcepts/glob_variables/ 1 3 1 -3

https://www.csie.ntu.edu.tw/~sylee/courses/clips/bpg/node2.4.3.html 1 3 1 -3

https://developer.mozilla.org/en-US/docs/Glossary/Global_variable 1 3 1 -3

https://freeswitch.org/confluence/display/FREESWITCH/Global+Variables 1 3 1 -3

https://opentx.gitbooks.io/opentx-taranis-manual/content/global_variables.html 1 3 1 -3

https://en.wikipedia.org/wiki/Global_variable 1 1 3 2 -3

https://www.techopedia.com/definition/25617/global-variable 1 1 3 2 -3

https://funprogramming.org/50-What-are-global-and-local-variables.html 1 1 3 2 -3

https://www.le.ac.uk/users/rjm1/cotter/page_51.htm 1 1 3 2 -3

https://www.mathworks.com/help/matlab/ref/global.html 1 1 3 2 -3

http://www.learncpp.com/cpp-tutorial/42-global-variables/ 1 1 3 2 -3

https://tamasgyorfi.net/2013/11/13/spring-dependency-injection-configurable/

261 Thomas Butler

URL Describe Example Implications Alternatives Comparison
code

Pros/Cons Recommendation Recommendation
scale

Jadad

https://www.w3schools.com/js/js_scope.asp 1 1 3 2 -3

https://www.programiz.com/python-programming/global-local-nonlocal-variables 1 1 3 2 -3

https://dev.to/gentlemanoi/why-global-variables-are-bad-4pj 1 1 3 2 -3

https://www.lua.org/pil/1.2.html 1 1 3 2 -3

https://www.typescriptlang.org/docs/handbook/declaration-files/by-example.html 1 1 3 2 -3

https://docs.julialang.org/en/v0.6.2/manual/variables-and-scoping/ 1 1 3 2 -3

http://www.gnu.org/software/emacs/manual/html_node/elisp/Global-Variables.html 1 1 3 2 -3

https://docs.yoyogames.com/source/dadiospice/002_reference/001_gml%20language%20overview/variables/global%20variables.html 1 1 3 2 -3

http://octave.org/doc/v4.0.0/Global-Variables.html 1 1 3 2 -3

https://www.microbit.co.uk/td/data 1 1 3 2 -3

https://codex.wordpress.org/Global_Variables 1 1 3 2 -3

https://www.prismmodelchecker.org/manual/ThePRISMLanguage/GlobalVariables 1 1 3 2 -3

https://my.solidworks.com/reader/forumthreads/215057/global-variables-and-configuration 1 1 3 2 -3

https://success.jitterbit.com/display/DOC/Using+Global+Variables 1 1 3 2 -3

https://docs.craftcms.com/v3/dev/global-variables.html 1 1 3 2 -3

https://www.maplesoft.com/support/help/maple/view.aspx?path=module%2Fglobal 1 1 3 2 -3

http://support.ircam.fr/docs/om/om6-manual/co/GlobalVariables.html 1 1 3 2 -3

https://www.originlab.com/doc/Quick-Help/Global-Constants 1 1 3 2 -3

http://theory.uwinnipeg.ca/programming/node13.html 1 1 3 2 -3

https://www.sqa.org.uk/e-learning/ClientSide02CD/page_05.htm 1 1 3 2 -3

https://codeburst.io/javascript-global-variables-vs-singletons-d825fcab75f9 1 1 3 2 -3

https://www.geeksforgeeks.org/global-local-variables-python/ 1 1 3 2 -3

https://docs.katalon.com/display/KD/Variable+Types 1 1 3 2 -3

http://php.net/manual/en/language.variables.scope.php 1 1 3 2 -3

https://processing.org/examples/variablescope.html 1 1 3 2 -3

http://effbot.org/pyfaq/how-do-you-set-a-global-variable-in-a-function.htm 1 1 3 2 -3

https://javascript.info/global-object 1 1 3 2 -3

https://infosys.beckhoff.com/english.php?content=../content/1033/tcplccontrol/html/tcplcctrl_resglobvar.htm&id= 1 1 3 2 -3

https://www.codewars.com/kata/php-functions-accessing-global-variables 1 1 3 2 -3

https://www.lix.polytechnique.fr/~liberti/public/computing/prog/c/C/SYNTAX/glo_int_vars.html 1 1 3 2 -3

http://www.mit.edu/people/abbe/matlab/globals.html 1 1 3 2 -3

http://support.ptc.com/help/mathcad/en/index.html#page/Tutorials/task3-2_defining_and_evaluating_globalvariables.html 1 1 3 2 -3

https://stat.ethz.ch/R-manual/R-devel/library/utils/html/globalVariables.html 1 1 3 2 -3

https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/accessing-global-variables 1 1 3 2 -3

http://write.flossmanuals.net/csound/b-local-and-global-variables/ 1 1 3 2 -3

https://www.localsolver.com/documentation/lspreference/variables.html 1 1 3 2 -3

https://www.arclab.com/en/kb/csharp/global-variables-fields-functions-static-class.html 1 1 3 2 -3

https://www.guru99.com/variables-in-python.html 1 1 3 2 -3

http://www.gprolog.org/manual/html_node/gprolog045.html 1 1 3 2 -3

https://www.zoho.eu/creator/help/script/sample-application-global-variables.html 1 1 3 2 -3

https://docs.oracle.com/cd/B31104_02/books/OIRef/OIRefProgramming35.html 1 1 3 2 -3

https://www.rapitasystems.com/software_optimization_techniques_14 1 1 4 2 -4

https://pythonspot.com/global-local-variables/ 1 1 3 2 -3

https://searchsqlserver.techtarget.com/tutorial/Global-variables 1 1 3 2 -3

https://snook.ca/archives/javascript/global_variable 1 1 3 2 -3

https://www.bbc.com/education/guides/z2q6hyc/revision/2 1 1 3 2 -3

https://knpuniversity.com/screencast/javascript/window-global-vars 1 1 3 2 -3

https://www.cati.com/blog/2016/04/solidworks-managing-your-design-using-global-variables-and-equations/ 1 1 3 2 -3

https://www.scirra.com/manual/83/variables 1 1 3 2 -3

https://doc.windev.com/?1514054 1 1 3 2 -3

http://gdl.graphisoft.com/reference-guide/global-variables 1 1 3 2 -3

https://medium.com/lacolaco-blog/access-to-global-variables-in-angular-2-b2c395eac1d8 1 1 5 2 -5

https://mindmajix.com/labview/local-and-global-variables-in-labview 1 1 3 2 -3

http://guyhaas.com/bfoit/itp/Globals.html 1 1 3 2 -3

http://help.autodesk.com/view/MAYAUL/2015/ENU/?guid=Procedures_Global_and_local_variables 1 1 3 2 -3

https://wiki.asterisk.org/wiki/display/AST/Global+Variables+Basics 1 1 3 2 -3

https://www.autoitscript.com/wiki/Variables_-_using_Global,_Local,_Static_and_ByRef 1 1 3 2 -3

https://www.bitdegree.org/learn/php-variable-scope/ 1 1 3 2 -3

http://freemat.sourceforge.net/help/variables_global.html 1 1 3 2 -3

https://matthew-brett.github.io/teaching/global_scope.html 1 1 3 2 -3

http://qnimate.com/javascript-global-variables-and-memory-leakage/ 1 1 3 2 -3

https://wpshout.com/php-globals-variable-scope-wordpress/ 1 1 3 2 -3

http://www.learningdefinition.com/2018/06/what-is-global-variable.html 1 1 3 2 -3

https://www.tensorflow.org/api_docs/python/tf/global_variables 1 1 1 5 3 -5

http://interactivepython.org/runestone/static/pip2/Functions/GlobalVariables.html 1 1 1 5 3 -5

https://ruby-doc.org/docs/ruby-doc-bundle/UsersGuide/rg/globalvars.html 1 1 1 5 3 -5

https://www.arduino.cc/reference/en/language/variables/variable-scope--qualifiers/scope/ 1 1 1 3 3 -3

https://www.python-course.eu/python3_global_vs_local_variables.php 1 1 1 3 3 -3

http://helpnet.installshield.com/installshield22helplib/Subsystems/installshield22langref/helplibrary/LangrefGlobal_vs_local_variables.htm 1 1 1 3 3 -3

https://en.wikibooks.org/wiki/A-level_Computing/AQA/Paper_1/Fundamentals_of_programming/Global_and_local_variables 1 1 1 3 3 -3

https://www.codesdope.com/cpp-scope-of-variables/ 1 1 1 3 3 -3

https://composerprogrammer.com/teaching/supercollider/sctutorial/Technicalities/04%20Global%20Variables%20and%20Environments.html 1 1 1 5 3 -5

https://pythonprogramminglanguage.com/global-variables/ 1 1 1 3 3 -3

https://python-textbok.readthedocs.io/en/1.0/Variables_and_Scope.html 1 1 1 3 3 -3

http://farside.ph.utexas.edu/teaching/329/lectures/node19.html 1 1 1 1 5 4 -5

https://stackabuse.com/using-global-variables-in-node-js/ 1 1 1 1 5 4 -5

http://wiki.tcl.tk/1177 1 1 1 1 5 4 -5

https://michaelheap.com/global-variables-in-nodejs/ 1 1 1 1 5 4 -5

https://www.w3schools.com/js/js_best_practices.asp 1 1 1 1 5 4 -5

http://www.cs.technion.ac.il/users/yechiel/c++-faq/global-vars.html 1 1 1 1 1 1 5 6 -5

http://wiki.c2.com/?GlobalVariablesAreBad 1 1 1 1 1 1 1 5 7 -5

https://www.yegor256.com/2018/07/03/global-variables.html 1 1 1 1 1 1 1 5 7 -5

https://docs.servicenow.com/bundle/kingston-application-development/page/script/business-rules/concept/c_UsingPredefinedGlobalVariables.html 1 1 1 1 1 1 1 5 7 -5

https://docs.coronalabs.com/tutorial/basics/globals/index.html 1 1 1 1 1 1 1 5 7 -5

http://speakingjs.com/es5/ch16.html 1 1 1 1 1 1 1 5 7 -5

http://lessons.livecode.com/m/4071/l/13158-what-are-the-alternatives-to-using-global-variables 1 1 1 1 1 1 1 5 7 -5

https://r.je/static-methods-bad-practice.html 1 1 1 1 1 1 1 5 7 -5

90 21 8 11 7 16

Inheritance
URL Describe Example Implications Alternatives Comparison

code
Pros/Cons Recommendation Recommendation

scale
Jadad

https://documentation.progress.com/output/ua/OpenEdge_latest/index.html#page/dvoop/class-hierarchies-and-inheritance.html 1 3 1 -3

http://www.learntosolveit.com/scala/CaseClassInheritance.html 1 3 1 -3

https://help.sap.com/doc/saphelp_nw70/7.0.31/en-US/dd/4049c40f4611d3b9380000e8353423/content.htm?no_cache=true 1 3 1 -3

Thomas Butler 262

URL Describe Example Implications Alternatives Comparison
code

Pros/Cons Recommendation Recommendation
scale

Jadad

https://code-maven.com/slides/dart-programming/extending-class 1 3 1 -3

https://www.mathworks.com/help/matlab/matlab_oop/subclassing-multiple-classes.html 1 3 1 -3

https://www.integralist.co.uk/posts/object-oriented-design/ 1 3 1 -3

https://www.brandonsavage.net/five-tips-to-make-good-object-oriented-code-better/ 1 5 1 -5

https://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming) 1 1 3 2 -3

https://msdn.microsoft.com/en-us/library/ms973803.aspx 1 1 3 2 -3

https://docs.oracle.com/javase/tutorial/java/concepts/inheritance.html 1 1 3 2 -3

https://docs.microsoft.com/en-us/dotnet/csharp/tutorials/inheritance 1 1 3 2 -3

https://www.tutorialspoint.com/cplusplus/cpp_inheritance.htm 1 1 3 2 -3

https://www.tutorialspoint.com/java/java_inheritance.htm 1 1 3 2 -3

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/classes-and-structs/inheritance 1 1 3 2 -3

https://www.digitalocean.com/community/tutorials/understanding-class-inheritance-in-python-3 1 1 3 2 -3

https://www.adobe.com/devnet/actionscript/learning/oop-concepts/inheritance.html 1 1 3 2 -3

https://stackify.com/oop-concept-inheritance/ 1 1 3 2 -3

https://www.python-course.eu/python3_inheritance.php 1 1 3 2 -3

http://www.cplusplus.com/doc/tutorial/inheritance/ 1 1 3 2 -3

https://www.geeksforgeeks.org/inheritance-in-c/ 1 1 3 2 -3

https://javascript.info/class-inheritance 1 1 3 2 -3

http://www.jesshamrick.com/2011/05/18/an-introduction-to-classes-and-inheritance-in-python/ 1 1 3 2 -3

https://hackernoon.com/java-for-humans-class-inheritance-d82a357b2659 1 1 3 2 -3

https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/Inheritance 1 1 3 2 -3

https://beginnersbook.com/2013/03/inheritance-in-java/ 1 1 3 2 -3

https://medium.com/@isaacjumba/overview-of-inheritance-interfaces-and-abstract-classes-in-java-3fe22404baf8 1 1 3 2 -3

https://processing.org/examples/inheritance.html 1 1 3 2 -3

https://www.guru99.com/java-class-inheritance.html 1 1 3 2 -3

http://www.learnjavaonline.org/en/Inheritance 1 1 3 2 -3

http://php.net/manual/en/language.oop5.inheritance.php 1 1 3 2 -3

https://martinfowler.com/eaaCatalog/classTableInheritance.html 1 1 3 2 -3

https://launchschool.com/books/oo_ruby/read/inheritance 1 1 3 2 -3

https://www.datamentor.io/r-programming/inheritance 1 1 3 2 -3

https://www.programiz.com/kotlin-programming/inheritance 1 1 3 2 -3

http://www-numi.fnal.gov/offline_software/srt_public_context/WebDocs/Companion/cxx_crib/inheritance.html 1 1 3 2 -3

http://math.hws.edu/eck/cs124/javanotes5/c5/s5.html 1 1 3 2 -3

https://docs.swift.org/swift-book/LanguageGuide/Inheritance.html 1 1 3 2 -3

https://crystal-lang.org/docs/syntax_and_semantics/inheritance.html 1 1 3 2 -3

http://allaboutscala.com/tutorials/chapter-3-beginner-tutorial-using-classes-scala/scala-extend-class/ 1 1 3 2 -3

https://scotch.io/tutorials/demystifying-es6-classes-and-prototypal-inheritance 1 1 3 2 -3

https://www.csie.ntu.edu.tw/~sylee/courses/clips/class.htm 1 1 3 2 -3

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Classes/Inheritance 1 1 3 2 -3

http://propelorm.org/Propel/documentation/09-inheritance.html 1 1 3 2 -3

https://unity3d.com/learn/tutorials/topics/scripting/inheritance 1 1 3 2 -3

https://orientdb.com/docs/2.1.x/Inheritance.html 1 1 3 2 -3

https://www.ibm.com/support/knowledgecenter/en/SSLTBW_2.3.0/com.ibm.zos.v2r3.cbclx01/inher.htm 1 1 3 2 -3

https://kotlinlang.org/docs/reference/classes.html 1 1 3 2 -3

https://docs.python.org/3/tutorial/classes.html 1 1 3 2 -3

http://people.cs.aau.dk/~normark/oop-csharp/html/notes/inheritance_themes-inheritance-csharp.html 1 1 3 2 -3

https://doc.windev.com/?6010007&name=class_inheritance 1 1 3 2 -3

https://fsharpforfunandprofit.com/posts/inheritance/ 1 1 3 2 -3

https://www.lua.org/pil/16.2.html 1 1 3 2 -3

https://www.mql5.com/en/docs/basis/oop/inheritance 1 1 3 2 -3

https://www.gnu.org/software/guile/manual/html_node/Inheritance.html 1 1 3 2 -3

https://en.cppreference.com/w/cpp/language/derived_class 1 1 3 2 -3

https://www.sapien.com/blog/2016/03/16/inheritance-in-powershell-classes/ 1 1 3 2 -3

https://torquemag.io/2016/06/introduction-class-inheritance-oop-php/ 1 1 3 2 -3

https://www.baeldung.com/java-inheritance 1 1 3 2 -3

https://medium.freecodecamp.org/multiple-inheritance-in-c-and-the-diamond-problem-7c12a9ddbbec 1 1 3 2 -3

https://www.universalclass.com/articles/computers/object-oriented-concepts-inheritance-and-polymorphism-in-c-programming.htm 1 1 3 2 -3

https://www.typescriptlang.org/docs/handbook/classes.html 1 1 3 2 -3

https://uscilab.github.io/cereal/inheritance.html 1 1 3 2 -3

https://johnresig.com/blog/simple-javascript-inheritance/ 1 1 3 2 -3

https://www.callicoder.com/kotlin-inheritance/ 1 1 3 2 -3

https://octave.org/doc/v4.0.0/Inheritance-and-Aggregation.html 1 1 3 2 -3

ftp://ftp.desy.de/pub/courses/cc/text/tutorial1/html/chap07.html 1 1 3 2 -3

https://community.bistudio.com/wiki/Class_Inheritance 1 1 3 2 -3

https://community.bistudio.com/wiki/Class_Inheritance 1 1 3 2 -3

https://thepythonguru.com/python-inheritance-and-polymorphism/ 1 1 3 2 -3

https://www.alphasoftware.com/documentation/pages/Guides/Xbasic/Subclasses%20and%20Inheritance.xml 1 1 3 2 -3

https://www.hackingwithswift.com/sixty/8/2/class-inheritance 1 1 3 2 -3

https://www.cs.bu.edu/teaching/cpp/inheritance/intro/ 1 1 3 2 -3

https://ruby-doc.org/docs/ruby-doc-bundle/UsersGuide/rg/inheritance.html 1 1 3 2 -3

https://www.andrew.cmu.edu/course/15-121/lectures/Inheritance/inheritance.html 1 1 3 2 -3

https://www.eiffel.org/doc/solutions/Inheritance 1 1 3 2 -3

https://linuxconfig.org/python-inheritance 1 1 3 2 -3

https://haxe.org/manual/types-class-inheritance.html 1 1 3 2 -3

https://v1.realworldocaml.org/v1/en/html/classes.html 1 1 3 2 -3

http://esug.org/data/Old/ibm/tutorial/CHAP6.HTML 1 1 3 2 -3

https://www.iro.umontreal.ca/~pift1025/bigjava/Ch13/ch13.html 1 1 3 2 -3

https://en.wikiversity.org/wiki/C%2B%2B/Classes_and_Inheritance 1 1 3 2 -3

https://docs.objectbox.io/advanced/entity-inheritance 1 1 3 2 -3

https://www.hackerrank.com/challenges/30-inheritance/tutorial 1 1 3 2 -3

https://phpenthusiast.com/object-oriented-php-tutorials/inheritance-in-object-oriented-php 1 1 3 2 -3

http://www.peachpit.com/articles/article.aspx?p=2468332&seqNum=6 1 1 3 2 -3

https://cran.r-project.org/web/packages/R6/vignettes/Introduction.html 1 1 3 2 -3

https://www.sitepoint.com/understanding-ecmascript-6-class-inheritance/ 1 1 3 2 -3

http://prototypejs.org/learn/class-inheritance 1 1 3 2 -3

https://doc.zeroc.com/ice/3.6/the-slice-language/classes/class-inheritance-semantics 1 1 3 2 -3

https://www.accelebrate.com/blog/javascript-es6-classes-and-prototype-inheritance-part-1-of-2/ 1 1 3 2 -3

https://www.linuxtopia.org/online_books/programming_books/thinking_in_java/TIJ308_006.htm 1 1 3 2 -3

https://www.visual-paradigm.com/guide/uml-unified-modeling-language/uml-aggregation-vs-composition/ 1 1 3 2 -3

https://javascriptweblog.wordpress.com/2010/12/22/delegation-vs-inheritance-in-javascript/ 1 1 3 2 -3

http://www.karthikscorner.com/sharepoint/design-patterns-composition-vs-inheritance/ 1 1 3 2 -3

http://www.web-feats.com/classes/javaprog/lessons/oop/inh_vs_comp.htm 1 1 3 2 -3

http://ice-web.cc.gatech.edu/ce21/1/static/JavaReview-RU/OOBasics/ooAssocVsInherit.html 1 1 4 2 -4

https://www.mimuw.edu.pl/~sl/teaching/00_01/Delfin_EC/Patterns/InheritanceVsComposition.htm 1 1 4 2 -4

263 Thomas Butler

URL Describe Example Implications Alternatives Comparison
code

Pros/Cons Recommendation Recommendation
scale

Jadad

http://blog.brew.com.hk/react-101-composition-vs-inheritance/ 1 1 5 2 -5

https://www.hackerearth.com/practice/python/object-oriented-programming/classes-and-objects-ii-inheritance-and-composition/tutorial/ 1 1 1 3 3 -3

http://www.cs.fsu.edu/~lacher/lectures/Output/classes3/index.html?$$$toc.html$$$ 1 1 1 3 3 -3

http://www.delphibasics.co.uk/Article.asp?Name=Inherit 1 1 1 3 3 -3

http://www.tutisani.com/software-architecture/composition-vs-inheritance.html 1 1 1 3 3 -3

https://www.cs.nmsu.edu/~cliu/cs187/2007spring01/lectures/lecture11.html 1 1 1 3 3 -3

https://robots.thoughtbot.com/reusable-oo-composition-vs-inheritance 1 1 1 4 3 -4

http://www.visbox.com/prajlich/T/node14.html 1 1 1 4 3 -4

https://www.protechtraining.com/content/ruby_tutorial-class_inheritance 1 1 1 5 3 -5

https://www.jetbrains.com/help/idea/replace-inheritance-with-delegation.html 1 1 1 5 3 -5

https://www.codeproject.com/Articles/80045/Composition-VS-Inheritance 1 1 1 1 3 4 -3

https://www.programcreek.com/2014/05/inheritance-vs-composition-in-java/ 1 1 1 1 3 4 -3

https://programmingwithmosh.com/object-oriented-programming/what-text-books-tell-you-about-inheritance-in-oop-is-wrong/ 1 1 1 1 4 4 -4

https://codeburst.io/inheritance-is-evil-stop-using-it-6c4f1caf5117 1 1 1 1 5 4 -5

https://en.wikibooks.org/wiki/C%2B%2B_Programming/Classes/Inheritance 1 1 1 1 5 4 -5

https://medium.com/@TK_CodeBear/inheritance-vs-object-composition-4723c1902b28 1 1 1 1 5 4 -5

http://codelikethis.com/lessons/react/composition_vs_inheritance 1 1 1 1 5 4 -5

https://puppet.com/docs/puppet/4.10/lang_classes.html 1 1 1 1 1 5 5 -5

https://www.thoughts-on-java.org/composition-vs-inheritance-jpa-hibernate/ 1 1 1 1 1 5 5 -5

https://www.troyfawkes.com/php-multiple-inheritance-vs-composition/ 1 1 1 1 1 5 5 -5

https://www.codeproject.com/Articles/80045/Composition-VS-Inheritance 1 1 1 1 1 1 3 6 -3

http://www.ntu.edu.sg/home/ehchua/programming/java/j3b_oopinheritancepolymorphism.html 1 1 1 1 1 1 4 6 -4

https://learnrubythehardway.org/book/ex44.html 1 1 1 1 1 1 4 6 -4

https://www.thoughtworks.com/insights/blog/composition-vs-inheritance-how-choose 1 1 1 1 1 1 1 4 7 -4

https://www.geeksforgeeks.org/delegation-vs-inheritance-java/ 1 1 1 1 1 1 1 4 7 -4

https://www.javacodegeeks.com/2013/08/multiple-inheritance-in-java-and-composition-vs-inheritance.html 1 1 1 1 1 1 1 4 7 -4

https://dzone.com/articles/is-inheritance-dead 1 1 1 1 1 1 1 4 7 -4

https://www.techjini.com/blog/inheritance-vs-composition/ 1 1 1 1 1 1 1 4 7 -4

https://www.c-sharpcorner.com/UploadFile/ff2f08/inheritance-vs-composition/ 1 1 1 1 1 1 1 4 7 -4

https://www.troyfawkes.com/php-multiple-inheritance-vs-composition/ 1 1 1 1 1 1 1 4 7 -4

http://www.gotw.ca/publications/mill07.htm 1 1 1 1 1 1 1 5 7 -5

https://refactoring.guru/replace-inheritance-with-delegation 1 1 1 1 1 1 1 5 7 -5

https://dzone.com/articles/composition-vs-inheritance 1 1 1 1 1 1 1 5 7 -5

https://mikebuss.com/2016/01/10/interfaces-vs-inheritance/ 1 1 1 1 1 1 1 5 7 -5

https://www.journaldev.com/12086/composition-vs-inheritance 1 1 1 1 1 1 1 5 7 -5

http://u.cs.biu.ac.il/~89-111/08-composition.pdf 1 1 1 1 1 1 1 5 7 -5

http://mjk.space/how-to-avoid-inheritance-in-ruby/ 1 1 1 1 1 1 1 5 7 -5

https://anandabhisheksingh.me/composition-vs-inheritance/ 1 1 1 1 1 1 1 5 7 -5

https://pettermahlen.com/2010/08/20/composition-vs-inheritance/ 1 1 1 1 1 1 1 5 7 -5

http://www.tiedyedfreaks.org/eric/CompositionVsInheritance.html 1 1 1 1 1 1 1 5 7 -5

https://r.je/you-do-not-need-inheritance-oop.html 1 1 1 1 1 1 1 5 7 -5

38 28

Service Locator
URL Describe Example Implications Alternatives Comparison

code
Pros/Cons Recommendation Recommendation

scale
Jadad

https://maven.apache.org/resolver/apidocs/org/eclipse/aether/spi/locator/ServiceLocator.html 1 3 1 -3

https://designpatternsphp.readthedocs.io/en/latest/More/ServiceLocator/README.html 1 1 3 2 -3

https://www.tutorialspoint.com/design_pattern/service_locator_pattern.htm 1 1 3 2 -3

http://www.oracle.com/technetwork/java/servicelocator-137181.html 1 1 3 2 -3

https://symfony.com/blog/new-in-symfony-3-3-service-locators 1 1 3 2 -3

https://symfony.com/doc/current/service_container/service_subscribers_locators.html 1 1 3 2 -3

https://www.yiiframework.com/doc/guide/2.0/en/concept-service-locator 1 1 3 2 -3

https://caliburnmicro.com/documentation/service-locator 1 1 3 2 -3

http://www.stefanoricciardi.com/2009/09/25/service-locator-pattern-in-csharpa-simple-example/ 1 1 3 2 -3

https://www.c-sharpcorner.com/UploadFile/dacca2/service-locator-design-pattern/ 1 1 3 2 -3

https://www.codeproject.com/Articles/597787/A-tutorial-on-Service-locator-pattern-with-impleme 1 1 3 2 -3

https://www.c-sharpcorner.com/article/dependency-injection-part-7-service-locator-pattern/ 1 1 3 2 -3

http://rahulrajatsingh.com/2016/01/a-beginners-tutorial-for-understanding-and-implementing-service-locator-pattern/ 1 1 3 2 -3

https://brejoc.com/service-locator-pattern-in-python/ 1 1 3 2 -3

http://www.blackwasp.co.uk/ServiceLocator.aspx 1 1 3 2 -3

https://www.javaworld.com/article/2074398/core-java/repair-invalid-cached-services-in-the-service-locator-pattern.html 1 1 3 2 -3

https://www.artima.com/weblogs/viewpost.jsp?thread=238562 1 1 3 2 -3

https://www.dineshonjava.com/service-locator/ 1 1 3 2 -3

https://pypi.org/project/service-locator/ 1 1 3 2 -3

http://www.corej2eepatterns.com/ServiceLocator.htm 1 1 3 2 -3

http://www.w3big.com/design-pattern/service-locator-pattern.html 1 1 3 2 -3

https://www.jerriepelser.com/blog/using-autofac-and-common-service-locator-with-azure-webjobs/ 1 1 3 2 -3

https://iamninad.com/service-factory-using-spring-framework/ 1 1 3 2 -3

https://prashantbrall.wordpress.com/2010/11/22/service-locator-pattern-with-windsor-castle/ 1 1 3 2 -3

https://medium.com/@kenmarin_23370/dependency-injection-servicelocator-pattern-unit-testing-with-self-creating-mocks-in-swift-a303f4fc9f73 1 1 3 2 -3

http://blog.cyber-dojo.org/2017/04/service-locator-pattern-with-no-central.html 1 1 3 2 -3

https://blog.snappi.io/service-location-dependency-injection-in-a-microservice-architecture-6a2f76b49984 1 1 3 2 -3

http://www.coolryan.com/magento/2014/02/28/magento-design-patterns-part-10-service-locator/ 1 1 3 2 -3

http://perfectjpattern.sourceforge.net/dp-servicelocator.html 1 1 3 2 -3

https://www.devmedia.com.br/service-locator/4531 1 1 3 2 -3

https://jindongpu.wordpress.com/2013/06/09/service-locator-pattern/ 1 1 3 2 -3

http://2024studios.blogspot.com/2017/06/hi-everyone-when-working-with-unity-and.html 1 1 3 2 -3

http://www.canertosuner.com/post/servicelocator-design-pattern 1 1 3 2 -3

http://xunitpatterns.com/Dependency%20Lookup.html 1 1 3 2 -3

https://marlongrech.wordpress.com/2009/09/02/service-locator-in-mvvm/ 1 1 3 2 -3

http://www.herlitz.nu/2015/10/21/servicelocator-singleton-pattern-with-annotation-mapping/ 1 1 3 2 -3

http://www.floriangoessler.de/ios/2016/01/24/Swift-Service-Locator.html 1 1 3 2 -3

https://j2eereference.com/design-pattern-service-locator/ 1 1 3 2 -3

http://www.basepatterns.org/java/2009/09/30/osgi-service-locator.html 1 1 3 2 -3

https://www.infoworld.com/article/3104888/application-development/how-to-implement-the-servicelocator-design-pattern.html 1 1 1 1 3 -1

http://derpturkey.com/service-locator-is-not-an-anti-pattern/ 1 1 1 1 3 -1

https://blog.kotlin-academy.com/dependency-injection-the-pattern-without-the-framework-33cfa9d5f312 1 1 1 1 3 -1

https://en.wikipedia.org/wiki/Service_locator_pattern 1 1 1 3 3 -3

http://gameprogrammingpatterns.com/service-locator.html 1 1 1 3 3 -3

https://www.geeksforgeeks.org/service-locator-pattern/ 1 1 1 3 3 -3

https://github.com/iluwatar/java-design-patterns/tree/master/service-locator 1 1 1 3 3 -3

Thomas Butler 264

URL Describe Example Implications Alternatives Comparison
code

Pros/Cons Recommendation Recommendation
scale

Jadad

http://www.javaguides.net/2018/08/service-locator-design-pattern-in-java.html 1 1 1 3 3 -3

https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/Service_locator_pattern.html 1 1 1 3 3 -3

https://cdiese.fr/design-pattern-service-locator/ 1 1 1 3 3 -3

http://blogsprajeesh.blogspot.com/2011/05/ioc-unity-as-di-and-service-locator.html 1 1 1 3 3 -3

https://wiki.unrealengine.com/Applying_Service_Locator_Pattern_to_UE4 1 1 1 4 3 -4

http://geekswithblogs.net/KyleBurns/archive/2012/04/27/dependency-injection-vs.-service-locator.aspx 1 1 1 4 3 -4

http://ralphschindler.com/2012/10/10/di-dic-service-locator-redux 1 1 1 4 3 -4

https://devstyle.pl/2016/02/11/antywzrorzec-service-locator/ 1 1 1 5 3 -5

https://caliburnmicro.com/documentation/service-locator 1 1 1 5 3 -5

http://programminglife.io/improving-android-unit-testing-with-service-locator-pattern/ 1 1 1 1 2 4 -2

http://guy-murphy.github.io/2014/11/24/service-locator-vs-dependency-injection/ 1 1 1 1 3 4 -3

http://www.jondjones.com/learn-episerver-cms/episerver-developers-guide/episerver-best-practices-tips-and-tricks/dependency-injection-in-episerver-servicelocator-and-injected-explained 1 1 1 1 3 4 -3

https://robinsedlaczek.com/2014/11/22/dependency-injection-in-asp-net-vnext/ 1 1 1 1 3 4 -3

http://www.davidarno.org/2015/10/21/is-the-service-locator-an-anti-pattern/ 1 1 1 1 4 4 -4

https://henrylawson.net/the-service-locator-code-smell 1 1 1 1 4 4 -4

http://www.lobsterfs.co.uk/blog/service-locator-anti-pattern/ 1 1 1 1 4 4 -4

https://medium.com/inloopx/service-locator-pattern-in-android-af3830924c69 1 1 1 1 5 4 -5

https://odetocode.com/blogs/scott/archive/2016/02/18/avoiding-the-service-locator-pattern-in-asp-net-core.aspx 1 1 1 1 5 4 -5

https://blog.tfnico.com/2011/04/dreaded-service-locator-pattern.html 1 1 1 1 5 4 -5

http://michaelsync.net/2015/10/01/unit-test-parallel-execution-of-static-classes-or-servicelocator 1 1 1 1 5 4 -5

http://techxposer.com/2017/07/04/part-4-understanding-how-service-locator-different-from-dependency-injection/ 1 1 1 1 1 3 5 -3

https://c2experience.com/blog/2016/11/inversion-of-control-using-an-injectable-service-locator/ 1 1 1 1 1 3 5 -3

https://www.psclistens.com/insight/blog/exploring-the-service-locator-pattern/ 1 1 1 1 1 4 5 -4

https://mcguirev10.com/2018/04/03/service-locator-azure-functions-v2.html 1 1 1 1 1 4 5 -4

https://stackify.com/service-locator-pattern/?utm_referrer=https%3A%2F%2Fwww.google.com%2F 1 1 1 1 1 5 5 -5

https://www.baeldung.com/java-service-locator-pattern 1 1 1 1 1 5 5 -5

https://stitcher.io/blog/service-locator-anti-pattern 1 1 1 1 1 5 5 -5

https://dzone.com/articles/design-patterns-explained-service-locator-pattern 1 1 1 1 1 5 5 -5

https://dotnetcodr.com/2013/08/08/design-patterns-and-practices-in-net-the-service-locator-anti-pattern/ 1 1 1 1 1 5 5 -5

http://www.mendoweb.be/blog/dependency-injection-service-locator-factory-constructor-injection-dic/ 1 1 1 1 1 5 5 -5

https://tecnoesis.wordpress.com/tag/service-locator-design-pattern/ 1 1 1 1 1 1 3 6 -3

http://blogs.microsoft.co.il/bnaya/2016/02/17/microsoft-composition-portable-mef-dependency-injection-and-service-locator/ 1 1 1 1 1 1 3 6 -3

http://paul-m-jones.com/archives/4800 1 1 1 1 1 1 5 6 -5

https://martinfowler.com/articles/injection.html 1 1 1 1 1 1 1 4 7 -4

https://steveschols.wordpress.com/2012/05/14/dependency-injection-vs-service-locator/ 1 1 1 1 1 1 1 4 7 -4

https://oncodedesign.com/concurrent-unit-tests-with-service-locator/ 1 1 1 1 1 1 1 4 7 -4

https://blog.gravypower.net/2018/06/03/service-locator-pattern-or-anti-pattern/ 1 1 1 1 1 1 1 4 7 -4

http://blog.ploeh.dk/2010/02/03/ServiceLocatorisanAnti-Pattern/ 1 1 1 1 1 1 1 5 7 -5

https://www.c-sharpcorner.com/article/why-service-locator-is-an-anti-pattern-for-dependency-injection/ 1 1 1 1 1 1 1 5 7 -5

https://jeremybytes.blogspot.com/2013/04/dependency-injection-service-locator.html 1 1 1 1 1 1 1 5 7 -5

https://badootech.badoo.com/singleton-service-locator-and-tests-in-ios-d69484e88944 1 1 1 1 1 1 1 5 7 -5

http://www.nickhodges.com/post/Service-Locator-is-Indeed-an-Anti-pattern.aspx 1 1 1 1 1 1 1 5 7 -5

https://adamcod.es/2013/11/25/service-locator-vs-dependency-injection-container.html 1 1 1 1 1 1 1 5 7 -5

http://tutorials.jenkov.com/dependency-injection/dependency-injection-replacing-factory-patterns.html 1 1 1 1 1 1 1 5 7 -5

https://www.appliedis.com/lost-in-translation-dependency-inversion-principle-inversion-of-control-dependency-injection-service-locator/ 1 1 1 1 1 1 1 5 7 -5

https://xamarinhelp.com/patterns-referencing-dependencies-cross-platform-development/ 1 1 1 1 1 1 1 5 7 -5

https://phpsp.org.br/service-locator-e-um-anti-pattern/ 1 1 1 1 1 1 1 5 7 -5

https://engineering.beubi.com/patterns/avoid-service-locators/ 1 1 1 1 1 1 1 5 7 -5

http://www.ben-morris.com/how-not-to-use-dependency-injection-service-locators-and-injection-mania/ 1 1 1 1 1 1 1 5 7 -5

https://www.dotnettricks.com/learn/dependencyinjection/understanding-inversion-of-control-dependency-injection-and-service-locator 1 1 1 1 1 1 1 5 7 -5

http://www.andyfrench.info/2011/05/service-locator-anti-pattern_17.html 1 1 1 1 1 1 1 5 7 -5

http://www.techjava.de/topics/tag/service-locator/ 1 1 1 1 1 1 1 5 7 -5

http://criticalsoftwareblog.com/index.php/2015/10/25/object-composability-another-reason-why-the-service-locator-is-an-anti-pattern/ 1 1 1 1 1 1 1 5 7 -5

http://dave.codes/whats-the-difference-between-a-dependency-injection-container-and-the-service-locator-pattern/ 1 1 1 1 1 1 1 5 7 -5

56 41

Static Methods
URL Describe Example Implications Alternatives Comparison

code
Pros/Cons Recommendation Recommendation

scale
Jadad

https://www.techopedia.com/definition/24034/static-method 1 3 1 -3

http://docs.mockery.io/en/latest/reference/public_static_properties.html 1 3 1 -3

https://code.haxe.org/category/other/adding-static-methods-to-existing-classes.html 1 3 1 -3

https://rules.sonarsource.com/java/tag/clumsy/RSPEC-2440 1 3 1 -3

https://www.avajava.com/tutorials/lessons/how-do-i-use-a-synchronized-block-in-a-static-method.html 1 3 1 -3

https://www.bennadel.com/blog/3445-static-methods-can-access-private-class-constructors-in-typescript.htm 1 3 1 -3

http://pages.cs.wisc.edu/~hasti/cs302/examples/UMLdiagram.html 1 3 1 -3

https://introcs.cs.princeton.edu/java/21function/ 1 1 3 2 -3

https://www.guru99.com/java-static-variable-methods.html 1 1 3 2 -3

https://www.javatpoint.com/static-keyword-in-java 1 1 3 2 -3

https://docs.oracle.com/javase/tutorial/java/javaOO/classvars.html 1 1 3 2 -3

https://www.thoughtco.com/static-method-2034289 1 1 3 2 -3

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Classes/static 1 1 3 2 -3

https://www.mathworks.com/help/matlab/matlab_oop/static-methods.html 1 1 3 2 -3

https://beginnersbook.com/2013/04/java-static-class-block-methods-variables/ 1 1 3 2 -3

https://codeburst.io/static-methods-and-method-overriding-d810f30f3c18 1 1 3 2 -3

https://chortle.ccsu.edu/java5/Notes/chap25/ch25_13.html 1 1 3 2 -3

https://www.inf.unibz.it/~calvanese/teaching/ip/lecture-notes/uni03/node6.html 1 1 3 2 -3

https://codeburst.io/static-methods-and-method-overriding-d810f30f3c18 1 1 3 2 -3

https://www.inf.unibz.it/~calvanese/teaching/ip/lecture-notes/uni03/node6.html 1 1 3 2 -3

http://nicholasjohnson.com/ruby/ruby-course/exercises/static-methods/ 1 1 3 2 -3

https://study.com/academy/lesson/static-vs-non-static-methods-in-java.html 1 1 3 2 -3

https://processing.org/reference/static.html 1 1 3 2 -3

https://www.safaribooksonline.com/library/view/java-pocket-guide/9780596514198/ch05s04.html 1 1 3 2 -3

https://android.jlelse.eu/daily-kotlin-static-methods-9330552cde8a 1 1 3 2 -3

https://www.jetbrains.com/help/resharper/Refactorings__Make_Method_Non-Static.html 1 1 3 2 -3

https://pythonprogramminglanguage.com/static-methods/ 1 1 3 2 -3

https://crunchify.com/fundamentals-of-java-static-methods-and-variables/ 1 1 3 2 -3

https://www.webucator.com/how-to/how-use-static-methods-with-java-8-interfaces.cfm 1 1 3 2 -3

https://medium.com/@ibosz/mocking-static-method-in-kotlin-614df89482ae 1 1 3 2 -3

http://home.wlu.edu/~lambertk/hsjava/whatsnew/static.html 1 1 3 2 -3

https://en.wikipedia.org/wiki/Method_(computer_programming) 1 1 3 2 -3

https://javascript.info/class 1 1 3 2 -3

https://developer.salesforce.com/docs/atlas.en-us.apexcode.meta/apexcode/apex_classes_static.htm 1 1 3 2 -3

https://documentation.progress.com/output/ua/OpenEdge_latest/index.html#page/dvoop/calling-static-methods-from-inside-the-defining.html 1 1 3 2 -3

http://www.dgp.toronto.edu/~trendall/course/108/lectures/L03node2.html 1 1 3 2 -3

https://dev.to/joaofbantunes/simplify-unit-tests-on-static-methods-in-c 1 1 3 2 -3

https://simplesnippets.tech/java-static-variables-and-static-methods/ 1 1 3 2 -3

https://phake.readthedocs.io/en/2.1/mocking-statics.html 1 1 3 2 -3

https://doc.rust-lang.org/rust-by-example/fn/methods.html 1 1 3 2 -3

https://docs.tibco.com/pub/enterprise-runtime-for-R/4.4.1/doc/html/Language_Reference/terrJava/dotJavaMethod.html 1 1 3 2 -3

https://www.freepascal.org/docs-html/ref/refsu30.html 1 1 3 2 -3

265 Thomas Butler

URL Describe Example Implications Alternatives Comparison
code

Pros/Cons Recommendation Recommendation
scale

Jadad

https://www.intertech.com/Blog/hiding-static-methods/ 1 1 3 2 -3

https://mongoosejs.com/docs/2.7.x/docs/methods-statics.html 1 1 3 2 -3

https://code.tutsplus.com/tutorials/java-8-for-android-development-default-and-static-methods--cms-29754 1 1 3 2 -3

https://www.harrisgeospatial.com/docs/Static_Methods.html 1 1 3 2 -3

https://www.makeuseof.com/tag/python-instance-static-class-methods/ 1 1 3 2 -3

https://www.khanacademy.org/computing/computer-programming/programming-natural-simulations/programming-vectors/a/static-functions-vs-instance-methods 1 1 3 2 -3

https://docs.microsoft.com/en-us/dynamicsax-2012/developer/static-methods 1 1 3 2 -3

http://octave.org/doc/v4.4.0/Methods.html 1 1 3 2 -3

http://www.bogotobogo.com/python/python_differences_between_static_method_and_class_method_instance_method.php 1 1 3 2 -3

https://docs.swift.org/swift-book/LanguageGuide/Methods.html 1 1 3 2 -3

https://code-maven.com/slides/python-programming/static-methods 1 1 3 2 -3

https://en.wikibooks.org/wiki/Android/Testing/Unit_Testing/Injecting_Static_Methods 1 1 3 2 -3

http://php.net/manual/en/language.oop5.static.php 1 1 3 2 -3

https://www.swiftbysundell.com/posts/static-factory-methods-in-swift 1 1 3 2 -3

https://www.cs.cmu.edu/~mrmiller/15-110/Handouts/methods-4.pdf 1 1 3 2 -3

https://www.javabrahman.com/java-8/java-8-static-methods-vs-default-methods-in-interfaces/ 1 1 3 2 -3

https://docs.python.org/2/howto/descriptor.html 1 1 3 2 -3

http://www.tutorialsteacher.com/csharp/csharp-static 1 1 3 2 -3

https://eslint.org/docs/rules/class-methods-use-this 1 1 3 2 -3

https://docs.scala-lang.org/sips/static-members.html 1 1 3 2 -3

https://handstandsam.com/2017/07/07/how-do-i-write-static-methods-kotlin/ 1 1 3 2 -3

https://www.saxonica.com/html/documentation/extensibility/functions/staticmethods.html 1 1 3 2 -3

https://xebia.com/blog/mocking-static-calls/ 1 1 3 2 -3

https://julien.danjou.info/guide-python-static-class-abstract-methods/ 1 1 3 2 -3

https://torquemag.io/2016/10/static-methods-cross-cutting-concerns/ 1 1 3 2 -3

https://www.hackingwithswift.com/read/0/18/static-properties-and-methods 1 1 3 2 -3

https://infohost.nmt.edu/tcc/help/pubs/python/web/static-methods.html 1 1 3 2 -3

https://www.python-course.eu/python3_class_and_instance_attributes.php 1 1 3 2 -3

https://blog.codecentric.de/en/2011/11/testing-and-mocking-of-static-methods-in-java/ 1 1 3 2 -3

https://thanish.me/getting-the-class-in-static-methods-618a2e32afcf 1 1 3 2 -3

https://blog.udemy.com/java-static-method-2/ 1 1 3 2 -3

https://www.cis.upenn.edu/~matuszek/cit591-2006/Pages/static-vs-instance.html 1 1 3 2 -3

https://testing.googleblog.com/2008/12/static-methods-are-death-to-testability.html 1 1 3 2 -3

http://mattwarren.org/2014/08/14/how-to-mock-sealed-classes-and-static-methods/ 1 1 3 2 -3

https://www.baeldung.com/java-static 1 1 1 2 3 -2

https://beginnersbook.com/2013/04/java-static-class-block-methods-variables/ 1 1 1 3 3 -3

https://www.johnmorrisonline.com/static-methods-properties-php/ 1 1 1 3 3 -3

https://www.dotnetperls.com/static 1 1 1 3 3 -3

https://theburningmonk.com/2010/07/static-vs-non-static-method-in-csharp/ 1 1 1 3 3 -3

https://docs.typo3.org/typo3cms/CoreApiReference/CodingGuidelines/PhpArchitecture/ModelingCrossCuttingConcerns/StaticMethods.html 1 1 1 4 3 -4

http://web.cse.ohio-state.edu/software/2221/web-sw1/extras/slides/22a.Static-vs-Instance-Methods.pdf 1 1 1 5 3 -5

https://www.geeksforgeeks.org/static-methods-vs-instance-methods-java/ 1 1 1 1 3 4 -3

https://realpython.com/instance-class-and-static-methods-demystified/ 1 1 1 1 3 4 -3

https://knpuniversity.com/screencast/oo-ep4/static-methods 1 1 1 1 3 4 -3

http://www.pp.rhul.ac.uk/~george/PH2150/html/node48.html 1 1 1 1 3 4 -3

https://programmingideaswithjake.wordpress.com/2016/04/02/static-methods-are-fine/ 1 1 1 1 4 4 -4

https://gunnarpeipman.com/development/refactoring-expose-static-method/ 1 1 1 1 4 4 -4

https://www.tabsoverspaces.com/233660-are-static-methods-faster-in-execution-compared-to-instance-methods-dotnet 1 1 1 1 1 3 5 -3

http://verraes.net/2014/06/when-to-use-static-methods-in-php/ 1 1 1 1 1 4 5 -4

https://simpleprogrammer.com/static-methods-will-shock-you/ 1 1 1 1 1 4 5 -4

https://dzone.com/articles/kotlin-static-methods 1 1 1 1 1 5 5 -5

https://www.vojtechruzicka.com/avoid-utility-classes/ 1 1 1 1 1 5 5 -5

https://www.beyondjava.net/should-you-avoid-or-embrace-static 1 1 1 1 1 1 1 2 7 -2

https://searchwindevelopment.techtarget.com/tip/Static-methods-are-a-code-smell 1 1 1 1 1 1 1 5 7 -5

https://deviq.com/static-cling/ 1 1 1 1 1 1 1 5 7 -5

https://martinfowler.com/bliki/StaticSubstitution.html 1 1 1 1 1 1 1 5 7 -5

http://kunststube.net/static/ 1 1 1 1 1 1 1 5 7 -5

https://testing.googleblog.com/2008/12/static-methods-are-death-to-testability.html 1 1 1 1 1 1 1 5 7 -5

19 16

Setter Injection
URL Describe Example Implications Alternatives Comparison

code
Pros/Cons Recommendation Recommendation

scale
Jadad

https://clarify.dovetailsoftware.com/kmiller/2007/04/30/windsor-container-property-setter-injection/ 1 3 1 -3

https://www.tutorialspoint.com/spring/setter_based_dependency_injection.htm 1 1 3 2 -3

https://examples.javacodegeeks.com/enterprise-java/spring/spring-setter-injection-tutorial/ 1 1 3 2 -3

http://www.studytrails.com/frameworks/spring/spring-setter-injection/ 1 1 3 2 -3

https://www.springbyexample.org/examples/intro-to-ioc-basic-setter-injection.html 1 1 3 2 -3

https://www.javatpoint.com/spring-tutorial-dependency-injection-by-setter-method 1 1 3 2 -3

http://structuremap.github.io/setter-injection/ 1 1 3 2 -3

https://dzone.com/tutorials/java/spring/spring-bean-setter-injection-1.html 1 1 3 2 -3

https://en.wikipedia.org/wiki/Dependency_injection 1 1 3 2 -3

http://www.java2s.com/Tutorials/Java/Spring/0050__Spring_Setter_Injection.htm 1 1 3 2 -3

http://www.codenuclear.com/difference-between-setter-injection-and-constructor-injection/ 1 1 3 2 -3

https://www.baeldung.com/inversion-control-and-dependency-injection-in-spring 1 1 3 2 -3

https://www.caucho.com/resin-3.1/doc/ioc-bean.xtp 1 1 3 2 -3

https://www.mkyong.com/spring/spring-di-via-setter-method/ 1 1 3 2 -3

https://richnewman.wordpress.com/about/code-listings-and-diagrams/dependency-injection-examples/dependency-injection-example-setter-injection/ 1 1 3 2 -3

https://framework.zend.com/manual/2.4/en/tutorials/quickstart.di.html 1 1 3 2 -3

http://farenda.com/spring/spring-setter-injection/ 1 1 3 2 -3

http://auraphp.com/packages/3.x/Di/setter.html 1 1 3 2 -3

http://www.javainterviewpoint.com/spring-setter-injection-with-objects/ 1 1 3 2 -3

https://www.ashtpoint.com/spring/setter-injection.html 1 1 3 2 -3

https://www.logicbig.com/tutorials/spring-framework/spring-core/types-of-dependency-injection.html 1 1 3 2 -3

https://egyyan.com/view?id=36&id2=211 1 1 3 2 -3

http://www.riptutorial.com/php/example/7712/setter-injection 1 1 3 2 -3

https://www.cosmiclearn.com/spring/framework_java_setter.php 1 1 3 2 -3

https://www.tomasvotruba.cz/blog/2017/05/07/how-to-refactor-to-new-dependency-injection-features-in-symfony-3-3/ 1 1 3 2 -3

https://springframework.guru/dependency-injection-example-using-spring/ 1 1 3 2 -3

https://www.programcreek.com/2014/02/spring-mvc-tutorial-setter-dependency-injection/ 1 1 3 2 -3

http://sirprize.me/scribble/symfony2-setter-injection-and-yaml-configuration/ 1 1 3 2 -3

http://www.startwithjava.com/spring-setter-injection/ 1 1 3 2 -3

https://books.sonatype.com/mvnref-book/reference/writing-plugins-sect-programming-maven.html 1 1 3 2 -3

Thomas Butler 266

https://knpuniversity.com/screencast/symfony-fundamentals/logger-trait 1 1 1 3 3 -3

https://javarevisited.blogspot.com/2012/11/difference-between-setter-injection-vs-constructor-injection-spring-framework.html 1 1 1 3 3 -3

http://www.techbloglife.com/setter-injection-overrides-the-values-injected-by-constructor-injection-in-spring/ 1 1 1 3 3 -3

http://websystique.com/spring/spring-dependency-injection-example-with-constructor-and-property-setter-xml-example/ 1 1 1 3 3 -3

https://antoniogoncalves.org/2011/05/03/injection-with-cdi-part-ii/ 1 1 1 3 3 -3

http://javaeasy.weebly.com/dependency-injections.html 1 1 1 3 3 -3

https://javabeginnerstutorial.com/spring-framework-tutorial/spring-setter-dependency-injection-using-annotation/ 1 1 1 3 3 -3

http://www.vogella.com/tutorials/SpringDependencyInjection/article.html 1 1 1 3 3 -3

https://java2blog.com/dependency-injection-via-setter-method/ 1 1 1 3 3 -3

https://autofaccn.readthedocs.io/en/latest/register/prop-method-injection.html 1 1 1 3 3 -3

https://www.java4coding.com/contents/spring/05setterInjection.html 1 1 1 3 3 -3

https://www.boraji.com/spring-dependency-injection-example-with-annotation 1 1 1 3 3 -3

http://coders-kitchen.com/2015/01/05/dependency-injection-field-vs-constructor-vs-method/ 1 1 1 3 3 -3

http://codegeekslab.com/injection-of-set-java-collection-using-setter-and-constructor-dependency-injection/ 1 1 1 3 3 -3

https://gerardnico.com/code/design_pattern/injection 1 1 1 3 3 -3

https://stackify.com/dependency-injection-c-sharp/ 1 1 1 3 3 -3

http://docs.drush.org/en/master/dependency-injection/ 1 1 1 3 3 -3

https://www.vodori.com/an-introduction-into-springs-dependency-injection/ 1 1 1 3 3 -3

http://static.javadoc.io/org.mockito/mockito-core/2.3.4/org/mockito/InjectMocks.html 1 1 1 3 3 -3

https://javaranch.com/journal/200709/dependency-injection-unit-testing.html 1 1 1 3 3 -3

http://best-practice-software-engineering.ifs.tuwien.ac.at/patterns/dependency_injection.html 1 1 1 3 3 -3

http://s2container.seasar.org/en/DIContainer.html#SetterInjection 1 1 1 3 3 -3

https://www.infoworld.com/article/2974298/application-architecture/exploring-the-dependency-injection-principle.html 1 1 1 3 3 -3

http://www.basilv.com/psd/blog/2009/java-based-configuration-of-spring-dependency-injection 1 1 1 3 3 -3

https://www.devbridge.com/articles/dependency-injection-in-javascript/# 1 1 1 3 3 -3

https://docs.oracle.com/javaee/6/tutorial/doc/bncjk.html 1 1 1 3 3 -3

https://blog.michalszalkowski.com/java/dependency-injection-with-the-spring-framework-setter-injection-vs-constructor-injection/ 1 1 1 3 3 -3

https://symfony.com/doc/current/service_container/calls.html 1 1 1 5 3 -5

http://www.devx.com/dotnet/Article/34066/0/page/2 1 1 1 1 1 4 -1

https://www.java4s.com/spring/difference-between-setter-injection-and-constructor-injection/ 1 1 1 1 3 4 -3

https://javabeginnerstutorial.com/spring-framework-tutorial/spring-setter-dependency-injection-using-annotation/ 1 1 1 1 3 4 -3

https://blog.marcnuri.com/field-injection-is-not-recommended/ 1 1 1 1 3 4 -3

http://xunitpatterns.com/Dependency%20Injection.html 1 1 1 1 3 4 -3

https://www.lucius.digital/blog/dependency-injection-drupal-8-introduction 1 1 1 1 3 4 -3

http://jayroman.com/blog/finding-a-real-world-use-case-for-setter-injection-in-symfony2 1 1 1 1 4 4 -4

https://documentation.help/MS-Enterprise-Library-5.0/EntLib50_135fa151-4553-43bf-87c2-e71935a1075a.html 1 1 1 1 4 4 -4

http://blog.schauderhaft.de/2012/06/05/repeat-after-me-setter-injection-is-a-symptom-of-design-problems/ 1 1 1 1 5 4 -5

http://thesolidphp.com/constructor-vs-setter-dependency-injection/ 1 1 1 1 5 4 -5

https://codeopinion.com/throw-out-your-dependency-injection-container/ 1 1 1 1 5 4 -5

https://www.yegor256.com/2014/10/03/di-containers-are-evil.html 1 1 1 1 5 4 -5

https://www.masterzendframework.com/zend-framework/easy-setter-injection-in-zend-framework-2/ 1 1 1 1 1 4 5 -4

http://fabien.potencier.org/what-is-dependency-injection.html 1 1 1 1 1 4 5 -4

http://picocontainer.com/setter-injection.html 1 1 1 1 1 5 5 -5

https://richardmiller.co.uk/2014/03/12/avoiding-setter-injection/ 1 1 1 1 1 5 5 -5

https://symfony.com/doc/current/service_container/injection_types.html 1 1 1 1 1 1 3 6 -3

https://www.vojtechruzicka.com/field-dependency-injection-considered-harmful/ 1 1 1 1 1 1 3 6 -3

https://www.c-sharpcorner.com/UploadFile/ff2f08/dependency-injection-pattern/ 1 1 1 1 1 1 3 6 -3

http://umeshspring.blogspot.com/ 1 1 1 1 1 1 3 6 -3

https://help.semmle.com/wiki/display/JAVA/Use+setter+injection+instead+of+constructor+injection 1 1 1 1 1 1 1 1 7 -1

https://brandonhilkert.com/blog/a-ruby-refactor-exploring-dependency-injection-options/ 1 1 1 1 1 1 1 1 7 -1

https://martinfowler.com/articles/injection.html#SetterInjectionWithSpring 1 1 1 1 1 1 1 4 7 -4

https://sergeyzhuk.me/2017/04/25/di-constructor-vs-setter/ 1 1 1 1 1 1 1 4 7 -4

https://r.je/constructor-injection-vs-setter-injection.html 1 1 1 1 1 1 1 4 7 -4

https://steveschols.wordpress.com/2012/06/05/i-was-wrong-constructor-vs-setter-injection/ 1 1 1 1 1 1 1 4 7 -4

http://codebetter.com/jeremymiller/2008/10/09/setter-injection-in-structuremap-2-5/ 1 1 1 1 1 1 1 4 7 -4

https://stormpath.com/blog/spring-boot-dependency-injection 1 1 1 1 1 1 1 4 7 -4

http://jeffbelback.me/posts/2014/08/12/SetterInjection/ 1 1 1 1 1 1 1 4 7 -4

https://yobriefca.se/blog/2012/08/20/dependencies-in-javascript-constructor-setter-or-global/ 1 1 1 1 1 1 1 4 7 -4

https://coderoncode.com/dependency-injection/design-patterns/programming/php/development/2014/01/06/dependency-injection-php.html 1 1 1 1 1 1 1 4 7 -4

https://jqassistant.org/context-dependency-injection-are-you-doing-it-right/ 1 1 1 1 1 1 1 4 7 -4

https://spring.io/blog/2007/07/11/setter-injection-versus-constructor-injection-and-the-use-of-required/ 1 1 1 1 1 1 1 5 7 -5

https://dzone.com/articles/constructor-injection-vs-0 1 1 1 1 1 1 1 5 7 -5

https://github.com/ninject/Ninject/wiki/Injection-Patterns 1 1 1 1 1 1 1 5 7 -5

https://kinbiko.com/java/dependency-injection-patterns 1 1 1 1 1 1 1 5 7 -5

http://misko.hevery.com/2009/02/19/constructor-injection-vs-setter-injection/ 1 1 1 1 1 1 1 5 7 -5

https://alankent.me/2015/03/03/why-i-prefer-constructor-injection-over-setter-or-property-injection/ 1 1 1 1 1 1 1 5 7 -5

http://royvanrijn.com/blog/2010/09/setter-vs-constructor-injection/ 1 1 1 1 1 1 1 5 7 -5

https://testing.googleblog.com/2009/02/constructor-injection-vs-setter.html 1 1 1 1 1 1 1 5 7 -5

https://justin.abrah.ms/misc/an-overview-of-guice-java-dependency-injection.html 1 1 1 1 1 1 1 5 7 -5

http://evan.bottch.com/2009/02/03/setter-injection-sucks/ 1 1 1 1 1 1 1 5 7 -5

267 Thomas Butler

Appendix VII. Paper: A Methodology for Performing Meta-
analyses of Developers Attitudes Towards Programming
Practices

This paper describes the methodology for performing meta-analyses described in chapter 3 and

was presented at the Proceedings of the 2019 Computing Conference (London). The paper is a cut

down version of the first half of chapter 3 of this thesis to meet the conference's word limit.

Note: the raw data was also provided as part of this paper as an appendix, as this raw data is already in

this document as appenxix IV, it has been omitted to avoid duplication.

A methodology for performing meta-analyses of
developers attitudes towards programming practices

Abstract. Programming practices are often labelled "best practice" and "bad
practice" by developers. This label can be subjective but we can see trends
among developers. A methodology for performing meta-analyses of articles
discussing any given practice was created to determine programmers overall
attitudes towards any given practice while accounting for factors such as
whether they considered alternative approaches.

Introduction

Programming practices can often be described as bad practice or best practice
depending on whether they have a positive or negative impact on the maintainability
of the code in which they are used[1].

For software developers looking for information regarding any given
programming practice, sources will vary in their level of detail. For example, a
manual page will demonstrate how to use a practice but will not weigh in on the
discussion of when or if the practice should be used. Opinion pieces may go into
significantly more detail with discussions about pros/cons of the practice, where it's
applicable and alternative approaches that can be used to solve the same problem.

If one article labels a programming practice "bad practice" and another "good
practice" which should the reader believe?

The level of detail of an article can be used to determine academic rigour. An
article suggesting to use the practice but without discussing alternative approaches is
not making as strong a case for its use as a similar article which compares the practice
to alternatives and explains why one approach is preferred over others.

A scoring system will be created to grade articles on their academic rigour. Once
articles are graded, it will be possible to compare two or more articles based on their
academic rigour and then perform a meta-analysis of any number of articles
discussing a specific bad practice.

If academic rigour were ignored and a meta-analysis carried out using a simple
tally of articles with positive/negative/neutral opinions a different conclusion may be
drawn compared with an analysis including academic rigour. Academically rigourous
articles may be more or less likely to have a favourable opinion of the practice.

Aims and Objectives

Create a scoring system which can be used to:1.
Grade the analytic rigour of an article/book/paper discussing a1.
particular programming practice.
Compare the academic rigour of different articles for the purposes of2.
meta-analysis.
Compare the overall quality of discussions about a specific3.

Thomas Butler 268

2

programming practice.
Calculating the score should not require reading the article in detail to2.
calculate the score and anything used to calculate the score should be a binary
choice.
With a scoring system in place, perform proof-of-concept meta-analyses on3.
practices which are well known to be described as "good" and "bad" to
demonstrate that the meta-analysis framework is fit for purpose.

Methodology

1. Metric for comparing analytical rigour in programming articles

Differing methodological rigor in sources is a problem which exits exists when doing
any kind of meta-analysis. When performing meta-analysis of clinical trials the
Cochrane Collaboration[2] consider methodological rigour an important part of their
meta-analysis.

Rather than simply counting the number of trials which show a positive outcome
and counting the number of trials which show a negative outcome, they weigh the
trials based on methodological rigour. For example in a meta-analysis of a drug they
may find that 3 trials show that it is an effective treatment and 8 which say that it is
not. Instead of simply counting the numbers on each side, they look at the academic
rigor of each study and use that as a factor when building their conclusion of the
overall efficacy of the treatment.

In a meta-analysis of the efficacy of homeopathic treatments[3] they found that
trials of homeopathy with a poor methodology are much more likely to show a
positive outcome whereas trials with a robust methodology are much more likely to
conclude that homeopathy is no better than placebo.

This is because methodological rigour can affect the outcome. For example, by
putting the most healthy patients in the experimental group and putting the least
healthy patients in the control group it's likely that the experimental group will see
significant improvement over the control group regardless of whether the drug being
tested has any effect[4].

For programming articles, academic rigour can be plotted against whether the
article recommends using or avoiding the practice to create a meta-analysis in a
similar manner.

It should be possible to draw conclusions such as as an article's academic rigour
increases, it is more likely to recommend using the practice in question

The created metric was based on the Jadad Scale[5] used for analysis of clinical
trials in medicine. The Jadad Scale is a 5 point scale using a 3 question questionnaire
which can be used to quickly assess the methodological rigour used in a clinical trial.
The questions asked are: Was the study described as randomized?, Was the study
described as double blind? and Was there a description of withdrawals and
dropouts?. These are then used to generate a score from zero (very poor) to five
(rigorous). By citation count the Jadad Scale is the most widely used method of
comparing clinical trials in the world[6].

269 Thomas Butler

3

As the Jadad Scale is not applicable for anything other the clinical trials, a new
metric was created based on the principles of the Jadad scale to be used in
determining the academic rigour of any given article about a programming practice. A
seven point scale was chosen with a point awarded if the article does each of the
following:

Describes how to use the practice1.
Provides a code example of using the practice2.
Discusses potential negative/positive implications of using the practice3.
Describes alternative approaches to the same problem4.
Provides like for like code samples comparing the practice to alternative5.
approaches
Discusses of pros/cons of the compared approaches6.
Offers a conclusion on when/where/if the practice is suitable7.

Using this metric, a manual page that describes a practice and provides a sample of
how to use it would score two whereas an article that discussed the pros/cons of
different approaches and made a recommendation would score seven.

2. Meta-analysis

For any meaningful conclusions to be drawn, two axis are required. Clinical trials
could be separated by their Jadad score but this alone tells us nothing about the
efficacy of the treatment. To produce a conclusion we need to plot the Jadad Score of
a trial against outcome.

For example, a set of trials studying the same treatment can be analysed and
observations drawn such as trials with lower Jadad scores are more likely to produce
a positive result, indicating that the stronger the methodological rigor the less likely
the treatment is to be shown to be effective.

Programming articles do not produce a result, but they can offer a
recommendation to use or avoid the practice being discussed. A manual page won't
make a recommendation but an opinion piece will discuss if/when the practice being
described should be used.

A five point scale was used to model the recommendation made by an article:

Always favour this practice over alternatives1.
Favour this practice over alternatives unless specific (defined*) circumstances2.
apply
Neutral - No recommendation (e.g. a manual page) or no conclusion drawn3.
Only use this practice in specific (defined*) circumstances4.
Always favour alternative approaches5.

A five point scale was chosen over a three point scale as there may be cases where an
article is concluded with a discussion of trade-offs. For example where an approach
may be faster but less flexible an author may conclude their article with something
like "use this practice unless performance is a priority".

This meta-analysis will focus on flexibility. If a conclusion is drawn that you

Thomas Butler 270

4

should use a practice when flexibility is preferred over performance (or any other
consideration) then the article would be awarded a score of 2 and considered as
"Favour this practice unless performance is a paramount concern".

The focus of the analysis could be be changed to performance, security or any
other metric and results gathered in the same manner.

* For scores 2 and 4, the specific circumstances have to be described rather than
alluded to.

For example Buss[7] writes:
When designing a system, it’s important to pick the right design principle for your
model. In many circumstances, it makes sense to prefer composition over inheritance.
This article only alludes to when using inheritance is preferable and provides only
examples where composition is preferred. In this case the article is given a 5 despite
the conclusion saying "many circumstances" rather than "all circumstances".

On the other hand, Ericson[8] says:
If you aren’t sure if a class should inherit from another class ask yourself if you can
substitute the child class type for the parent class type. For example, if you have a
Book class and it has a subclass of ComicBook does that make sense? Is a comic book
a kind of book? Yes, a comic book is a kind of book so inheritance makes sense. If it
doesn’t make sense use association or the has-a relationship instead.
In this instance, the author clearly states a situation where inheritance should be used
over composition so would be given a recommendation score of 4.

3. Collecting data

Non-academic sources

In 1950, a vote at the meeting of the British Association for the Advancement of
Science showed that about half those present now embraced the idea of continental
drift. [...] Interestingly, oil company geologists had known for years that if you
wanted to find oil you had to allow for precisely the sort of surface movements that
were implied by plate tectonics. But oil geologists didn’t write academic papers; they
just found oil.
Bryson[9]

The Singleton has been regarded as bad practice in industry since at least 2003[10]
with developers denouncing it ever since[11-21] yet where it is mentioned in
academia it is only discussed as having been utilised while developing software rather
than discussing whether it should or should not have been used[23-23]. Given the
scale of negativity towards the pattern in industry and lack of discussion in academia,
it's unsurprising that patterns lesser known within industry are never even mentioned
in academic works.

This is likely because practices are encountered by people who spend 8 hours a
day working on large projects where they are likely to encounter problems that
academics focussing mostly on theory will not. Industry experts tend to work on large
software projects which require constant maintenance and enhancement for years or
even decades. They are able to determine which practices prevent them performing
maintenance efficiently.

271 Thomas Butler

5

Although, like the oil geologists, they don't tend to write academic papers, many
developers post articles on websites run by themselves or the company they work for
discussing these issues.

As there is little discussion of the merits of most practices in academia yet there
are many articles written by companies, developers and technology journalists, a
wider search was conducted using Google. As a Google search for singleton pattern
yields over half a million hits, a complete systematic review was not feasible. Instead,
the first 100 relevant results from a Google search for the relevant practice will be
used as the sample.

A relevant result is defined as an article which is written by a single author or
organisation describing or discussing the singleton pattern. Discussion forums, posts
on social media and question & answer sites will not be included as these pages will
include multiple opinions. Comments sections on articles will be omitted for the same
reason. Any article which has a Jadad style score of zero will also be deemed
irrelevant.

Google was used to act as a randomization tool. A search returns any articles
discussing the practice regardless of whether they are for or against its use.

Each article was then given a Jadad style score from 0-7 and a score for its
recommendation.

3.1 Additional considerations

There are several practical issues with collecting data in this manner:

To minimise the effect of Google giving user-specific results based on1.
previous searches, results were collected while logged out and using the
browser's private browsing mode and closing the browser between each search
term.
Search results will not be truly random due to the way Google's algorithm2.
works and results will be sorted by *relevance* and the way Google sorts the
results may have implicit bias: The most popular links and most cited links
will appear first. Although not truly random, this gives a better overview of
the zeitgeist than a genuinely randomised sample by putting the most
read/cited articles ahead of less read/cited pages. Articles which are widely
shared and linked to will be more likely to appear in the first 100 results.
A practice may have more than one common name. When this is the case,3.
each name will be searched for and 100 results collected in total. If a practice
is known by 4 different names, the first 25 relevant results for each practice
were used. If a result lists both names it will only be counted once.
Other search engines may yield different results. Google was chosen because4.
of its dominance and likelihood to have indexed more results. Using a search
engine such as Qwant[24] which does not offer personalised results would
make the results easier to replicate but may not offer as comprehensive results.
Regardless of which search engine is used, results will change over time.

Further research is required to determine the extent of which these factors may affect

Thomas Butler 272

6

results.
However, regardless of these factors, results should be indicative of developers

attitudes towards the programming practice being analysed.

4. Test methodology

To verify that the suggested meta-analysis methodology produces meaningful results,
a meta-analysis was performed on two practices where the result can be anticipated
with a high degree of certainty. If the methodology works as intended, the following
hypotheses should be proven true.

4.1.0 Singleton pattern

The singleton pattern is well known as being considered bad practice among
developers[19] and will act as a good benchmark for testing the meta-analysis
methodology.

4.1.1 Hypothesis

Before the results were collected it was expected that articles which had a higher
Jadad style score (higher academic rigour) would be more likely to suggest avoiding
the practice.

4.2.0 Dependency Injection

Dependency Injection is antithesis to the Singleton Pattern and is much more flexible.
Although there are some practical considerations when using Dependency Injection
and there is widespread discussion about the best way to implement it, it's widely
considered the best approach for flexibility[25].

4.2.1 Hypothesis

Dependency Injection a well established method of increasing flexibility in code[26].
Because of this, it was expected that there would be few to no negative
recommendations and as the Jadad style score increases articles should be more likely
to suggest favouring dependency injection over alternative approaches.

273 Thomas Butler

7

5. Results

5.1 Singleton

Fig 1. Singleton - Results

Each line represents an article and the left (orange) bar for each article is the
recommednation going from 5: Avoid this practice at all costs (Far left) to 1: Favour
this practice over alternatives.

The right (blue) bar for each article is the Jadad style score measuring academic
rigour. A score of seven means the article describes the practice, provide code
examples, discusses alternative approaches, provides like-for-like code samples,
discusses the pros/cons of each approach and makes a recommendation of which
approach should be used.

Article 1 has a recommendation score of 3 and a Jadad style score of 1. It does not
go into detail and it's recommendation is neutral; it doesn't suggest either avoiding or
favouring use of the Singleton Pattern.

Article 99 on the other hand has a strongly recommends against using the
Singleton Pattern and has an Jadad stlye score of 7, it compares the singleton against
alternatives in detail and concludes by strongly recommending against its use
(recommendation score of 5).

Raw data is available as appendix 1.
As hypothesised, articles with a high academic rigour are considerably more like

to suggest avoiding the singleton pattern.

Thomas Butler 274

8

Table 1. Singleton Pattern recommendation score

Recommendation Number of articles
making recommendation

1: Always favour this practice over alternatives 0
2: Favour this practice over alternaitves except in specific
circumstances

1

3: Neutral/no recommedation 65
4: Favour alternative approaches except in specific
circumstances

16

5: Always favour alternative approaches 18
If a simple tally was used, the singleton pattern would appear to have a mostly neutral
recommendation score. 65% of articles do not recommend for or against its use.

5.1.1 Key findings - Singleton Pattern

The mode recommendation is neutral. If a developer looked through articles
about the singleton pattern, 65% of the articles they read would not
recommend against using the Singleton Pattern.
The mean recommendation score is is 3.5. From this alone it could be inferred
that the singleton pattern is generally considered to be neutral, slightly
discouraged but not widely avoided.
When the Jadad style score is taken into account, every article which makes a
recommendation recommends against using the singleton pattern
(recommendation score of 4 or 5).
Only 22% of articles about the singleton pattern even mention alternative
approaches that can be used to solve the same problem
Of those that recommend against using the pattern, over half say it should be a
voided at all cost.
55 of the 65 articles which make a neutral recommendation are manual type
pages (Jadad style score of 2) which show how to use the pattern but do not
weigh in on when, where or if it should be used and do not compare the
pattern to alternatives.
No articles which make a recommendation recommend using the singleton
pattern instead of alternative approaches

275 Thomas Butler

9

5.2 Dependency Injection

Fig 1. Dependency Injection - Results

Raw data is available in appendix 2.
As hypothesised, Dependency Injection is seen as overwhelmingly positive with

zero articles discouraging its general use.
The breakdown of recommendation scores is as follows:

Table 2. Dependency Injection recommendation score

Recommendation Number of articles
making recommendation

1: Always favour this practice over alternatives 50
2: Favour this practice over alternaitves except in specific
circumstances

5

3: Neutral/no recommedation 45
4: Favour alternative approaches except in specific
circumstances

0

5: Always favour alternative approaches 0
In a tally of whether articles recommend using or avoiding the practice, 50% of
articles recommending using the practice over alternatives.

5.2.1 Key findings - Dependency Injedction

The mean score is 1.94 which shows that even using a simple tally, the overall
recommendation is that Dependency Injection is a favourable pattern among
developers.
Every article with an academic rigour score of 4 or higer recommends using
this practice instead of alternative.
When the Jadad style score is taken into consideration, 47 of the 50 articles
with a neutral recommendation are manual style pages which show how the
pattern is used but do not discuss when, where or if it should be used.

Thomas Butler 276

10

Discounting the manual pages, only two of the remaining 53 articles make a
neutral recommendation and both of those have a *Jadad* style score 3.
As the Jadad style score increases, the probability that an article will
recommend using Dependency Injection over alternatives increases
Only 5 of the 55 articles in favour of dependency injection suggest there some
specific circumstances where alternatives should be used instead (*Jadad*
style score of two).

5. Conclusion

By testing the methodology with practices that the outcome can be predicted for it
was possible to validate this meta-analysis methodology.

The methodology produced the expected result. It was shown that if an author
considered alternative approaches they were more likely to recommend against using
the Singleton Pattern. The inverse was also true for Dependency Injection.

As these were the expected results, the methodology suggested can be shown to
work as intended and provide an overview of the attitudes of developers about any
given practice.

This meta-analysis methodology gives more insight into the overall opinion of
programming practices than a simple tally of for/against/neutral by also accounting
for academic rigour.

5.2 Additional findings

Although a small sample size of two practices were tested, in both cases1.
roughly half of articles analyse do not make a recommendation on
when/where the practice should be used. For the singleton pattern only 45% of
analysed articles discussed whether the pattern should be used or avoided.
Any developer looking for information on a practice will find more2.
information about *how* to use a practice than *when* or *where* the
practice is applicable.

5.1 Problems Encountered
Data collection using Google became increasingly difficult after around 80

relevant results. The number of irrelevant articles appearing in search results begin to
heavily outweigh the relevant articles and there was a significant issue with
duplicated content. Articles had been posted on multiple websites, often without dates
or author names, making it difficult to keep track of which articles had already been
included in the meta-analysis.

Since Dependency Injection and the Singleton pattern are both widely known and
discussed programming practices, finding 100 unique relevant results for lesser
known practices may be difficult.

5.2 Future Research

This research could be continued by running the same meta-analysis on different

277 Thomas Butler

11

search engines and comparing the results or looking into trends over time using article
dates. For example, it may be observed that a practice is seen favourably in articles
published in 1990s-2000s and then less favourably as time progresses.

This methodology could be abstracted to and used for a meta-analysis of any
widely discussed topic by defining the scales for academic rigour and
recommendation.

Hevery, M. (2008) Flaw: Constructor Does Real Work [online]. Available from:1.
http://misko.hevery.com/code-reviewers-guide/flaw-constructor-does-real-work/
Cochrane, C. (n.d.) Cochrane [online]. Available from: http://www.cochrane.org/2.
Mathie, R., Frye, J., Fisher, P. (2015) Homeopathic Oscillococcinum® for preventing and3.
treating influenza and influenza-like illness. Cochrane Database System Rev 12 .
Goldacre, B. (2010) Bad Science ISBN: 978-0-00-724019-7. Fourth Estate.4.
Jadad, A., Moore, A., Carroll, D., Jenkinson, C. (1996) Assessing the quality of reports of5.
randomized clinical trials: Is blinding necessary?. Controlled Clinical Trials 17(1), pp.1-12.
ELSEVIER.
Olivo, S., Macedo, L., Caroline, I., Fuentes, J., Magee, D. (2008) Scales to assess the quality6.
of randomized controlled trials: a systematic review.(Research Report). Physical Therapy
88(2), pp.156.
Buss, M. (2016) Interfaces vs Inheritance in Swift [online]. Available from:7.
https://mikebuss.com/2016/01/10/interfaces-vs-inheritance/
Ericson, B. (1995) Association vs Inheritance [online]. Available from:8.
http://ice-web.cc.gatech.edu/ce21/1/static/JavaReview-RU/OOBasics/ooAssocVsInherit.htm
l
Bryson, B. (2010) A short history of nearly everything ISBN: 9780552997041. London :9.
Black Swan.
Radford, M. (2003) Singleton - the anti-pattern. Overload 57. ACCU.10.
Hevery, M. (2008) Singletons are Pathological Liars [online]. Available from:11.
http://misko.hevery.com/2008/08/17/singletons-are-pathological-liars/
Sayfan, M. (n.d.) Avoid Global Variables, Environment Variables, and Singletons [online].12.
Available from:
https://sites.google.com/site/michaelsafyan/software-engineering/avoid-global-variables-env
ironment-variables-and-singletons
Densmore, S. (2004) Why Singletons Are Evil [online]. Available from:13.
http://blogs.msdn.com/b/scottdensmore/archive/2004/05/25/140827.aspx
Yegge, S. (2004) Singleton Considered Stupid [online]. Available from:14.
https://sites.google.com/site/steveyegge2/singleton-considered-stupid
Ronacher, A. (2009) Singletons and their problems in Python [online]. Available from:15.
http://lucumr.pocoo.org/2009/7/24/singletons-and-their-problems-in-python/
Brown, W. (2013) Why Singletons are "Bad Patterns" [online]. Available from:16.
http://brollace.blogspot.co.uk/2013/04/why-singletons-are-bad-patterns.html
Kofler, P. (2012) Why Singletons Are Evil [online]. Available from:17.
http://blog.code-cop.org/2012/01/why-singletons-are-evil.html
Weaver, R. (2010) Static methods vs singletons: choose neither [online]. Available from:18.
http://www.phparch.com/2010/03/static-methods-vs-singletons-choose-neither/
Knack-Nielsen, T. (2008) What's so bad about the Singleton? [online]. Available from:19.
http://www.sitepoint.com/whats-so-bad-about-the-singleton/
Badu, K. (2008) What's so evil about Singleton? [online]. Available from:20.
http://www.sitepoint.com/forums/showthread.php?530917-What-s-so-evil-about-Singleton
Hart, S. (2011) Why helper, singletons and utility classes are mostly bad [online]. Available21.

Thomas Butler 278

12

from:
http://smart421.wordpress.com/2011/08/31/why-helper-singletons-and-utility-classes-are-m
ostly-bad-2/
Alipour, G., Sangar, A., Mogaddam, M. (2016) ASPECT ORIENTED22.
IMPLEMENTATION OF DESIGN PATTERNS USING METADATA. Journal of
Fundamental and Applied Sciences 57, pp.66-75.
Liu, H., Cai, C., Zu, C. (2011) An object-oriented serial implementation of a DSMC23.
simulation package. Journal of Fundamental and Applied Sciences 8, pp.816-825.
Qwant, Q. (n.d.) Qwant search engine [online]. Available from: https://www.qwant.com/24.
Albert, A. (2013) Why should we use dependency injection? [online]. Available from:25.
http://www.javacreed.com/why-should-we-use-dependency-injection/
Fowler, M. (2004) Inversion of Control Containers and the Dependency Injection pattern26.
[online]. Available from: http://martinfowler.com/articles/injection.html

279 Thomas Butler

Appendix VIII. Questionnnaire questions

Below are the questions asked in the questionnaire used for evaluation purposes in chapter 6:

Question Type Possible answers

How would you describe yourself as a programmer? Single choice Novice
Hobbyist
Student
Open Source Developer
Academic
Professional: Junior
Developer
Professional: Senior
Developer

Which languages do write Object-Oriented code in
regularly? Please tick all that apply.

Multiple
choice

PHP
Java
Python
Ruby
Go
Javascript
C++
Rust
Other

Do you use code reviews as part of your workflow? Single choice Yes - As a reviewer
Yes - My code is
reviewed by others
Yes – I review others
work and my own code
is reviewed by others
No

Do you use code review tools such as scruitinizer,
phpmd, pmd, etc?

Single choice Always
Often
Sometimes
Rarely
Never

During code reviews, or when writing your own code,
do you look for any of the following? Please tick all that
apply

Multiple
choice

Performance Issues
Bugs
User Experience
Security Issues
Correctly and
consistently following
coding conventions
(e.g. names, brace
position)
Code flexibility

Thomas Butler 280

Question Type Possible answers

Are you familiar with any of the following Object-
Oriented best practices? Please tick all that apply

Multiple
choice

Encapsulation
Tell, Don’t ask
Law of Demeter
(digging into
collaborators)
Separation of concerns
Dependency Injection
Loose coupling
Favour composition
over inheritance
Immutability
Single Responsibility
Principle

Do you try to follow Object-Oriented best-practices
when developing software?

Single choice Always
Often
Sometimes
Rarely
Never

Do you actively try to avoid programming practices
which go against best practice principles? (For example,
do you actively avoid global variables and singletons)

Single choice Always
Often
Sometimes
Rarely
Never

Which, if any, programming practices do you actively
avoid using (tick all that apply, ignore any you are
unfamiliar with)

Multiple
choice

Global variables
Static variables
(including private static
variables)
Public static methods
Inheritance
Composition
Service Locator
Dependency Injection
God object
Singleton Pattern
Constructor Injection
Annotations for
configuration
Tight coupling
Setter Injection
Facade
Marker Interface
Mutable Objects
Visitor Pattern

Do you have any comments on the background
research of this project (If you didn’t read the
background research, please enter N/A, if you read it
but have no comments, please leave blank)

Text N/A

281 Thomas Butler

Question Type Possible answers

The insphpect site is intuitive and easy to use Single choice Strongly Agree
Agree
Don't Know
Disagree
Strongly Disagree

How much do you agree with the statement: "Overall,
the suggestions made by Insphpect are helpful"?

Single choice Strongly Agree
Agree
Don't Know
Disagree
Strongly Disagree

Do you agree with the recommendations made by
Insphpect?

Single choice Strongly Agree
Agree
Don't Know
Disagree
Strongly Disagree

How much do you agree with the following statement:
"The explanations of why identified bad practices
should be avoided are clear and helpful."

Single choice Strongly Agree
Agree
Don't Know
Disagree
Strongly Disagree

How much do you agree with the following statement:
"The grade given is a fair evaluation of the flexibiltiy of
the code analysed."

Single choice Strongly Agree
Agree
Don't Know
Disagree
Strongly Disagree

How much do you agree with the following statement:
"I would like to see a similar tool built for other
programming languages."

Single choice Strongly Agree
Agree
Don't Know
Disagree
Strongly Disagree

Is there anything you think is missing from Insphpect
which should be included in a future update?

Text N/A

Do you have any general comments about Insphpect? Text N/A

Thomas Butler 282

Appendix IX. Industry published article about the tool

This article was originally published on popular industry website sitepoint.com. It outlines the tool

and the uses it has for developers. Some of the sections were originally written for this thesis.

How to Ensure Flexible, Reusable PHP Code
with Insphpect
Insphpect is a tool I wrote as part of my PhD project. It scans code for Object-Oriented Programming
techniques that hinder code reusability and flexibility.

Why?
Let me begin with two mundane observations:

Business requirements change over time.1.
Programmers are not clairvoyant.2.

New product launches, emergency lockdown regulations, expanding into new markets, economic
factors, updated data protection laws - There are a lot potential causes for business software to need
updating.

From those two observations we can infer that programmers know that the code they write is going
to change but what those changes will be or when they will happen.

Writing code in such a way that it can be easily adapted is a skill that takes years to master.

You're probably already familiar with programming practices that come back and haunt you. Novice
programmers quickly realize that global variables are more trouble than they're worth and the once
incredibly popular [Singleton Pattern has been a dirty word for the last
decade](https://www.sitepoint.com/whats-so-bad-about-the-singleton/).

How you code your application has a big impact on how easy it is to adapt to meet new
requirements. As you progress through your career you learn techniques that make adapting code
easier. Once the grasp fundamentals of Object-Oriented Programming you wonder how you ever did
without it!

If you ask 10 developers to produce software, given the same requirements you'll get 10 different
solutions. Some of those solutions will inevitably be better than others.

Consider a ship in a bottle and a model ship made of Lego. Both are model ships but changing the
sails on the ship in a bottle is very difficult and reusing the parts, near impossible. However, with a
lego ship, you can easily swap out the sails or use the same components to build a model rocket,
house or a car.

Certain programming techniques lead to the ship-in-a-bottle approach and make your code difficult
to change and adapt.

Insphpect
[Insphpect](https://insphpect.com) is a tool which scans your code for programming practices that
lead to this kind of a ship in a bottle design.

It grades your code based on how flexible it is and highlights areas where flexibility can be
improved.

283 Thomas Butler

What does Insphpect look for?

Currently, Insphpect looks for the following:

[Tight coupling](https://insphpect.com/traits/tight-coupling)
Hardcoded configuration
Singletons
Setter Injection
Using the new keyword in a constructor
Service locators
Inheritance
Static methods
Global state
Files that have more than one role (e.g. defining a class and running some code)

If it detects anything it identifies as inflexible it highlights the code, explains why it highlighted the
issue then grades your whole project and individual classes on a score of 0-100 (with 100 being no
issues detected). As a proof-of-concept, for some detections it is able to automatically generate a
patch file that re-writes the code to remove the inflexibility entirely.

[Take a look a sample report here](https://insphpect.com/report/5e63a943a8da7)

Insphpect is currently in the testing phase and it would really help my research progress if you can
check it out and complete the survey in the "Give your feedback" section of the site.

Background

Are those bad practices really bad though?

This was one of the more difficult parts of the background research and you can read about how this
was done in detail on the [Insphpect Website](https://insphpect.com/background).

However, this can be summarized as:

The opinions of each bad practice were collected from 100 authors per practice.
The author's opinion on the practice was graded on a scale of 1-5.
The authors methodological rigor was graded on a scale of 1-7 based on the Jadad score used
for clinical trials,

These were then plotted like the graph below:

Thomas Butler 284

Each horizontal line represents an article and the left (orange) bar for each article is the
recommendation going from 5: Avoid this practice at all costs (Far left) to 1: Favor this practice over
alternatives.

The right (blue) bar for each article is the Jadad style score measuring analytic rigor. A score of
seven means the article describes the practice, provide code examples, discusses alternative
approaches, provides like-for-like code samples, discusses the pros/cons of each approach and
makes a recommendation of which approach should be used.

In the case of the Singleton above, authors who compare the singleton to alternative approaches,
discuss the pros/cons, etc are significantly more likely to suggest using alternative approaches.

Walkthrough
Currently Insphpect allows uploading code via a git repository URL or a zip file.

So not to point out flaws in other people's work, let's take a look at one of my own projects to see
what it identifies.

We'll use https://github.com/Level-2/Transphporm as an
example project.

This is quite a good example because it has a very high score on another code-quality tool
[Scrutinizer](https://scrutinizer-ci.com/g/Level-2/Transphporm/).

Firstly, enter the git URL https://github.com/Level-2/Transphporm into the text box and at
the top of the home page and press "Go". It will take a few seconds to minutes, depending on the
size of the project and generate a report which looks something like this:

285 Thomas Butler

Once you're on the report page you'll see a summary at the top with an overall grade out of 100 with
100 being very good and 0 being very poor.

Underneath the summary, you'll see a list of all the classes in the project, each with its own grade.

Don't worry if your code doesn't get a perfect score, it's unlikely that it will. Remember, Insphpect is
a tool that identifies flexibility in your code. There are like parts of your code (like the entry point)
where flexibility isn't warranted.

For Transphporm, it has highlighted issues in 7 classes.

Let's take a look at some of those. Scroll down to Transphporm\Parser\CssToXpath and click the
link. You'll see a score for that particular class and a list of issues which have been identified.

In this case, it has identified a static variable and a static method. Clicking on one of the red lines
will reveal an explanation of why the line was flagged up.

For example, clicking line 12 will give an explanation of why static variables are less flexible than
instance variables.

Thomas Butler 286

Although there is a more in-depth explanation of the issues caused by static properties on the
[report](https://insphpect.com/report/class/5e63a8f479b6d/Transphporm%5CParser%5CCssToXpath
) as a quick refresher, static variables have one value which is shared across all the instances of the
class.

This is inherently less flexible than an instance variable because using an instance variable allows
each instance to have a different value.

For example, consider the following:

class User {
 public static $db;
 public $id;
 public $name;
 public $email;
public function save() {
 $stmt = self::$db->prepare('REPLACE INTO user (id, name,
email) VALUES (:id, :name, :email)');
$stmt->execute([
287 Thomas Butler

 'id' => $this->id,
 'name' => $this->name.
 'email' => $this->email
]);
 }
}

Because $db is static, every instance of this class shares the same $db instance and records will
always be inserted into the same database.

While this sounds reasonable, let me give you a real-world example.

One of our clients was a recruitment agency. About 2 years after we developed their site, they took
over another smaller company. They wanted to retain the second company's website and branding
because it was quite well known in the niche they were in.

Our client asked us the following:

"On the second company's site, can you add a checkbox when adding a job that also adds the job to
our database so people viewing our site can also see the job and visa versa"

A fairly simple request. Run an insert query into two different database.

But, because the website used a static global database instance this was needlessly difficult!

The developers of that site wrote the code confident that only one database connection would ever
be needed. They were wrong.

Remember, you are not clairvoyant and it is impossible to anticipate what flexibility may be needed
in the future

As suggested by Insphpect, the solution to this is using instance variables:

class User {
 private $db;
 public $id;
 public $name;
 public $email;
public function __construct(\PDO $db) {
 $this->db = $db;
 }
public function save() {
 $stmt = self::$db->prepare('REPLACE INTO user (id, name,
email) VALUES (:id, :name, :email)');
$stmt->execute([
 'id' => $this->id,
 'name' => $this->name.
 'email' => $this->email
]);
 }

Thomas Butler 288

}

Now a User instance can be used with different database instances:

new User($database1);
new User($database2);

For Transphporm\Parser\CssToXpath we could do the same, remove the static variable and
consider making it an instance variable rather than a static variable.

Using new in constructor

Let's take a look at one of the other classes: Transphporm\Builder

289 Thomas Butler

This has a score of zero, that's rather poor. Examining the report in detail, Insphpect has picked up
the same issue 3 times: Using the new keyword in a constructor.

[Google Programming Coach Misko Hevery does a great job at explaining why this is a poor
programming
practice](http://misko.hevery.com/code-reviewers-guide/flaw-constructor-does-real-work/) but here is
a simple example from Insphpect's output:

class Car {
 private $engine;
 public function __construct() {
 $this->engine = new PetrolEngine();
 }
}

Here whenever an instance of Car is created, an instance of PetrolEngine is created. That makes
it very inflexible because there is no way to construct a Car with a different engine type. Every car
modeled in this system must have a PetrolEngine

Instead, if Dependency Injection were used:

class Car {
 private $engine;
 public function __construct($engine) {
 $this->engine = $engine;
 }
}

Different cars can be created with an instance of PetrolEngine, DieselEngine,
ElectricEngine, JetEngine or any other engine type that exists in the project.

To fix this error in the Transphporm\Builder, all of the variables which currently have hard-coded
class names should use constructor arguments instead.

There are other issues identified by Insphpect but you can try it out for yourself and see how your
project fares.

Behind the scenes
You might be wondering how the scores are calculated and why this class got a zero. At the present
time, the weightings are subject to change once more projects have been scanned and more
feedback has been provided.

The scores are designed to be indicative for comparing one project/class to another.

The overall project score is just an average of all the classes in the project. This was implemented
because a project with 2 issues in 1000 classes is a lot better overall than a project with 2 issues in 2
classes.

Thomas Butler 290

Each bad practice is weighted based on whether it impedes flexibility for the entire class or only
impedes flexibility for a method.

Conclusion
Insphpect can be used to identify areas of your code which make future changes more difficult than
they could be and it offers suggestions on how to write the code in a more flexible manner.
Remember, you're not clairvoyant and have no way to know how your code is going to need to
change!

Insphpect is currently a work in progress and the more people who use it (and complete the survey)
the better it will become.

How did your project or favorite library score? Be sure to complete the survey as it and provide
valuable data for my PhD project and help the tool improve!

291 Thomas Butler

Thomas Butler 292

Appendix X. Questionnaire results raw data

This appendix contains the raw data gathered from the questionnaire used for evaluation in

chapter 6.

Response #1

Question Answer

1. How would you describe yourself as a programmer? Open Source Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Javascript

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Sometimes

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Separation of concerns,
Dependency Injection, Favour composition
over inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Public static methods,
Inheritance, Dependency Injection, God
object, Singleton Pattern, Constructor
Injection, Annotations for configuration,
Setter Injection, Facade, Marker Interface,
Mutable Objects, Visitor Pattern

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Strongly Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Strongly Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

293 Thomas Butler

Response #2

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Javascript

3. Do you use code reviews as part of your workflow? No

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Rarely

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Separation of concerns,
Dependency Injection, Loose coupling, Favour
composition over inheritance, Immutability,
Single Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Inheritance, Service
Locator, God object, Singleton Pattern,
Annotations for configuration, Tight coupling,
Setter Injection

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

N/A

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Disagree

13. Do you agree with the recommendations made by Insphpect? Disagree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Disagree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Agree

Thomas Butler 294

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Javascript

3. Do you use code reviews as part of your workflow? No

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Rarely

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Separation of concerns,
Dependency Injection, Loose coupling, Favour
composition over inheritance, Immutability,
Single Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Inheritance, Service
Locator, God object, Singleton Pattern,
Annotations for configuration, Tight coupling,
Setter Injection

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

N/A

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Disagree

13. Do you agree with the recommendations made by Insphpect? Disagree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Disagree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

As a tool designed specifically for inspecting
PHP code, I would recommend disregarding
Inheritance issues when the class in question
extends one of the built-in Exception classes,
as there is no other way in the language to
throw custom exceptions.

And for a more opinionated suggestion, you
may want to add an option to disregard
Inheritance issues when the class in question
extends an abstract class. (An option for
advanced users, as opposed to by default,
because it should still be discouraged in
general.)

Those two changes alone should take care of
the overwhelming majority of false positives
in the inspection I ran.

295 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Javascript

3. Do you use code reviews as part of your workflow? No

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Rarely

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Separation of concerns,
Dependency Injection, Loose coupling, Favour
composition over inheritance, Immutability,
Single Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Inheritance, Service
Locator, God object, Singleton Pattern,
Annotations for configuration, Tight coupling,
Setter Injection

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

N/A

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Disagree

13. Do you agree with the recommendations made by Insphpect? Disagree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Disagree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

As a tool designed specifically for inspecting
PHP code, I would recommend disregarding
Inheritance issues when the class in question
extends one of the built-in Exception classes,
as there is no other way in the language to
throw custom exceptions.

And for a more opinionated suggestion, you
may want to add an option to disregard
Inheritance issues when the class in question
extends an abstract class. (An option for
advanced users, as opposed to by default,
because it should still be discouraged in
general.)

Those two changes alone should take care of
the overwhelming majority of false positives
in the inspection I ran.

18. Do you have any general comments about Insphpect? Good tool, keep up the good work

Thomas Butler 296

Response #3

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Sometimes

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Service Locator, God
object, Singleton Pattern, Annotations for
configuration, Tight coupling, Setter Injection,
Facade

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Don't Know

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Don't Know

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Don't Know

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

Response #4

297 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Hobbyist

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

Python, Javascript, Other

3. Do you use code reviews as part of your workflow? Yes - As a reviewer

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Never

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, Correctly and
consistently following coding conventions
(e.g. names, brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Separation of concerns,
Dependency Injection, Loose coupling,
Immutability

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, God object

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Don't Know

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

Response #5

Thomas Butler 298

Question Answer

1. How would you describe yourself as a programmer? Student

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java, C++

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Rarely

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Bugs, Correctly and consistently following
coding conventions (e.g. names, brace
position)

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Dependency Injection, Loose
coupling

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Often

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Inheritance, Mutable Objects

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Don't Know

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

Response #6

299 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Student

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Python

3. Do you use code reviews as part of your workflow? No

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Rarely

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

User Experience, Security Issues, Correctly
and consistently following coding conventions
(e.g. names, brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Never

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

N/A

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

N/A

18. Do you have any general comments about Insphpect?

Response #7

Thomas Butler 300

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Python, Javascript

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Often

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Public static methods,
Inheritance, Service Locator, God object,
Singleton Pattern, Annotations for
configuration, Tight coupling, Setter Injection,
Mutable Objects

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

I'd like to be able to analyse a private
repository and keep the reports behind a
login system. It looks like all code uploaded is
available on public URIs which prevents me
from uploading code I write for work.

301 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Python, Javascript

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Often

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Public static methods,
Inheritance, Service Locator, God object,
Singleton Pattern, Annotations for
configuration, Tight coupling, Setter Injection,
Mutable Objects

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

I'd like to be able to analyse a private
repository and keep the reports behind a
login system. It looks like all code uploaded is
available on public URIs which prevents me
from uploading code I write for work.

18. Do you have any general comments about Insphpect? On the couple of repositories I looked at there
were definitely a few debatable red lines. For
example, private static, sure it does introduce
global but it's unlikely to cause any real world
issues as the scope for damage is limited to
the class it's used in and you'd hope that
static was used for a good reason.

Even if you still identify it as introducing
global state, public static and private static
should not be treated the same way.

Thomas Butler 302

Response #8

Question Answer

1. How would you describe yourself as a programmer? Student

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java, C++

3. Do you use code reviews as part of your workflow? No

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Never

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position)

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation

7. Do you try to follow Object-Oriented best-practices when
developing software?

Sometimes

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Often

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Public static methods,
Inheritance

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

N/A

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Strongly Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Strongly Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

Nothing I can think of, its great

18. Do you have any general comments about Insphpect? Very easy to use

Response #9

303 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Student

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

Other

3. Do you use code reviews as part of your workflow? No

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Never

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, Security Issues

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Law of Demeter (digging into
collaborators), Separation of concerns,
Dependency Injection, Single Responsibility
Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Often

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Static variables (including private static
variables), Public static methods,
Composition, Service Locator, Dependency
Injection, God object, Singleton Pattern,
Constructor Injection, Mutable Objects

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

Found the background research really
interesting as like you mentioned best
practice can be very much open to
interpretation! Was a really insightful read

11. The insphpect site is intuitive and easy to use Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

Only the option for more languages!

18. Do you have any general comments about Insphpect? I tried to open the website from my phone
but the scale was off, the header banner
spanned to big so wasn't very responsive.
Also I am not a big fan of the full page menu,
I would prefer a smaller pane on the right
rather than the whole screen. Really love the
colour scheme and the layout and overall
looks and performs very well! Well done Tom
:)

Response #10

Thomas Butler 304

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Javascript, Other

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Always

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, God object, Singleton
Pattern, Setter Injection, Facade, Mutable
Objects

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Don't Know

13. Do you agree with the recommendations made by Insphpect? Don't Know

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Don't Know

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

Response #11

305 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Student

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java, Python, Ruby, Javascript, C++

3. Do you use code reviews as part of your workflow? No

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Never

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Never

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables)

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

N/A

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Strongly Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Strongly Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect? Easy to use.

Response #12

Thomas Butler 306

Question Answer

1. How would you describe yourself as a programmer? Hobbyist

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java

3. Do you use code reviews as part of your workflow? No

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Rarely

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Bugs, User Experience, Security Issues,
Correctly and consistently following coding
conventions (e.g. names, brace position)

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

7. Do you try to follow Object-Oriented best-practices when
developing software?

Sometimes

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Sometimes

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Inheritance, God
object

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Don't Know

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

Additional detail about how grades are
achieved would be interesting, particularly
from a learning/education perspective,
however, I don't believe this hinders the
solution at all.

18. Do you have any general comments about Insphpect? The concept is really interesting. I'd be really
interested to see how this impacts the quality
of code in the future if it is something
budding coders are introduced to early on in
their learning.

Response #13

307 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Python, Javascript

3. Do you use code reviews as part of your workflow? Yes - As a reviewer

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Always

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Mutable Objects

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Strongly Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Strongly Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

Response #14

Thomas Butler 308

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP

3. Do you use code reviews as part of your workflow? No

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Rarely

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Separation of concerns,
Dependency Injection, Loose coupling,
Immutability, Single Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Public static methods, God
object

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Disagree

13. Do you agree with the recommendations made by Insphpect? Disagree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Disagree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Don't Know

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

Currently, it seems to trigger if it locates the
keyword "new", it might be a good idea to
exclude internal PHP functions that is initiated
by it.

18. Do you have any general comments about Insphpect? It is an interesting project, though I am afraid
if it stays in its current format, that is what it
will stay as.

Since you are unable to run it locally (or on
servers you control) it is not possible to run it
on any client work, due to restrictions in the
contract about who you can give access of the
code to. In other words, as it is, it can really
only be utilized for open source projects.

Response #15

309 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Novice

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP

3. Do you use code reviews as part of your workflow? No

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Never

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Separation of concerns, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Often

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Public static methods,
Inheritance, Composition, Singleton Pattern,
Tight coupling

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Strongly Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Strongly Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

Response #16

Thomas Butler 310

Question Answer

1. How would you describe yourself as a programmer? Student

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

Javascript, C++

3. Do you use code reviews as part of your workflow? No

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Never

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Separation of concerns,
Dependency Injection

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Public static methods,
God object, Singleton Pattern

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

N/A

11. The insphpect site is intuitive and easy to use Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Don't Know

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Disagree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

I wouldn't consider it as something that is
missing, but possibly a cut-down version of
the explanation.
A summary of the issue without too going in-
depth with the explanation

18. Do you have any general comments about Insphpect? I think it's a great idea and I would love to see
a similar tool for other languages that would
apply more to what I use

Response #17

311 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Student

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP

3. Do you use code reviews as part of your workflow? Yes - As a reviewer

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Never

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Bugs, User Experience, Security Issues,
Correctly and consistently following coding
conventions (e.g. names, brace position),
Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Sometimes

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

N/A

11. The insphpect site is intuitive and easy to use Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Don't Know

13. Do you agree with the recommendations made by Insphpect? Don't Know

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Don't Know

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Don't Know

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

The responsive mode is not good.

18. Do you have any general comments about Insphpect? Add suggestion and code correction for red
highlighted lines

Response #18

Thomas Butler 312

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Javascript

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Sometimes

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Public static methods,
Inheritance, God object, Annotations for
configuration, Tight coupling

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

N/A

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Strongly Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Strongly Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect? The site doesn't work well on mobile

Response #19

313 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Student

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java

3. Do you use code reviews as part of your workflow? Yes - My code is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Sometimes

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, Security Issues,
Correctly and consistently following coding
conventions (e.g. names, brace position)

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Favour composition over inheritance

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Sometimes

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Tight coupling, Visitor
Pattern

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

I feel the background research was very
interesting to read. It is always nice to come
up with tools that are not available out there.
I believe this tool is great and I would like to
use it in the future. Good job Tom!

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

Everything looks good. The only thing I would
change a little bit is the main text on the
homepage it looks shifted on the right leaving
a gap on the left. Perhaps, you could make it
centred or shift it a little bit towards the left?

18. Do you have any general comments about Insphpect?

Response #20

Thomas Butler 314

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP

3. Do you use code reviews as part of your workflow? No

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Rarely

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, Security Issues,
Correctly and consistently following coding
conventions (e.g. names, brace position),
Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Single Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Inheritance, God
object, Singleton Pattern, Annotations for
configuration, Tight coupling

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Don't Know

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

Can't run locally. It's fine for testing some toy
project or open source library, but I can't
possibly use it at work like this.

315 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP

3. Do you use code reviews as part of your workflow? No

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Rarely

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, Security Issues,
Correctly and consistently following coding
conventions (e.g. names, brace position),
Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Single Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Inheritance, God
object, Singleton Pattern, Annotations for
configuration, Tight coupling

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Don't Know

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

Can't run locally. It's fine for testing some toy
project or open source library, but I can't
possibly use it at work like this.

18. Do you have any general comments about Insphpect? It's a cool idea, but fairly limited right now.

- Small number of very broad inspections -
marking every use of inheritance or static
methods as a bad practice is a bit too much
and not super helpful. You need to identify
legitimate, justified uses of inheritance/static
methods/whatever if you want this tool to be
useful.

- You also need to expand the explanations
accordingly. They're pretty good, but quite
one-sided. They should include a section on
when inheritance/static methods/whatever
can and should be used too.

- The code examples would generally be more
helpful if they were written in PHP.

- Bug: new static() is identified as a use of
global variables.

Thomas Butler 316

Response #21

Question Answer

1. How would you describe yourself as a programmer? Academic

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java, Javascript, Other

3. Do you use code reviews as part of your workflow? Yes - As a reviewer

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Never

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

User Experience, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Public static methods,
Inheritance, Service Locator, Singleton
Pattern, Facade

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Strongly Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Strongly Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

I think, as a testing tool, that I think is
valuable to good code quality - it should be
possible to create an adapter that promotes
Test-Driven Development and Behaviour-
Driven Design. This would really provide for a
cool feature to base a Code Review Service
and so on and so forth.

18. Do you have any general comments about Insphpect? I am hoping the tool is easy to integrate with
given it has things like GuzzleHttp port and
that of Symfony Routing

317 Thomas Butler

Response #22

Question Answer

1. How would you describe yourself as a programmer? Professional: Junior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP

3. Do you use code reviews as part of your workflow? Yes - My code is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Sometimes

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Separation of concerns, Loose
coupling, Single Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Sometimes

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Often

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, God object, Singleton
Pattern

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Strongly Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Strongly Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Don't Know

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

Response #23

Thomas Butler 318

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Python, Javascript

3. Do you use code reviews as part of your workflow? Yes - As a reviewer

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Always

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Mutable Objects

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Strongly Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Strongly Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

Response #24

319 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java

3. Do you use code reviews as part of your workflow? Yes - As a reviewer

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Sometimes

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Public static methods,
Inheritance, Service Locator, Dependency
Injection, God object, Singleton Pattern,
Annotations for configuration, Tight coupling,
Setter Injection, Marker Interface, Mutable
Objects

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Strongly Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect? I'm happy that it picks up Service Locators. I
have a constant debate with colleagues about
their use and the explanation provided makes
the point better than I can.

Response #25

Thomas Butler 320

Question Answer

1. How would you describe yourself as a programmer? Student

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java, C++

3. Do you use code reviews as part of your workflow? No

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Never

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Bugs, Correctly and consistently following
coding conventions (e.g. names, brace
position)

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Separation of concerns, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Often

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables)

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

The tool states X amount of issues within Y
amount of classes, it would be interesting to
see these issues, or some form of summary
abou them

18. Do you have any general comments about Insphpect?

Response #26

321 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Professional: Junior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP

3. Do you use code reviews as part of your workflow? Yes - My code is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Rarely

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, Security Issues,
Correctly and consistently following coding
conventions (e.g. names, brace position),
Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Law of Demeter (digging into
collaborators), Separation of concerns,
Dependency Injection, Loose coupling

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Often

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), God object, Singleton
Pattern

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Strongly Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Strongly Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Don't Know

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

Response #27

Thomas Butler 322

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java, Javascript, Other

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Always

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Service Locator, God
object, Singleton Pattern, Annotations for
configuration, Tight coupling, Mutable
Objects

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Disagree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Don't Know

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Don't Know

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

- For tooling like this to be valuable, it should
be able to be run in an automated fashion
from the CLI, for inclusion in build processes.
- The detail offered for why to tackle a certain
approach is very heavy duty, and could
probably do with a short summary inline, plus
a "read more" link to an article detailed the
- The tool misidentifies `@inheritDoc` as a
configuration-based annotation, which it isn't.

18. Do you have any general comments about Insphpect?

323 Thomas Butler

Response #28

Question Answer

1. How would you describe yourself as a programmer? Hobbyist

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java, Python, C++

3. Do you use code reviews as part of your workflow? No

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Never

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Correctly and consistently following coding
conventions (e.g. names, brace position),
Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

7. Do you try to follow Object-Oriented best-practices when
developing software?

Never

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Never

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

N/A

11. The insphpect site is intuitive and easy to use Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Don't Know

13. Do you agree with the recommendations made by Insphpect? Don't Know

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Don't Know

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Don't Know

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

Response #29

Thomas Butler 324

Question Answer

1. How would you describe yourself as a programmer? Student

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java, C++

3. Do you use code reviews as part of your workflow? No

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Never

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Bugs, User Experience, Correctly and
consistently following coding conventions
(e.g. names, brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Separation of concerns, Single Responsibility
Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Often

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Static variables (including private static
variables), Public static methods, Constructor
Injection, Setter Injection

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Disagree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Strongly Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

I think the information given about an error is
too much.

18. Do you have any general comments about Insphpect? I commented that on the previous question. I
was afraid of not getting another opportunity
to give feedback.

Response #30

325 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Open Source Developer

2. Which languages do write Object-Oriented code in regularly? Please tick all that
apply.

PHP, Javascript

3. Do you use code reviews as part of your workflow? Yes - As a reviewer

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Rarely

5. During code reviews, or when writing your own code, do you look for any of the
following? Please tick all that apply.

Performance Issues, Bugs, User Experience, Security
Issues, Correctly and consistently following coding
conventions (e.g. names, brace position), Code
flexibility

6. Are you familiar with any of the following Object-Oriented best practices? Please
tick all that apply

Encapsulation, Law of Demeter (digging into
collaborators), Separation of concerns, Dependency
Injection, Loose coupling, Favour composition over
inheritance, Immutability, Single Responsibility
Principle

7. Do you try to follow Object-Oriented best-practices when developing software? Sometimes

8. Do you actively try to avoid programming practices which go against best
practice principles? (For example, do you actively avoid global variables and
singletons)

Often

9. Which, if any, programming practices do you actively avoid using (tick all that
apply, ignore any you are unfamiliar with)

Global variables, Service Locator, God object, Singleton
Pattern

10. Do you have any comments on the background research of this project (If you
didn’t read the background research, please enter N/A, if you read it but have no
comments, please leave blank)

n/a

11. The insphpect site is intuitive and easy to use Agree

12. How much do you agree with the statement: "Overall, the suggestions made by
Insphpect are helpful"?

Don't Know

13. Do you agree with the recommendations made by Insphpect? Disagree

14. How much do you agree with the following statement: "The explanations of why
identified bad practices should be avoided are clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade given is a fair
evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would like to see a
similar tool built for other programming languages."

Don't Know

17. Is there anything you think is missing from Insphpect which should be included
in a future update?

Maybe some kind of visual depiction of how tightly the
classes are coupled.

18. Do you have any general comments about Insphpect? PHP requires thrown objects to be a subclass of
Exception so perhaps it should not complain about
that.

One place I find static methods useful is for
implementing pure helper functions. Since PHP does
not support autoloading functions, I stuff them into a
final class and use the class as sort of a namespace.
(Example I recently added to selfoss:
https://insphpect.com/report/class/5eb24ebf7acd8/hel
pers%5CMisc)

And yes, it introduces tight coupling but some things
are just primitive enough or specific enough it is not
worth decoupling them. They can always be easily
decoupled by injecting the function as callable through
the constructor. It might not be as convenient as
having a dependency container inject a named class
but we are slowly getting there. With static analysis
tools like Psalm, we can finally check the type signature
of callables for compatibility, replacing the classic
Interface subtype checks. (The added flexibility can be
both a good and a bad thing but as the strength of the
type systems increases, developers will be able to
choose as much rigor or flexibility as they want.)

Thomas Butler 326

Response #31

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

Javascript, Other

3. Do you use code reviews as part of your workflow? Yes - As a reviewer

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Sometimes

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position)

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Separation of concerns,
Dependency Injection, Loose coupling,
Immutability, Single Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Often

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Public static methods,
God object, Constructor Injection, Tight
coupling

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

N/A

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Strongly Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

Response #32

327 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer?

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java, C++, Other

3. Do you use code reviews as part of your workflow? No

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Never

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

User Experience

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Dependency Injection, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Sometimes

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Don't Know

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect? A proactive tool, helpful for every user,
independently of their experience in
programming. Well done.

Response #33

Thomas Butler 328

Question Answer

1. How would you describe yourself as a programmer? Student

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java, C++

3. Do you use code reviews as part of your workflow? No

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Never

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, Security Issues,
Correctly and consistently following coding
conventions (e.g. names, brace position)

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Rarely

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Static variables (including private static
variables), Singleton Pattern

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Don't Know

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Don't Know

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

Response #34

329 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Novice

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Always

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Bugs, User Experience, Security Issues

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Separation of concerns,
Dependency Injection, Loose coupling

7. Do you try to follow Object-Oriented best-practices when
developing software?

Rarely

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Sometimes

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

n/a

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

Response #35

Thomas Butler 330

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Python, Go

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Sometimes

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Often

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Public static methods,
Inheritance, Composition, Service Locator,
God object, Singleton Pattern, Annotations for
configuration, Tight coupling, Setter Injection

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Strongly Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

Response #36

331 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Student

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java

3. Do you use code reviews as part of your workflow? No

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Never

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Sometimes

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Static variables (including private static
variables)

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

I believe it is a nice tool which helps improve
best practices

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Strongly Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Strongly Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

Response #37

Thomas Butler 332

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

Other

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Never

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Bugs, Security Issues, Correctly and
consistently following coding conventions
(e.g. names, brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Dependency Injection, Loose coupling,
Immutability, Single Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Public static methods, God
object, Tight coupling

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

N/A

11. The insphpect site is intuitive and easy to use Disagree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Strongly Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

It would be nice to customise the rules, so
certain practices which the tool may consider
bad could be ignored for a project that needs
to use that practice for a valid reason. A tool I
use called Sonar for C# has a concept of
“Ways” which would be similar.

The ability to send in recommendations for
bad practices that might not be covered in the
tool would be nice also

18. Do you have any general comments about Insphpect? The website is quite difficult to use on iPhone
8 Safari (Haven’t tried other browsers)

Response #38

333 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java, Javascript

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Sometimes

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Public static methods,
Inheritance, Service Locator, God object,
Singleton Pattern, Tight coupling

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Strongly Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Strongly Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

Response #39

Thomas Butler 334

Question Answer

1. How would you describe yourself as a programmer? Student

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java

3. Do you use code reviews as part of your workflow? No

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Never

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation

7. Do you try to follow Object-Oriented best-practices when
developing software?

Sometimes

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Sometimes

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

Response #40

335 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Javascript, C++

3. Do you use code reviews as part of your workflow? No

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Often

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Bugs, User Experience, Security Issues,
Correctly and consistently following coding
conventions (e.g. names, brace position),
Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Law of Demeter (digging into
collaborators), Separation of concerns,
Dependency Injection, Loose coupling, Favour
composition over inheritance, Immutability,
Single Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Public static methods,
Service Locator, God object, Annotations for
configuration, Tight coupling, Setter Injection

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

There are a few (very few) valid uses for the
Singleton, but most of the time it is an anti-
pattern.

Inheritance is has even more valid uses, and
judging when to use it or not use it is
probably extremely difficult to judge in a tool
like this.

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

Perhaps the output could briefly describe why
a particular flaw is flagged, and also provide
the weighting used for it (I noticed that one
static method reduced the score for a class
far less than having the class inherit from a
parent class).

18. Do you have any general comments about Insphpect? Would love to have a command line version to
add to my tooling, along with phpstan,
phpmd, phpunit, phpmd, etc. :-)

Thomas Butler 336

Response #41

Question Answer

1. How would you describe yourself as a programmer? Hobbyist

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java, Python, Javascript

3. Do you use code reviews as part of your workflow? No

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Sometimes

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, Security Issues,
Correctly and consistently following coding
conventions (e.g. names, brace position)

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Separation of
concerns, Dependency Injection

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Rarely

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Static variables (including private static
variables)

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Strongly Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Strongly Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

Response #42

337 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

Java, Go, C++, Rust

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Always

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, Security Issues,
Correctly and consistently following coding
conventions (e.g. names, brace position),
Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Loose coupling,
Single Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Often

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Annotations for
configuration, Setter Injection

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Don't Know

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Don't Know

13. Do you agree with the recommendations made by Insphpect? Don't Know

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

Response #43

Thomas Butler 338

Question Answer

1. How would you describe yourself as a programmer? Professional: Junior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP

3. Do you use code reviews as part of your workflow? Yes - My code is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Sometimes

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Dependency
Injection, Loose coupling

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Inheritance, God
object, Singleton Pattern

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Strongly Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

Response #44

339 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Novice

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

Java, Other

3. Do you use code reviews as part of your workflow? Yes - My code is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Rarely

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Bugs, User Experience, Correctly and
consistently following coding conventions
(e.g. names, brace position)

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Never

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

N/a

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Strongly Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Strongly Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

Response #45

Thomas Butler 340

Question Answer

1. How would you describe yourself as a programmer? Student

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java

3. Do you use code reviews as part of your workflow? Yes - My code is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Never

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Tell, Don’t ask, Separation of concerns, Loose
coupling

7. Do you try to follow Object-Oriented best-practices when
developing software?

Sometimes

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Often

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Static variables (including private static
variables), God object, Singleton Pattern,
Tight coupling

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

N/A

11. The insphpect site is intuitive and easy to use Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Don't Know

13. Do you agree with the recommendations made by Insphpect? Don't Know

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

easier back and forth navigation when
navigating between analyzed files

18. Do you have any general comments about Insphpect? nice work dude!

Response #46

341 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Hobbyist

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Javascript

3. Do you use code reviews as part of your workflow? No

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Never

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Separation of concerns,
Dependency Injection, Loose coupling, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

N/A

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Don't Know

13. Do you agree with the recommendations made by Insphpect? Don't Know

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Don't Know

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Don't Know

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

Response #47

Thomas Butler 342

Question Answer

1. How would you describe yourself as a programmer? Student

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java, C++

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Sometimes

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, Security Issues,
Correctly and consistently following coding
conventions (e.g. names, brace position)

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Separation of
concerns, Dependency Injection

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Sometimes

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect? It looks fabulous and it is very simple and
easy to use. I can quickly see where there are
issues in what files and how to improve it

Response #48

343 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Ruby, Javascript

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Never

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Security Issues, Correctly
and consistently following coding conventions
(e.g. names, brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, God object, Singleton
Pattern, Tight coupling, Mutable Objects

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Strongly Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect? I think it should be available in an offline
version. I'm reluctant in uploading private
code on the web

Response #49

Thomas Butler 344

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Javascript

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Always

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Sometimes

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Often

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Public static methods,
God object, Annotations for configuration,
Mutable Objects

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

`The feedback is very informative but I feel
like having a huge piece of text and examples
opening when clicking a line is a bit jarring.
Maybe these should be short examples and
link off to external articles that are more
detailed. Also it would be great for CI
purposes if this was a Composer package that
people could use to maybe automatically add
GitHub comments or something along those
lines? Just some ideas. Great project!

11. The insphpect site is intuitive and easy to use Don't Know

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Don't Know

13. Do you agree with the recommendations made by Insphpect? Disagree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Disagree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

345 Thomas Butler

Response #50

Question Answer

1. How would you describe yourself as a programmer? Open Source Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Sometimes

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Public static methods,
Inheritance, Service Locator, God object,
Singleton Pattern, Annotations for
configuration, Tight coupling, Setter Injection,
Marker Interface, Mutable Objects

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

N/a

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Strongly Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Strongly Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect? site looks nice, not sure the animations give
that professional feel though. The tool works
well and it picks up on the things I'd normally
look for during code reviews.

Thomas Butler 346

Response #51

Question Answer

1. How would you describe yourself as a programmer? Hobbyist

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Javascript

3. Do you use code reviews as part of your workflow? No

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Never

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, Security Issues

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

7. Do you try to follow Object-Oriented best-practices when
developing software?

Never

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Often

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Don't Know

13. Do you agree with the recommendations made by Insphpect? Don't Know

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Don't Know

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Don't Know

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Don't Know

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

Response #52

347 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Often

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Public static methods,
Inheritance, Service Locator, God object,
Singleton Pattern, Annotations for
configuration, Tight coupling, Mutable
Objects

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Strongly Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

Thomas Butler 348

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Often

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Public static methods,
Inheritance, Service Locator, God object,
Singleton Pattern, Annotations for
configuration, Tight coupling, Mutable
Objects

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Strongly Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

I'd like to see it handle inheritance differently.
There are some cases where PHP forces you
to use inheritance (e.g. extending
InvalidArgumentException) and it's flagged
up as bad as extending one of your own
classes. The explanation popup should at
least mention this or grade the code
differently when extending an inbuilt class.
Another example is PDO. Sometimes it's
useful to add functionality to it and the only
way that can currently be achieved is with
inheritance, if you wrap it you can't then pass
it into code that expects a \PDO instance so
any code which does this is going to lose
points for doing something unavoidable even
if it does technically introduce tight coupling.

349 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Often

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Public static methods,
Inheritance, Service Locator, God object,
Singleton Pattern, Annotations for
configuration, Tight coupling, Mutable
Objects

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Strongly Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

I'd like to see it handle inheritance differently.
There are some cases where PHP forces you
to use inheritance (e.g. extending
InvalidArgumentException) and it's flagged
up as bad as extending one of your own
classes. The explanation popup should at
least mention this or grade the code
differently when extending an inbuilt class.
Another example is PDO. Sometimes it's
useful to add functionality to it and the only
way that can currently be achieved is with
inheritance, if you wrap it you can't then pass
it into code that expects a \PDO instance so
any code which does this is going to lose
points for doing something unavoidable even
if it does technically introduce tight coupling.

18. Do you have any general comments about Insphpect? The "What is tight coupling" page is the best
concise explanation I've seen, will be adding
that to the list of reading materials sent to all
new developers who join the company.

Thomas Butler 350

Response #53

Question Answer

1. How would you describe yourself as a programmer? Academic

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Python, C++, Other

3. Do you use code reviews as part of your workflow? Yes - As a reviewer

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Sometimes

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position)

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Separation of concerns, Immutability

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Often

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Public static methods, Tight
coupling, Mutable Objects

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Strongly Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

Response #54

351 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Professional: Junior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Javascript

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Never

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Dependency Injection

7. Do you try to follow Object-Oriented best-practices when
developing software?

Rarely

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Sometimes

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Annotations for configuration, Tight coupling

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Disagree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

A good feature would be to be able to click on
a row in "Detected Issue" and scroll down to
the issue.

Having less information when first clicking on
the issue with an option to read-more? e.g.
just display the summary, then have another
button to expand the data.

Don't know if I missed it, but is there a
disclaimer of what happens with uploaded
files? Could users use this tool with code that
has sensitive information?

18. Do you have any general comments about Insphpect?

Response #55

Thomas Butler 352

Question Answer

1. How would you describe yourself as a programmer? Hobbyist

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP

3. Do you use code reviews as part of your workflow? No

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Rarely

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, Security Issues,
Correctly and consistently following coding
conventions (e.g. names, brace position)

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Dependency Injection, Single Responsibility
Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Often

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Static variables (including private static
variables), Public static methods, God object,
Singleton Pattern, Annotations for
configuration, Facade

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

N/A

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Don't Know

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Don't Know

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Disagree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

I've uploaded a simple/dirty webapp using
Fatfree Framework, which is a mature and
useful framework for a hobbyst like me.
However it uses global variables, god classes,
magic methods, singletons etc, so do I in
uploaded classes. And this tool showed 100%.

18. Do you have any general comments about Insphpect? I trust in your work, and learned a lot from
articles on r.je. Thank you.

Response #56

353 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Academic

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java, Javascript, C++, Other

3. Do you use code reviews as part of your workflow? Yes - As a reviewer

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Rarely

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Single Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Often

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Composition, God
object, Singleton Pattern, Tight coupling

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

Response #57

Thomas Butler 354

Question Answer

1. How would you describe yourself as a programmer? Student

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java, Javascript, Other

3. Do you use code reviews as part of your workflow? No

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Never

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Correctly and consistently following coding
conventions (e.g. names, brace position),
Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Often

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables)

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

N/A

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect? A very useful tool. One possible concern with
making code as generalised as possible is it
could potentially lead to new developers to a
project taking a bit longer to get up to speed.

Also, on the front page in the "How is it
different from Scruitnizer/phpmd/etc?"
section, number is spelt wrongly

Response #58

355 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Hobbyist

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP

3. Do you use code reviews as part of your workflow? No

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Sometimes

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Correctly and consistently following coding
conventions (e.g. names, brace position)

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Separation of concerns,
Dependency Injection, Loose coupling, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Sometimes

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Tight coupling

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

N/A

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Don't Know

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

No

18. Do you have any general comments about Insphpect? NO

Response #59

Thomas Butler 356

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Always

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Separation of concerns,
Dependency Injection, Loose coupling, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Public static methods,
God object, Singleton Pattern, Tight coupling,
Facade

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Strongly Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Strongly Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Don't Know

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

Flexibility is so important, (Composition over
Inheritance) I add it in my best practices list!
Thanks a lot for you work, future PhD!

18. Do you have any general comments about Insphpect? Nice tool!

Response #60

357 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Python, Go

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Often

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Public static methods,
Inheritance, Service Locator, Dependency
Injection, God object, Singleton Pattern,
Constructor Injection, Tight coupling, Setter
Injection, Mutable Objects

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Strongly Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Strongly Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

It would be useful to be able to add some
exceptions to the rules. In PHP there are
several times when you are forced to use
inheritance or mutable objects because of
PHP's inbuilt classes. I can submit a PR or
elaborate if the code is available somewhere.
It seems wrong to deduct points for things
that cannot be avoided.

18. Do you have any general comments about Insphpect? Nice tool, I'll definitely be using this on my
projects moving forward.

Thomas Butler 358

Response #61

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java, Python, Javascript

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Always

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Correctly and consistently following coding
conventions (e.g. names, brace position)

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Separation of concerns,
Dependency Injection, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), God object, Singleton
Pattern

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Don't Know

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

Response #62

359 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Student

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, C++

3. Do you use code reviews as part of your workflow? No

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Never

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, Correctly and
consistently following coding conventions
(e.g. names, brace position)

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Separation of concerns,
Dependency Injection, Loose coupling, Favour
composition over inheritance, Immutability,
Single Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Public static methods,
Inheritance, Singleton Pattern, Annotations
for configuration, Tight coupling, Setter
Injection, Marker Interface

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Strongly Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

Response #63

Thomas Butler 360

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java, Python, Javascript, Other

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Sometimes

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Sometimes

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), God object, Setter
Injection, Mutable Objects

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Don't Know

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

Once analysis is shown, in the "Detected
issues" table, I expected to get clickable links
to the given lines being highlighted in the
code. I was forced to scroll to locate the red
arrow markers and missed some until I came
back up to tally how many red arrows to go
and find. This is a minor UI/UX issue but may
prove helpful in a future update.

18. Do you have any general comments about Insphpect? I would be helpful if the tool collapsed code
comments of a given length to prevent the
code comments cluttering the output of
Insphpect. This would allow us to only see the
code as-is and spot the guidance being given
by Insphpect much more easily.

361 Thomas Butler

Response #64

Question Answer

1. How would you describe yourself as a programmer? Student

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java, Javascript

3. Do you use code reviews as part of your workflow? No

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Sometimes

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Separation of concerns,
Immutability, Single Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Often

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

n/a

18. Do you have any general comments about Insphpect? An interesting and cool tool and proof of
concept. The website design is perhaps not
really what I would have gone with but it's
certainly quirky and the animation give it an
interactive and fun feel. The background on
the project is really interesting as is the
methods used to assess programming
best/worst practices. Great name too!

Would love to see this tool developed into a
plugin for common IDE's and editors and
become available for other languages.

Thomas Butler 362

Response #65

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Javascript

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Always

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Public static methods,
Inheritance, Service Locator, God object,
Singleton Pattern, Annotations for
configuration, Tight coupling, Setter Injection,
Mutable Objects

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Strongly Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Strongly Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

363 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Javascript

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Always

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Public static methods,
Inheritance, Service Locator, God object,
Singleton Pattern, Annotations for
configuration, Tight coupling, Setter Injection,
Mutable Objects

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Strongly Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Strongly Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect? I've been following your work for years and
learnt a lot. This is a clever progression from
what you've been doing previously. Great job!

I use Scrutinizer regularly and find it to be
helpful but rather dumb. As you point out,
there are thresholds for grades which seem
to have been chosen at random. I like
Insphpect's approach of identifying
antipatterns a lot more as it has a more solid
foundation for the grades given.

Thomas Butler 364

Response #66

Question Answer

1. How would you describe yourself as a programmer? Novice

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Sometimes

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

User Experience

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Sometimes

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Static variables (including private static
variables)

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Don't Know

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect? Very helpful tool.

Response #67

365 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Sometimes

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, Security Issues

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Separation of concerns,
Dependency Injection, Loose coupling, Favour
composition over inheritance, Immutability,
Single Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Sometimes

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Often

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, God object, Annotations for
configuration, Tight coupling

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Don't Know

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

Response #68

Thomas Butler 366

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java, Python, Ruby, Go, Javascript, C++,
Rust, Other

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Always

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Public static methods,
Inheritance, Service Locator, God object,
Singleton Pattern, Tight coupling, Setter
Injection, Facade, Marker Interface, Visitor
Pattern

367 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java, Python, Ruby, Go, Javascript, C++,
Rust, Other

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Always

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Public static methods,
Inheritance, Service Locator, God object,
Singleton Pattern, Tight coupling, Setter
Injection, Facade, Marker Interface, Visitor
Pattern

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

Reviewing code and finding weakness is a
good idea. We do this all the time however a
large body of professional programmers
really don't take the sort of care you may
think over code. There are a lot of "paycheque
programmers" just churning out mediocrity,
what is also an issue is that people blindly
follow tools that tell them things are a bad
idea. Granted a lot of the things discussed
here are bad news, ServiceLocator etc I
particularly detest setter injection. The reality
is often software engineers are following the
JFDI process their boss has laid out and are
really thinking about their next craft beer
than software process.

That said there is a very healthy market for
static analysis tools and also realtime code
inspection, I use these tools every day and
they improve what I do no end. That said I
wish people would concentrate more on
algorithms and data structures and lower-
level computing, ask a lot of computer
programmers what a B-Tree is a today and
they will just stare at you and most have no
idea what type of Sort is the default sort :).

I read this site cover to cover it is fairly
opinionated and academic in focus but then
again thats what PHd projects are about :)

At the moment by the way you expose the
version of nginx you run, hackers dream,
better to mask that and upgrade php. You
also aren't running a waf.

Thomas Butler 368

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java, Python, Ruby, Go, Javascript, C++,
Rust, Other

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Always

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Public static methods,
Inheritance, Service Locator, God object,
Singleton Pattern, Tight coupling, Setter
Injection, Facade, Marker Interface, Visitor
Pattern

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

Reviewing code and finding weakness is a
good idea. We do this all the time however a
large body of professional programmers
really don't take the sort of care you may
think over code. There are a lot of "paycheque
programmers" just churning out mediocrity,
what is also an issue is that people blindly
follow tools that tell them things are a bad
idea. Granted a lot of the things discussed
here are bad news, ServiceLocator etc I
particularly detest setter injection. The reality
is often software engineers are following the
JFDI process their boss has laid out and are
really thinking about their next craft beer
than software process.

That said there is a very healthy market for
static analysis tools and also realtime code
inspection, I use these tools every day and
they improve what I do no end. That said I
wish people would concentrate more on
algorithms and data structures and lower-
level computing, ask a lot of computer
programmers what a B-Tree is a today and
they will just stare at you and most have no
idea what type of Sort is the default sort :).

I read this site cover to cover it is fairly
opinionated and academic in focus but then
again thats what PHd projects are about :)

At the moment by the way you expose the
version of nginx you run, hackers dream,
better to mask that and upgrade php. You
also aren't running a waf.

11. The insphpect site is intuitive and easy to use Strongly Agree

369 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java, Python, Ruby, Go, Javascript, C++,
Rust, Other

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Always

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Public static methods,
Inheritance, Service Locator, God object,
Singleton Pattern, Tight coupling, Setter
Injection, Facade, Marker Interface, Visitor
Pattern

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

Reviewing code and finding weakness is a
good idea. We do this all the time however a
large body of professional programmers
really don't take the sort of care you may
think over code. There are a lot of "paycheque
programmers" just churning out mediocrity,
what is also an issue is that people blindly
follow tools that tell them things are a bad
idea. Granted a lot of the things discussed
here are bad news, ServiceLocator etc I
particularly detest setter injection. The reality
is often software engineers are following the
JFDI process their boss has laid out and are
really thinking about their next craft beer
than software process.

That said there is a very healthy market for
static analysis tools and also realtime code
inspection, I use these tools every day and
they improve what I do no end. That said I
wish people would concentrate more on
algorithms and data structures and lower-
level computing, ask a lot of computer
programmers what a B-Tree is a today and
they will just stare at you and most have no
idea what type of Sort is the default sort :).

I read this site cover to cover it is fairly
opinionated and academic in focus but then
again thats what PHd projects are about :)

At the moment by the way you expose the
version of nginx you run, hackers dream,
better to mask that and upgrade php. You
also aren't running a waf.

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

Thomas Butler 370

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java, Python, Ruby, Go, Javascript, C++,
Rust, Other

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Always

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Public static methods,
Inheritance, Service Locator, God object,
Singleton Pattern, Tight coupling, Setter
Injection, Facade, Marker Interface, Visitor
Pattern

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

Reviewing code and finding weakness is a
good idea. We do this all the time however a
large body of professional programmers
really don't take the sort of care you may
think over code. There are a lot of "paycheque
programmers" just churning out mediocrity,
what is also an issue is that people blindly
follow tools that tell them things are a bad
idea. Granted a lot of the things discussed
here are bad news, ServiceLocator etc I
particularly detest setter injection. The reality
is often software engineers are following the
JFDI process their boss has laid out and are
really thinking about their next craft beer
than software process.

That said there is a very healthy market for
static analysis tools and also realtime code
inspection, I use these tools every day and
they improve what I do no end. That said I
wish people would concentrate more on
algorithms and data structures and lower-
level computing, ask a lot of computer
programmers what a B-Tree is a today and
they will just stare at you and most have no
idea what type of Sort is the default sort :).

I read this site cover to cover it is fairly
opinionated and academic in focus but then
again thats what PHd projects are about :)

At the moment by the way you expose the
version of nginx you run, hackers dream,
better to mask that and upgrade php. You
also aren't running a waf.

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Agree

371 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java, Python, Ruby, Go, Javascript, C++,
Rust, Other

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Always

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Public static methods,
Inheritance, Service Locator, God object,
Singleton Pattern, Tight coupling, Setter
Injection, Facade, Marker Interface, Visitor
Pattern

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

Reviewing code and finding weakness is a
good idea. We do this all the time however a
large body of professional programmers
really don't take the sort of care you may
think over code. There are a lot of "paycheque
programmers" just churning out mediocrity,
what is also an issue is that people blindly
follow tools that tell them things are a bad
idea. Granted a lot of the things discussed
here are bad news, ServiceLocator etc I
particularly detest setter injection. The reality
is often software engineers are following the
JFDI process their boss has laid out and are
really thinking about their next craft beer
than software process.

That said there is a very healthy market for
static analysis tools and also realtime code
inspection, I use these tools every day and
they improve what I do no end. That said I
wish people would concentrate more on
algorithms and data structures and lower-
level computing, ask a lot of computer
programmers what a B-Tree is a today and
they will just stare at you and most have no
idea what type of Sort is the default sort :).

I read this site cover to cover it is fairly
opinionated and academic in focus but then
again thats what PHd projects are about :)

At the moment by the way you expose the
version of nginx you run, hackers dream,
better to mask that and upgrade php. You
also aren't running a waf.

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

Thomas Butler 372

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java, Python, Ruby, Go, Javascript, C++,
Rust, Other

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Always

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Public static methods,
Inheritance, Service Locator, God object,
Singleton Pattern, Tight coupling, Setter
Injection, Facade, Marker Interface, Visitor
Pattern

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

Reviewing code and finding weakness is a
good idea. We do this all the time however a
large body of professional programmers
really don't take the sort of care you may
think over code. There are a lot of "paycheque
programmers" just churning out mediocrity,
what is also an issue is that people blindly
follow tools that tell them things are a bad
idea. Granted a lot of the things discussed
here are bad news, ServiceLocator etc I
particularly detest setter injection. The reality
is often software engineers are following the
JFDI process their boss has laid out and are
really thinking about their next craft beer
than software process.

That said there is a very healthy market for
static analysis tools and also realtime code
inspection, I use these tools every day and
they improve what I do no end. That said I
wish people would concentrate more on
algorithms and data structures and lower-
level computing, ask a lot of computer
programmers what a B-Tree is a today and
they will just stare at you and most have no
idea what type of Sort is the default sort :).

I read this site cover to cover it is fairly
opinionated and academic in focus but then
again thats what PHd projects are about :)

At the moment by the way you expose the
version of nginx you run, hackers dream,
better to mask that and upgrade php. You
also aren't running a waf.

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

373 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java, Python, Ruby, Go, Javascript, C++,
Rust, Other

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Always

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Public static methods,
Inheritance, Service Locator, God object,
Singleton Pattern, Tight coupling, Setter
Injection, Facade, Marker Interface, Visitor
Pattern

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

Reviewing code and finding weakness is a
good idea. We do this all the time however a
large body of professional programmers
really don't take the sort of care you may
think over code. There are a lot of "paycheque
programmers" just churning out mediocrity,
what is also an issue is that people blindly
follow tools that tell them things are a bad
idea. Granted a lot of the things discussed
here are bad news, ServiceLocator etc I
particularly detest setter injection. The reality
is often software engineers are following the
JFDI process their boss has laid out and are
really thinking about their next craft beer
than software process.

That said there is a very healthy market for
static analysis tools and also realtime code
inspection, I use these tools every day and
they improve what I do no end. That said I
wish people would concentrate more on
algorithms and data structures and lower-
level computing, ask a lot of computer
programmers what a B-Tree is a today and
they will just stare at you and most have no
idea what type of Sort is the default sort :).

I read this site cover to cover it is fairly
opinionated and academic in focus but then
again thats what PHd projects are about :)

At the moment by the way you expose the
version of nginx you run, hackers dream,
better to mask that and upgrade php. You
also aren't running a waf.

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

Thomas Butler 374

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java, Python, Ruby, Go, Javascript, C++,
Rust, Other

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Always

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Public static methods,
Inheritance, Service Locator, God object,
Singleton Pattern, Tight coupling, Setter
Injection, Facade, Marker Interface, Visitor
Pattern

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

Reviewing code and finding weakness is a
good idea. We do this all the time however a
large body of professional programmers
really don't take the sort of care you may
think over code. There are a lot of "paycheque
programmers" just churning out mediocrity,
what is also an issue is that people blindly
follow tools that tell them things are a bad
idea. Granted a lot of the things discussed
here are bad news, ServiceLocator etc I
particularly detest setter injection. The reality
is often software engineers are following the
JFDI process their boss has laid out and are
really thinking about their next craft beer
than software process.

That said there is a very healthy market for
static analysis tools and also realtime code
inspection, I use these tools every day and
they improve what I do no end. That said I
wish people would concentrate more on
algorithms and data structures and lower-
level computing, ask a lot of computer
programmers what a B-Tree is a today and
they will just stare at you and most have no
idea what type of Sort is the default sort :).

I read this site cover to cover it is fairly
opinionated and academic in focus but then
again thats what PHd projects are about :)

At the moment by the way you expose the
version of nginx you run, hackers dream,
better to mask that and upgrade php. You
also aren't running a waf.

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

Tools for other languages that do this do
exist.

375 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java, Python, Ruby, Go, Javascript, C++,
Rust, Other

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Always

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Public static methods,
Inheritance, Service Locator, God object,
Singleton Pattern, Tight coupling, Setter
Injection, Facade, Marker Interface, Visitor
Pattern

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

Reviewing code and finding weakness is a
good idea. We do this all the time however a
large body of professional programmers
really don't take the sort of care you may
think over code. There are a lot of "paycheque
programmers" just churning out mediocrity,
what is also an issue is that people blindly
follow tools that tell them things are a bad
idea. Granted a lot of the things discussed
here are bad news, ServiceLocator etc I
particularly detest setter injection. The reality
is often software engineers are following the
JFDI process their boss has laid out and are
really thinking about their next craft beer
than software process.

That said there is a very healthy market for
static analysis tools and also realtime code
inspection, I use these tools every day and
they improve what I do no end. That said I
wish people would concentrate more on
algorithms and data structures and lower-
level computing, ask a lot of computer
programmers what a B-Tree is a today and
they will just stare at you and most have no
idea what type of Sort is the default sort :).

I read this site cover to cover it is fairly
opinionated and academic in focus but then
again thats what PHd projects are about :)

At the moment by the way you expose the
version of nginx you run, hackers dream,
better to mask that and upgrade php. You
also aren't running a waf.

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

Tools for other languages that do this do
exist.

18. Do you have any general comments about Insphpect? The website is nice, and the tool functions
well.

Thomas Butler 376

Response #69

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP

3. Do you use code reviews as part of your workflow? No

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Always

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Public static methods,
Service Locator, God object, Singleton
Pattern, Tight coupling, Setter Injection,
Facade

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

N/A

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Don't Know

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Don't Know

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Don't Know

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

I am still playing with it so I will report it again
later

18. Do you have any general comments about Insphpect? Totally not agree with annotations and red
warning about inheritance. Modern
programming will always depend on some
other library; it is not enough just to
implement interface.

377 Thomas Butler

Response #70

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Javascript, Other

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Never

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Bugs, User Experience, Security Issues

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, God object, Singleton
Pattern, Annotations for configuration, Tight
coupling

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

N/A

11. The insphpect site is intuitive and easy to use Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Disagree

13. Do you agree with the recommendations made by Insphpect? Disagree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Disagree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Disagree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Don't Know

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

No.

18. Do you have any general comments about Insphpect? You can't judge whole code by a single word.
Your tool is unable to deal with named
constructors or immutable classes, to name a
few.

Response #71

Thomas Butler 378

Question Answer

1. How would you describe yourself as a programmer? Professional: Junior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

Python, Go

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Never

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, Security Issues,
Correctly and consistently following coding
conventions (e.g. names, brace position)

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Dependency Injection, Favour composition
over inheritance

7. Do you try to follow Object-Oriented best-practices when
developing software?

Sometimes

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Inheritance

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

Response #72

379 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java, Javascript

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Often

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Always

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Always

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Public static methods,
Inheritance, Service Locator, Dependency
Injection, Singleton Pattern, Annotations for
configuration, Setter Injection, Mutable
Objects

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

You should make the raw data available so we
can see the "good" and "bad" articles

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Strongly Agree

13. Do you agree with the recommendations made by Insphpect? Strongly Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

I'd like to be able to run it locally rather than
trusting a site with my private code

18. Do you have any general comments about Insphpect? Neat idea. The FAQ and site doesn't contain
any legal information or details about how
the tool will use my code once I upload it. This
means I won't test it with my own code - was
very curious how a private repo I'm working
in would perform in your tests.

Thomas Butler 380

Response #73

Question Answer

1. How would you describe yourself as a programmer? Novice

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

Other

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Never

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, Correctly and
consistently following coding conventions
(e.g. names, brace position)

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Sometimes

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Static variables (including private static
variables)

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Don't Know

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

Response #74

381 Thomas Butler

Question Answer

1. How would you describe yourself as a programmer? Open Source Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java, Python, Javascript

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Sometimes

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Correctly and consistently
following coding conventions (e.g. names,
brace position), Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Dependency Injection, Favour
composition over inheritance, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Often

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Agree

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

Response #75

Thomas Butler 382

Question Answer

1. How would you describe yourself as a programmer? Professional: Senior Developer

2. Which languages do write Object-Oriented code in regularly? Please
tick all that apply.

PHP, Java, Javascript

3. Do you use code reviews as part of your workflow? Yes – I review others work and my own code
is reviewed by others

4. Do you use code review tools such as scruitinizer, phpmd, pmd, etc? Sometimes

5. During code reviews, or when writing your own code, do you look
for any of the following? Please tick all that apply.

Performance Issues, Bugs, User Experience,
Security Issues, Code flexibility

6. Are you familiar with any of the following Object-Oriented best
practices? Please tick all that apply

Encapsulation, Tell, Don’t ask, Law of Demeter
(digging into collaborators), Separation of
concerns, Dependency Injection, Loose
coupling, Favour composition over
inheritance, Immutability, Single
Responsibility Principle

7. Do you try to follow Object-Oriented best-practices when
developing software?

Often

8. Do you actively try to avoid programming practices which go
against best practice principles? (For example, do you actively avoid
global variables and singletons)

Often

9. Which, if any, programming practices do you actively avoid using
(tick all that apply, ignore any you are unfamiliar with)

Global variables, Static variables (including
private static variables), Inheritance, Service
Locator, God object, Singleton Pattern, Tight
coupling, Setter Injection

10. Do you have any comments on the background research of this
project (If you didn’t read the background research, please enter N/A,
if you read it but have no comments, please leave blank)

11. The insphpect site is intuitive and easy to use Strongly Agree

12. How much do you agree with the statement: "Overall, the
suggestions made by Insphpect are helpful"?

Agree

13. Do you agree with the recommendations made by Insphpect? Agree

14. How much do you agree with the following statement: "The
explanations of why identified bad practices should be avoided are
clear and helpful."

Strongly Agree

15. How much do you agree with the following statement: "The grade
given is a fair evaluation of the flexibiltiy of the code analysed."

Don't Know

16. How much do you agree with the following statement: "I would
like to see a similar tool built for other programming languages."

Strongly Agree

17. Is there anything you think is missing from Insphpect which
should be included in a future update?

18. Do you have any general comments about Insphpect?

