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Numerical approach for flexible 
body with internal boundary 
movement
Riko Ogawara 1*, Stefan Kaczmarczyk 2 & Yoshiaki Terumichi 1

In this paper, a numerical method is proposed for a flexible tether motion that spans two different 
environments and has large displacement and deformation. When considering the behavior of a 
tethered system in which the tether cable is subjected to the above conditions, variations of an 
internal boundary in the tether must be considered. In general, the absolute nodal coordinate 
formulation (ANCF), a nonlinear finite element method, is effective for the dynamic simulation of a 
flexible body with large displacement and deformation. However, in conventional methods, such as 
ANCF, the analysis accuracy decreases and the calculation cost increases when the movement of an 
internal boundary across different environments is considered. In this study, an efficient numerical 
approach that considers the variations of an internal boundary by using ANCF using variable-domain 
finite elements is proposed. In addition, to further improve the calculation efficiency, dimensionless 
variables are introduced using appropriate representative values. The accuracy of the numerical results 
obtained using the proposed method, which considers an internal variable boundary, is similar to that 
for a conventional method.

Tethered systems are used in various practical engineering applications1–8. This system is a flexible multibody 
system that consists of a mothership and a payload or equipment connected by a flexible tether such as a cable, 
rope, beam or wire. In recent years, tethered systems combining an unmanned aerial vehicle (UAV) for search, 
rescue, transportation, etc. are developed9,10 and it is believed that the scope of its use is expected to expand in the 
future. Such systems are used in offshore/marine exploration can across two different environments of different 
properties, for example, from a mother-ship in the air to an underwater payload in the sea11. The environmental 
boundary, like water/air boundary, moves relative to the tether due to the movement of the system.

Computational simulation and analysis can be used to develop models of such systems and evaluate their 
behavior. The absolute nodal coordinate formulation (ANCF), with a nonlinear finite element method, devel-
oped by Shabana et al.12–17, is widely used and developed for the dynamic simulation of flexible structures with 
large displacement and deformation18–22. However, there is no effective numerical approach for the analysis of a 
flexible tether with a moving environmental boundary. In the conventional methods, the equation of motion for 
each finite element must be re-evaluated at each time step, because the position of the internal boundary moves 
relative to the flexible tether, elements and nodes as shown in Fig. 1. Here, in this study, we define “the internal 
boundary” as the internal point of the flexible body that divides the flexible body into two parts: the part in 
environment A and the part in environment B (see the illustration in Fig. 1). The equation of motion depends 
on the environment, because the flexible tether deforms and hydrodynamic drag, buoyancy, and the added-mass 
effect act on the flexible tether. This re-evaluation must be conducted even if the equation of motion for a given 
element is the same as that in the previous time step. Therefore, a new numerical approach that can efficiently 
deal with such systems is required.

This study proposes a numerical approach for the analysis of a flexible body motion with an internal vari-
able boundary. In addition, the dimensionless approach we proposed in a previous paper23 is applied to it. In 
conventional dimensionless approaches, constant representative values are generally used24. Compared to those 
conventional approaches, in our dimensionless approach, the representative values are set using the time-varying 
length of the flexible body. Using those time varying representative values improves calculation efficiency while 
maintaining accuracy since the time step is automatically changed to the appropriate value for each time-varying 
length of the flexible body.
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The accuracy and applicability criteria of the proposed method are discussed based on a comparison of 
numerical results obtained using the proposed method and a conventional method.

Modeling and the model formulation
Analytical model.  In the proposed method, referred to as Variable-Boundary Variable-domain Finite Ele-
ment ANCF (VB-VFE-ANCF), one tether is regarded as a virtual multibody system that has two flexible bodies, 
namely body A above the boundary and body B below the boundary, that are combined as shown in Fig. 2. The 
connection point between the flexible bodies is always at the internal boundary point, because each flexible 
body, represented using the Variable-domain Finite Element (VFE) model25, changes its length relative to the 
movement of an internal boundary point due to deformation or displacement of the tether or movement of the 
mother ship. The positional relation between each node and the internal boundary, that is, above or below the 
boundary does not change even when the flexible tether moves and deforms. Therefore, the equation of motion 
for a given node is in the same form each time step. This method improves the calculation efficiency and accu-
racy because there is no need to search for or to approximate an internal boundary point on a flexible body.

Figure 3 shows a flexible pendulum, which is used as a simplified analytical model in this study. The usefulness 
of VB-VFE-ANCF is evaluated by comparing the numerical results obtained using ANCF and VB-VFE-ANCF, 
which are made dimensionless by using appropriate representative values.

Modeling and formulation of beam elements by VFE‑ANCF.  In this section, the modeling and for-
mulation of VFE-ANCF, a VFE 2D model that uses ANCF, for flexible body parts that have large deformation/
displacement and time-varying length are described.

Position vector rj is described using the shape function S and the nodal coordinates ej as follows

(1)rj = Sej

Figure 1.   Example of model for conventional methods. Each environment in which each element exists 
changes as the boundary position changes. In addition, the boundary point of environment A and B is not 
always at a node.

Figure 2.   Example of model for VB-VFE-ANCF. In this model, one tether is divided into two flexible bodies, A 
and B, depending on the environments in which they exist. As a result, the internal boundary position is always 
at the connected point of flexible bodies A and B.
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where ξ = x/le , x is the coordinate of the point along the beam axis in the deformed configuration and le is the 
length of the beam element. ej1, e

j
2 and ej5, e

j
6 represent the absolute coordinates, and ej3, e

j
4 and ej7, e

j
8 represent 

the absolute gradient of the nodes at the left and right ends of the element multiplied by the element length le , 
respectively24,25. These are described as follows:

Here ṙj , the time derivative of position vector rj , is expressed as

Figure 4 shows the concept of VFE model. In the VFE method, the length of each beam element, which has 
a fixed number of elements N , changes according to the movement velocity V  of the flexible body with time-
varying length L(t) . The length of beam element le and its time derivative l̇e are described as follows:

The length of each element changes evenly as the entire flexible body changes its length. Thus, an inertial 
term is generated in the equation of motion, which includes the Coriolis force due to the change in the length 
of the beam element.
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ṫ
)

N
=

V

N

Figure 3.   Model of a flexible pendulum. In VFE-ANCF model, each element length is same and changes 
evenly. On the other hands, in VB-VFE-ANCF model, the flexible pendulum was divided into two parts, and the 
element length of bodies A and B changes at different rates.

Figure 4.   VFE model of flexible body. In the VFE-model, each element changes its length evenly.
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Here, the flexible body is formulated using VFE-ANCF. The kinetic energy of an element Te can be defined 
using the volume V  , density ρ , and cross-sectional area A as follows:

Assuming that the deformation of one element of the beam is small, the elastic energy Ue is split into two 
parts, namely the elastic energy due to the axial strain Ule and the elastic energy due to bending based on the 
curvature of the deformed beam centerline Ute , respectively expressed as

where E is Young’s modulus, and I is the second moment of inertia of the cross-sectional area. More detailed 
derivation of the elastic forces is explained in Ref.26.

The positional energy due to gravity is described as follows:

The kinetic energy T , elastic energy U and gravitational energy Wg of the flexible body are used in Lagrange’s 
equation of motion. The Lagrange’s equation of motion is expressed with the Lagrangian L = T − U −Wg and 
the constraint reaction forces Qc . In VB-VFE-ANCF, as described later, Qc contains the binding force generated 
by connecting two bodies.

Here,

From the above, the equation of motion for a beam element is expressed as follows:
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j

1
∫

0

STSdξ ėj =
1

2
ρAle ė
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where Kle Kte , and Cge are constants and εd is defined as

Here, the equation of motion of each element are synthesized in augmented form as follows;

the constraint force in Eq. (16) is derived from Qc = CT
q � , where C is the constraints equations, Cq is the Jacobian 

matrix of it, M is the mass matrix of the system, q is the vector of the system generalized coordinates, Q is the 
vector of external forces and Cqq̈ = γ

15.
In Eq. (16), Me and Cge are made constants by using the nodal coordinates defined by Eq. (4), reducing the 

calculation cost. The second term on the left-hand side of Eq. (16) represents the inertial force caused by the 
change in length.

Proposed method for flexible body motion with variable boundary.  In this section, the dimen-
sionless equation of motion and the method for determining the connected position of bodies A and B (see the 
flexible pendulum model in Fig. 3), that is, the length of bodies according to the change in the internal boundary 
position in the VB-VFE-ANCF formulation, are described. In this study, as a simple example for basic considera-
tion, the equilibrium length, the unstretched length when no external forces are presented, of the entire length 
of a flexible tether L = LA(t)+ LB(t) is constant and the internal boundary point moves with constant velocity 
α m/s . The case that a system that a drone and a machine is connected via flexible tether like Fig. 1 descends at 
constant velocity is one of the examples.

Therefore, the length of body i, Li(t) , is defined as follows:

where i = A,B , αA = α,αB = −α , and Li0 represents the initial length of body i.
The dimensionless variables are defined as follows.

Here, the time-varying length of each body LA(t) and LB(t) , respectively, is used as the representative length 
LR , and the representative time TR is described as TR = Ls(t)

√
ρ/E , where Ls(t) is the shorter length of the body 

lengths LA(t) and LB(t) , respectively. In addition, eA and eB are the nodal coordinate of body A and B, respectively.
Thus, the dimensionless equation of motion is derived by applying the above body length in Eq. (19) 

and dimensionless variables to Eq. (16) (details are in Appendix 1). In addition, a dimensionless function 
µ∗
s = Ls(t

∗)/Ls0 = 1/(1− α∗
s t

∗) is introduced as an indicator expressing the amount of internal boundary 
movement with respect to the initial length.

The superscript asterisk indicates a dimensionless variable. The dimensionless parameters are defined as 
follows:

where D is the cross-sectional diameter and α∗
i  is a dimensionless parameter that represents the relative internal 

boundary movement speed to the propagation speed of longitudinal waves. The constraints equation of bodies 
A and B are given as follows:

where NA and NB are the numbers of elements of the respective body.
By making the equation of motion dimensionless, the physical factors that govern complex behavior are 

normalized and movements can be more appropriately evaluated. In addition, as shown in a previous study23, by 
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(

3
µ*
s

�
*
is

α*

i − 2µ*

sα
*

s

)

1
∫

0

STSdξ ė*i +
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setting the representative length to the length of each body that changes in time, flexible body is converted to the 
dimensionless system consisting of two bodies with constant length. Furthermore, by setting the representative 
time using the time-varying length of the shorter body, the time step is set according to the higher frequency 
of bodies A and B at each time step. Here, in this study, change in the representative time TR means change in 
the dimensional time step �t , defined in Eq. (20), since the dimensionless time step �t∗ is constant. In other 
words, the dimensional time step automatically changes to the value according to the shorter body length with 
the higher frequency for each calculation time step.

As a result, it is possible to perform numerical analysis while maintaining accuracy regardless of the change 
in length.

Numerical results and discussion
In this section, a numerical analysis of a flexible body with a variable boundary is performed using the pro-
posed method (VB-VFE-ANCF). The numerical results obtained using VB-VFE-ANCF are compared with those 
obtained using ANCF, which is generally considered to be effective for dynamic flexible body simulations without 
a variable boundary. Here, for VB-VFE-ANCF, the environments in which the two bodies exist are the same, so 
the results should be in good agreement with those of ANCF. Moreover, the analysis accuracy and criteria for 
applicability of the proposed method are discussed based on the difference in the numerical results between the 
two methods. (The comparison of the computational time is shown in Appendix 2).

Condition of numerical analysis model.  In this paper, a numerical analysis of the planar motion of 
three models, a free falling of a very flexible beam model under gravity (model 0), a flexible pendulum model 
with length L under gravity, as shown in Fig. 3 (model I) and a flexible beam model with length L under zero 
gravity (model II) are performed.

A free falling of very flexible beam model (model 0)27–29:
The beam can rotate with the upper end being pivoted at the origin O of the absolute coordinate system XY  . 

The beam has a length of 1.2 m, a diameter of 0.05 m, a density of 5540 kg/m3 and a modulus of elasticity of 
0.7× 106 Pa. In the initial state, the flexible beam is horizontal and has zero velocity.

A flexible pendulum model (model I): The pendulum can rotate with the upper end being pivoted at the 
origin O of the absolute coordinate system XY  . The pendulum is made of fluorocarbon, and it has a length of 
L m, a diameter of 0.001 m, a density of 1780 kg/m3 and a modulus of elasticity of 1.3× 109 Pa30. In the initial 
state, the flexible pendulum is placed at an angle of 30° with respect to the vertical direction and has zero velocity.

A flexible beam model (model II): The right and left end of the flexible beam are constrained to rotate freely 
at the origin O of the absolute coordinate system XY  and (L, 0) . The beam has a length of L m, a diameter of 
0.001 m, a density of 5540 kg/m3 and a modulus of elasticity of 0.7× 106 Pa. In the initial state, the flexible beam 
is given a deformation of sine curve shape with an amplitude of 0.1 m in a vertical direction and has zero velocity.

In VB-VFE-ANCF, flexible bodies A and B have initial lengths LA0 , and LB0 , respectively, and the length of 
each body changes with internal boundary movement speed α . Numerical calculations were conducted using the 
fourth-order Runge–Kutta method and the force exerted by the environment are neglected in those models. In 
addition, the dimensionless equation of motion derived in the previous chapter is used in models I and II. How-
ever, in model 0, the dimensional equation of motion is used to compare under the same conditions as Refs.27–29.

Figure 5.   Time history of end point coordinate in X direction (left) and enlarged view (right). The 
dimensionless case maintains high accuracy compared to the dimensional case when a body length becomes 
shorter and the frequency becomes higher.
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The effect of the dimensionless approach.  Here, the aforementioned effect of the dimensionless 
approach is shown in Fig.  5. This figure shows the result of the flexible pendulum model (model I) where 
LA0 = LB0 = 0.5 m, α = −0.02 m/s and NA = NB = 10.

The diagrams shown in this figure demonstrate the time history of horizontal displacement of the end point 
of the pendulum when the initial time steps �t are set to be equally, �t = 1.0× 10−5 , and the dimensional and 
dimensionless equations of motion are used. It can be seen that accuracy drops significantly around 19.3 s in the 
dimensional case, whereas that in the dimensionless case is maintained.

In addition, for the second and third terms on the left-hand side of the equation of the motion, Eq. (21), each 
parameter is derived from the following equation.

The apparent inertial force occurs because the representative values of length and time change with respect 
to dimensionless time. The change in the representative values of space and time means that the movement 
speed of the internal boundary position α  = 0 . That is, the inertial forces are generated because of the internal 
boundary movement.

Therefore, in the next section, the relationship between the parameters in the inertial force and the difference 
between the numerical results for ANCF and VB-VFE-ANCF is shown.

Comparison of analysis results obtained using ANCF and VB‑VFE‑ANCF.  In this section, the 
numerical results obtained using ANCF and VB-VFE-ANCF are compared. The effect on the analysis results of 
expressing the movement of the internal boundary position by the change in the length of each body is shown.

First, the comparison of the conventional method, ANCF, and the proposed method, VB-VFE-ANCF using 
free-falling model (model 0) is shown in Fig. 6. This figure shows that the proposed method can accurately 
express the motion of a very flexible beam model as well as conventional method27–29.

Figures 7 and 8 show a comparison of the end point and midpoint displacement and the shape obtained 
using flexible pendulum model (model I), where L = 10.0 m and N = 40 for ANCF and LA0 = LB0 = 5.0 m, 
NA = NB = 20 and internal boundary movement speed α = 0.1, 0.2 m/s for VB-VFE-ANCF. The initial time 
steps �t are set to �t = 1.0× 10−5 in all these cases.

Figures 9 and 10 shows a comparison of the midpoint displacement and the shape obtained using beam 
model (model II), where L = 1.0 m and N = 40 for ANCF and LA0 = LB0 = 0.5 m, NA = NB = 20 and internal 
boundary movement speed α = 0.01, 0.02 m/s for VB-VFE-ANCF. The time step �t is set to �t = 1.0× 10−6 
in all these cases.

As shown, there are slight differences in the results of ANCF and VB-VFE-ANCF. This difference depends 
on the internal boundary movement speed α because of the inertial force generated by the internal boundary 
movement described in the second and third terms on the left-hand side of the equation of motion, Eq. (21).

Evaluation of accuracy and applicability of proposed method.  Here, the usefulness of the proposed 
method is evaluated and the scope of application is examined using an analytical model that moves as a pen-
dulum due to gravity (model I). The difference ε∗ between the numerical results of ANCF and VB-VFE-ANCF, 
expressed by the following equation, is used as an indicator of accuracy.

(24)
α∗
i

�
∗
is

µ∗
s =

1

LR

dLR

dt∗
,α∗

s µ
∗
s =

1

TR

dTR

dt∗

Figure 6.   Comparison of the proposed method and conventional method ANCF using free-falling model 
(model 0) which is widely-used as a flexible beam problem. These results are in good agreement with the results 
shown in Refs. 27–29.
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where XC and YC are the displacements obtained using ANCF, and X and Y  are those obtained using VB-VFE-
ANCF, denoted by Eq. (21). Here, the number of elements and the initial time steps are set to N = 40 for ANCF, 
NA = NB = 20 for VB-VFE-ANCF and �t = 1.0× 10−5 in all cases below.

Figures 11 and 12 show the change of ε∗ in the cases of α∗
s t

∗ is fixed and α∗
s  is varied, or α∗

s  is fixed and α∗
s t

∗ 
is varied respectively. In order to clarify the effect of the inertial force generated by the internal boundary move-
ment on the numerical analysis accuracy, the parameters in the term of the inertial force α∗

s  and α∗
s t

∗ are changed. 
Here, µ∗

s  is determined by α∗
s t

∗.
Figure 11 shows that a larger |α∗

s | , leads to a larger ε∗ because the apparent inertial force expressed in the 
second and third terms on the left-hand side of Eq. (21) increases. In addition, Fig. 12 shows that when |α∗

s | is 
fixed, ε∗ increases as α∗

s t
∗ increases; that is, ε∗ increases as the dimensionless time t∗ increases. Furthermore, 

in Fig. 12, it is shown that ε∗ for α∗
s < 0 is larger than that for α∗

s > 0 in this case. It is thought that this occurs 
because when α∗

s < 0 , the connecting point of bodies A and B approaches the upper end of the pendulum, 
which is constrained to rotate freely, so that vibrations with high frequency appear at the connecting point and 
the constraint force increases.

(25)ε∗ =
√

(X − XC)
2 + (Y − YC)

2

L
× 100

Figure 7.   Comparison of X coordinate values of flexible pendulum obtained using ANCF and VB-VFE-ANCF 
(left), and enlarged view (right). These results are in good agreement. This shows that it is possible to obtain the 
numerical analysis results with the same accuracy as ANCF by using VB-VFE-ANCF.

Figure 8.   Comparison of the flexible pendulum shape obtained using ANCF and VB-VFE-ANCF for 5 s every 
0.5 s.



9

Vol.:(0123456789)

Scientific Reports |         (2023) 13:5302  | https://doi.org/10.1038/s41598-023-32526-3

www.nature.com/scientificreports/

To evaluate the difference ε∗ caused by considering the internal boundary movement under various numerical 
analysis conditions, it is necessary to consider the magnitude of the inertial force with respect to the dominant 
force in the motion. In this flexible pendulum model, the dominant force is dimensionless gravity and the motion 
of each body is determined by the dimensionless gravity g∗ = ρLg/E acting on the entire flexible body. (The 
other cases are shown in Appendix 3). Therefore, the magnitude of the inertial force with respect to the dominant 
force is expressed by σ ∗ , which is derived from the following equation.

Figure 13 indicates that ε∗ and σ ∗ have a linear correlation. Therefore, the accuracy of VB-VFE-ANCF is 
evaluated using σ ∗ . That is, a smaller dimensionless internal boundary movement speed α∗

s  and time t∗ and a 
larger dimensionless gravity g∗ lead to a smaller ε∗ in nondimension. This corresponds to a smaller internal 
boundary movement speed αs and αst with respect to the total length of the flexible body L and body s length 
Ls(t) , leading to a smaller ε∗ , in dimension.

From the above, the difference ε∗ between the numerical results obtained using ANCF and VB-VFE-ANCF 
can be predicted by σ ∗ . In this case, if σ ∗ < 0.38 , ε∗ is within 5%, confirming that the proposed method is useful.

(26)σ ∗ =
α∗2
s t∗
√
g∗

=
αs√
Lg

αst

Ls(t)

Figure 9.   Comparison of Y coordinate values of flexible beam obtained using ANCF and VB-VFE-ANCF (left), 
and enlarged view (right). These results show that VB-VFE-ANCF is effective for the very flexible beam model 
with large deformation.

Figure 10.   Comparison of the flexible beam shape obtained using ANCF and VB-VFE-ANCF for 1 s every 
0.1 s.
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Figure 11.   Relationship between α∗
s  and ε∗.

Figure 12.   Relationship between α∗
s t

∗ and ε∗.

Figure 13.   Relationship between σ ∗ and ε∗.
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Conclusion
This study proposed a numerical method named VB-VFE-ANCF for flexible body motion that considers inter-
nal boundary movement. This method virtually divides a flexible body into two bodies to avoid the problems 
associated with internal boundary movement that occur with conventional methods. The analysis show that the 
accuracy and efficiency of calculations are improved. Because there is no need to recalculate the equation of 
motion for each element and also approximately calculate that for an element that spans two different environ-
ments, as required by conventional methods.

In addition, the proposed method is dimensionless, which further increase the analysis accuracy and effi-
ciency. By using the time-varying length of each body as a representative length, it is possible to convert the 
target system into a dimensionless system in which the dimensionless length of the body is constant, and per-
form numerical analysis while maintaining accuracy regardless of the dimensional length change of each body.

Introducing the dimensionless equation of motion, the influence of the inertial force generated by the internal 
boundary movement, described as a change in the length of each body in the proposed method, was clarified. 
The validity of this method was shown by comparing its numerical results with those obtained using ANCF, 
which does not consider internal boundary movement. A function for evaluating the application range of the 
proposed method was derived.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.

Received: 19 January 2023; Accepted: 29 March 2023

References
	 1.	 Baddour, R. E. & Raman-Nair, W. Marine tether dynamics: Retrieval and deployment from a heaving platform. Ocean Eng. 29, 

1633–1661 (2002).
	 2.	 Cartmell, M. P. & McKenzie, D. J. A review of space tether research. Prog. Aerosp. Sci. 44(1), 1–21. https://​doi.​org/​10.​1016/j.​paero​

sci.​2007.​08.​002 (2008).
	 3.	 Chen, Y., Huang, R., He, L., Ren, X. & Zheng, B. Dynamical modeling and control of space tethers: A review of space tether research. 

Nonlinear Dyn. 77, 1077–1099 (2014).
	 4.	 Fotland, G. et al. Trade study to select best alternative for cable and pulley simulation for cranes on offshore vessels. Syst. Eng. 

23(2), 177–188. https://​doi.​org/​10.​1002/​sys.​21503 (2020).
	 5.	 Huang, P. et al. A review of space tether in new applications. Nonlinear Dyn. 94, 1–19. https://​doi.​org/​10.​1007/​s11071-​018-​4389-5 

(2018).
	 6.	 Kumar, K. D. Review of dynamics and control of nonelectrodynamic tethered satellite systems. J. Spacecr. Rockets 43(4), 705–720. 

https://​doi.​org/​10.​2514/1.​5479 (2006).
	 7.	 Takehara, S., Terumichi, Y. & Sogabe, K. Motion of a submerged tether subject to large deformations and displacements. J. Syst. 

Des. Dyn. 5(2), 296–305 (2011).
	 8.	 Trąbka, A. Influence of flexibilities of cranes structural components on load trajectory. J. Mech. Sci. Technol. 30(1), 1–14 (2016).
	 9.	 Kourani, A. & Daher, N. Three-dimensional modeling of a tethered UAV-buoy system with relative-positioning and directional 

surge velocity control. Nonlinear Dyn. 111, 1245–1268 (2023).
	10.	 Viegas, C., Chehreh, B., Andrade, J. & Lourenco, J. Tethered UAV with combined multi-rotor and water jet propulsion for forest 

fire fighting. J. Intell. Robot. Syst. 104, 21. https://​doi.​org/​10.​1007/​s10846-​021-​01532-w (2022).
	11.	 Wu, J., Xu, Y., Tao, L., Yu, M. & Dou, Y. An integrated hydrodynamics and control model of a tethered underwater robot. China 

Ocean Eng. 32, 557–569 (2018).
	12.	 Escalona, J. L., Hussein, A. H. & Shabana, A. A. Application of the absolute nodal coordinate formulation to multibody system 

dynamics. J. Sound Vib. 214, 833–851 (1998).
	13.	 Mikkola, A. M. & Shabana, A. A. A non-incremental finite element procedure for the analysis of large deformation of plates and 

shells in mechanical system applications. Multibody Syst. Dyn. 9, 283–309 (2003).
	14.	 Shabana, A. A. Computational Continuum Mechanics 3rd edn. (Cambridge University Press, 2018).
	15.	 Shabana, A. A. Computer implementation of the absolute nodal coordinate formulation for flexible multibody dynamics. Nonlinear 

Dyn. 16, 293–306 (1998).
	16.	 Shabana, A. A. Definition of the slope and absolute nodal coordinate formulation. Multibody Syst. Dyn. 1, 339–348 (1997).
	17.	 Shabana, A. A. Definition of ANCF finite elements. J. Comput. Nonlinear Dyn. 10(5), 054506. https://​doi.​org/​10.​1115/1.​40303​69 

(2015).
	18.	 Ding, Z. & Ouyang, B. A variable-length rational finite element based on the absolute nodal coordinate formulation. Machines 10, 

174 (2022).
	19.	 Fotland, G. & Haugen, B. Numerical integration algorithms and constraint formulations for an ALE-ANCF cable element. Mech. 

Mach. Theory. 170, 104659. https://​doi.​org/​10.​1016/j.​mechm​achth​eory.​2021.​104659 (2022).
	20.	 Gerstmayr, J., Sugiyama, H. & Mikkola, A. Review on the absolute nodal coordinate formulation for large deformation analysis of 

multibody systems. J. Comput. Nonlinear Dyn. 8(3), 031016. https://​doi.​org/​10.​1115/1.​40234​87 (2013).
	21.	 Liu, D., Ai, S., Sun, L. & Soares, C. G. ALE-ANCF modeling of the lowering process of a J-lay pipeline coupled with dynamic 

positioning. Ocean Eng. 269, 113552 (2023).
	22.	 Otsuka, K., Makihara, K. & Sugiyama, H. Recent advances in the absolute nodal coordinate formulation: Literature review from 

2012 to 2020. J. Comput. Nonlinear Dyn. 17(8), 080803. https://​doi.​org/​10.​1115/1.​40541​13 (2022).
	23.	 Ogawara, R. & Terumichi, Y. Dimensionless numerical analysis method for flexible body motion with large deformation, displace-

ment and time-varying length. Trans. JSME 87, 900. https://​doi.​org/​10.​1299/​trans​jsme.​21-​00071 (2021).
	24.	 Kawaguti, K., Terumichi, Y., Shoichiro, T., Kaczmarczyk, S. & Sogabe, K. The study of the tether motion with time-varying length 

using the absolute nodal coordinate formulation with multiple nonlinear time scales. J. Syst. Des. Dyn. https://​doi.​org/​10.​1299/​
jsdd.1.​491 (2007).

	25.	 Fujiwara, M., Takehara, S. & Terumichi, Y. Numerical approach to modeling flexible body motion with large deformation, displace-
ment and time-varying length. Mech. Eng. J. https://​doi.​org/​10.​1299/​mej.​17-​00030 (2017).

	26.	 Takahashi, Y. & Shimizu, N. Study on characteristics of the numerical integration of dynamics analysis for the beam element 
formulated by ANCF. In 5th Asian Conference on Multibody Dynamics. https://​doi.​org/​10.​1299/​jsmea​cmd.​2010.5_​58855-1 (2010).

https://doi.org/10.1016/j.paerosci.2007.08.002
https://doi.org/10.1016/j.paerosci.2007.08.002
https://doi.org/10.1002/sys.21503
https://doi.org/10.1007/s11071-018-4389-5
https://doi.org/10.2514/1.5479
https://doi.org/10.1007/s10846-021-01532-w
https://doi.org/10.1115/1.4030369
https://doi.org/10.1016/j.mechmachtheory.2021.104659
https://doi.org/10.1115/1.4023487
https://doi.org/10.1115/1.4054113
https://doi.org/10.1299/transjsme.21-00071
https://doi.org/10.1299/jsdd.1.491
https://doi.org/10.1299/jsdd.1.491
https://doi.org/10.1299/mej.17-00030
https://doi.org/10.1299/jsmeacmd.2010.5_58855-1


12

Vol:.(1234567890)

Scientific Reports |         (2023) 13:5302  | https://doi.org/10.1038/s41598-023-32526-3

www.nature.com/scientificreports/

	27.	 Berzeri, M. & Shabana, A. A. Development of simple models for the elastic forces in the absolute nodal co-ordinate formulation. 
J. Sound Vib. 235(4), 539–565 (2000).

	28.	 Zemljarič, B. & Ažbe, V. Analytically derived matrix end-form elastic-forces equations for a low-order cable element using the 
absolute nodal coordinate formulation. Nonlinear Dyn. 446, 263–272 (2019).

	29.	 Sheng, F. et al. Theory and model implementation for analyzing line structures subject to dynamic motions of large deformation 
and elongation using the absolute nodal coordinate formulation (ANCF) approach. Nonlinear Dyn. 101(1), 333–359 (2020).

	30.	 MatWeb, LLC. Overview of materials for fluorocarbon ETFE/ECTFE, molded/extruded. MatWeb: Online Materials Information 
Resource. https://​www.​matweb.​com/​index.​aspx (2023).

Author contributions
R.O. wrote the main manuscript text and prepared all figures and tables. S.K. and Y.T. supervised the conduct of 
this study. All authors reviewed and revised the manuscript draft and approved the final version for submission.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​023-​32526-3.

Correspondence and requests for materials should be addressed to R.O.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

https://www.matweb.com/index.aspx
https://doi.org/10.1038/s41598-023-32526-3
https://doi.org/10.1038/s41598-023-32526-3
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Numerical approach for flexible body with internal boundary movement
	Modeling and the model formulation
	Analytical model. 
	Modeling and formulation of beam elements by VFE-ANCF. 
	Proposed method for flexible body motion with variable boundary. 

	Numerical results and discussion
	Condition of numerical analysis model. 
	The effect of the dimensionless approach. 
	Comparison of analysis results obtained using ANCF and VB-VFE-ANCF. 
	Evaluation of accuracy and applicability of proposed method. 

	Conclusion
	References


