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Abstract: The use of titanium and titanium-based alloys in the human body due to their resistance to
corrosion, implant ology and dentistry has led to significant progress in promoting new technologies.
Regarding their excellent mechanical, physical and biological performance, new titanium alloys
with non-toxic elements and long-term performance in the human body are described today. The
main compositions of Ti-based alloys and properties comparable to existing classical alloys (C.P. TI,
Ti-6Al-4V, Co-Cr-Mo, etc.) are used for medical applications. The addition of non-toxic elements
such as Mo, Cu, Si, Zr and Mn also provides benefits, such as reducing the modulus of elasticity,
increasing corrosion resistance and improving biocompatibility. In the present study, when choosing
Ti-9Mo alloy, aluminum and copper (Cu) elements were added to it. These two alloys were chosen
because one element is considered a favorable element for the body (copper) and the other element is
harmful to the body (aluminum). By adding the copper alloy element to the Ti-9Mo alloy, the elastic
modulus decreases to a minimum value of 97 GPa, and the aluminum alloy element increases the
elastic modulus up to 118 GPa. Due to their similar properties, Ti-Mo-Cu alloys are found to be a
good optional alloy to use.

Keywords: Ti–xCu–xMo; Ti-9Mo; antibacterial titanium alloy; simulation; metallic biomaterial

1. Introduction

Biocompatible alloys are widely used in various biomedical applications due to their
excellent mechanical properties and biocompatibility after implantation. Among different
biocompatible alloys, titanium-based alloys have attracted significant attention in various
uses of biocompatible parts due to their high strength-to-density ratio, corrosion resistance,
and biocompatibility after implantation [1–3]. Among various titanium-based alloys, Ti-
6Al-4V alloy is considered one of the most common biocompatible alloys due to its lower
elastic modulus than stainless steel and cobalt–chromium alloys [4–6]. However, the
presence of toxic elements such as aluminum and vanadium in the human body can lead
to various health issues over time [7–11].

Reduced elastic modulus is a critical mechanical property for metallic biomaterials
used in orthopedic applications, as it enables the implant to better match the mechanical
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properties of the surrounding bone tissue. When an implant has a higher elastic modulus
than the surrounding bone tissue, it can result in stress shielding, which occurs when
the implant bears the majority of the load instead of the bone [12]. This can lead to
bone resorption and implant loosening, reducing the lifespan of the implant. Therefore,
developing biocompatible Ti-Mo alloys with a reduced elastic modulus is a critical goal in
the field of orthopedic biomaterials.

In addition, the use of software simulation has become increasingly popular in the
field of materials science, as it provides a cost-effective and efficient way of predicting
the behavior of materials before they are manufactured. In particular, the Finite Element
Method (FEM) has been widely used to simulate the mechanical properties of materials
and structures, including biomaterials [13,14]. FEM is a numerical method for solving
partial differential equations that describe the behavior of a physical system. It subdivides
the system into smaller and simpler parts, called finite elements, which are connected by
nodes. The behavior of each element is described by a set of equations, and the solution
of the entire system is obtained by combining the solutions of all elements. FEM has been
successfully applied to simulate the behavior of various biomaterials, including dental
implants, hip prostheses, and spinal implants [15–17]. To overcome the toxicity issues
associated with conventional biocompatible alloys, various alloys have been developed in
recent years. For example, titanium–manganese or titanium–molybdenum alloy groups
have been developed by adding beta-phase stabilizers such as manganese and molybdenum
to titanium alloys [18,19].

The increase in the beta phase in the presence of these elements leads to a decrease
in the elastic modulus up to 100 GPa, making these alloys suitable for biomedical applica-
tions [20,21]. Furthermore, studies have been conducted to develop titanium, molybdenum,
and copper alloys that can be used as medical alloys [22,23]. Development of new titanium
alloys: Researchers are working on developing new titanium alloys with improved bio-
compatibility and mechanical properties. One such alloy is Ti-29Nb-13Ta-4.6Zr, which has
shown promise in orthopedic applications [24,25]. Use of additive manufacturing: Additive
manufacturing techniques, including 3D printing, are being used to create complex shapes
and designs for biocompatible implants. This technology allows for precise control over
the material’s microstructure and mechanical properties, leading to better performance
and compatibility with the human body [26]. Advances in surface modification techniques:
Surface modification techniques such as plasma spraying and electrochemical deposition
are being used to improve the biocompatibility of existing alloys. These techniques can
create a thin coating on the surface of the implant, which can enhance its osseointegration
and corrosion resistance [27–29]. Exploration of new alloy elements: Researchers are in-
vestigating the use of new alloy elements such as zirconium, tantalum, and niobium in
biocompatible alloys. These elements have shown potential in improving the mechanical
and biological properties of the alloys [30,31]. Computational modeling and simulation:
Advances in computational modeling and simulation are enabling researchers to predict
the behavior of biocompatible alloys under different conditions. This technology can help
optimize the design of biocompatible implants and improve their performance [32–36]. The
effects of adding vanadium and nitrogen to Ti-15Mo alloy for biomedical applications were
investigated by Kirmanidou et al. [37]. The results showed that the addition of vanadium
and nitrogen led to the formation of a new beta phase in the microstructure, resulting
in improved mechanical properties such as hardness and compressive strength. Li et al.
explored the microstructure and mechanical properties of Ti-Mo-Nb alloys for biomedical
applications [38]. Copper is known to have antimicrobial properties, and it has been used
in various biomedical applications, such as dental implants and cardiovascular stents, with
promising results. However, copper has also been shown to have potential biocompatibility
concerns when used in the composition of metallic biomaterials. The intended duration of
the implantation, the specific application, and the amount and form of copper can all affect
the safety of using copper in the composition of metallic biomaterials [39].
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In this study, Ti-9Mo alloy is selected as a base alloy, and different percentages of
aluminum and copper are added to this composition using software simulation. The copper
alloy element is considered in the composition because copper has favorable properties for
the human body. Moreover, to investigate the effect of aluminum on the elastic modulus,
this element is also considered. The main objective of this study is to investigate the
behavior and effect of adding aluminum and copper to biocompatible Ti-Mo alloy using
software simulation.

2. Materials and Methods

The present investigation involved the addition of copper and aluminum elements to
the alloy composition using JMatPro 7.0 developed by the British Thermotech company,
Louth, UK, a software application for engineering materials analysis and design. The choice
of copper was based on its favorable biocompatibility [40], while titanium was chosen due
to its known biocompatible properties. On the other hand, aluminum was not used as
it is associated with various biological problems. The software environment enabled the
definition of the compounds listed in Table 1 and extraction of the elastic modulus, density,
strength, and hardness of the designed alloys in the form of comparative charts.

Table 1. Chemical compounds analyzed in the software environment.

Composition
(wt.) Ti Mo Cu Al V

Ti-2Cu-9Mo Base 9 2 0 0
Ti-6Cu-9Mo Base 9 6 0 0

Ti-10Cu-9Mo Base 9 10 0 0
Ti-2Al-9Mo Base 9 0 2 0
Ti-6Al-9Mo Base 9 0 6 0
Ti-10Al-9Mo Base 9 0 10 0

Ti-6Al-4V Base 0 0 6 4

The simulation of density and elastic modulus was carried out with a Fraction Liquid
coefficient of 0.01% and at temperatures ranging from 0 ◦C to 1800 ◦C. Mechanical proper-
ties analysis was performed after subjecting all samples to heat treatment at 720 ◦C and
considering a variable grain size range of 1 µm to 20 µm.

3. Results and Discussion
3.1. Elastic Modulus

In Figure 1, the changes in elastic modulus with increasing temperature and rising
copper (Cu) percentage are illustrated. The graph clearly shows that as the weight percent-
age of copper in the chemical composition of Ti-9Mo alloy increases, the value of the elastic
modulus decreases. However, even with this decrease, the elastic modulus of Ti-10Cu-9Mo
alloy (97 GPa) is still much higher than the model provided by Shuanglei for human bone
(15–25 GPa) [41]. Additionally, Ti-10Cu-9Mo alloy has better elastic modulus conditions
than the Ti-6Al-4V alloy (117 GPa). The reason why the elastic modulus decreases as the
weight percentage of copper increases in the Ti-9Mo alloy is that copper atoms are larger
than both titanium and molybdenum atoms. This size difference causes distortions in the
crystal lattice of the alloy, making it easier for the metal to deform under stress, and result-
ing in a lower elastic modulus. In contrast, the Ti-6Al-4V alloy has a higher elastic modulus
because it contains a higher percentage of the metal vanadium, which is a relatively small
atom that does not cause significant distortions in the crystal lattice of the alloy. Therefore,
even though Ti-10Cu-9Mo alloy has a lower elastic modulus than Ti-6Al-4V alloy, it still has
better elastic modulus conditions for certain applications where a lower elastic modulus is
desired, such as for bone implants [42].
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Figure 1. Comparison of different alloys including (a) Ti-6Al-4V, (b) Ti-2Cu-9Mo, (c) Ti-6Cu-9Mo and
(d) Ti-10Cu-9Mo.

The present study investigates the comparative results of Ti-6Al-4V alloy with Ti-xAl-
9Mo alloys, as depicted in Figure 2. The inclusion of aluminum in the chemical composition
of Ti-9Mo alloy at various weight percentages has been observed to significantly enhance
the elastic modulus. Notably, the elastic modulus increases up to 118 GPa, which is nearly
equivalent to that of Ti-6Al-4V alloy. However, it should be noted that the detrimental
effects of aluminum on Alzheimer’s [43] and the adverse effects of a high elastic modulus
persist, despite the elimination of the negative impact of vanadium in Ti-xAl-9Mo alloys.

3.2. Comparison of Density Changes

The findings presented in Figure 3 indicate a comparison of various states of Ti-xCu-
9Mo alloy with Ti-6Al-4V alloy. In general, the density of the alloy increases with the rise
in the weight percentage of copper. For instance, with the addition of 10 weight percent of
copper to the chemical composition, the density of the alloy is approximately 6 g per cubic
centimeter. However, the increased density of the alloy may not be appropriate for certain
medical purposes, such as hip joints, as the weight of the piece increases and may lead to
patient discomfort. Furthermore, Figure 4 demonstrates a comparison of different states of
Ti-xAl-9Mo-alloy with Ti-9Mo alloy. The density of the alloy did not significantly change
with the addition of various weight percentages of aluminum. Notably, the density of all
alloys containing aluminum is lower than that of alloys containing copper (Cu).

3.3. Changes in Hardness and Strength

In Figure 5, a comparison of hardness, yield strength, and tensile strength of all
examined samples concerning grain size changes is presented. The Ti-9Mo sample had a
reported maximum tensile strength of 830 MPa, which increased with the addition of both
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copper and aluminum alloy elements. The analytical calculations of the software showed
that the maximum available strength after adding 2% by weight of copper was recorded
as 1220 MPa. Similarly, the maximum available strength after adding 10% by weight of
aluminum was recorded as 1310 MPa.
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Figure 6 illustrates a summary comparison of elastic modulus values. As depicted in
the figure, the lowest elastic modulus among the investigated alloys belongs to Ti-10Cu-
9Mo alloy, with a value of 97 GPa, which is approximately 20 GPa less than that of Ti-6Al-4V
alloy. This reduction in the elastic modulus can potentially alleviate the patient’s pain in
the long term [44]. In metal alloys, Young’s modulus is directly related to the equilibrium
interatomic distance and the balance interatomic distance to the lattice parameter. The
addition of certain metal elements, such as manganese, can decrease the inter-atomic
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distance by reducing the lattice parameter. Consequently, Young’s modulus increases with
the decrease in the inter-atomic distance [45]. In this study, an increase in aluminum content
led to a significant rise in the elastic modulus, whereas copper caused a decrease in the
elastic modulus [46]. However, such a decrease was not observed in the current research.
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The data presented in Figure 7 provide a comparison of the density values of the
investigated alloys at ambient temperature (25 ◦C). As evident from the diagram, the
density of the alloy increases with the increase in the weight percentage of copper (Cu), and
adding up to ten weight percent of copper increases the density of the alloy to approximately
6 g per cubic centimeter. This value is 1.6 g per cubic centimeter more than that of the
Ti-6Al-4V alloy. It is worth noting that according to Equation (1), which relates density
to mass and volume, the mass number of copper (Cu) is approximately 2.3 times that of
aluminum. Therefore, the density of the alloy increases significantly after the addition of
copper (Cu).

ρ =
n·M

Vunit.cell Na
(1)

In this equation, n is the number of atoms belonging (attached (to the unit cell, V is the
volume of the unit cell, M is the atomic weight of the metal, and Na is Avogadro’s number.

Figure 8 presents a comparison of the tensile strength and hardness results at ambient
temperature among the examined alloys. The simulation results revealed the presence
of intermetallic compounds in the alloys, which can be considered as one of the reasons
for the increase in strength. By increasing the weight percentage of aluminum to ten
weight percent, the presence of Ti-3Al-9Mo compound was observed in the software
analysis, which can resist crack movement and increase strength. This observation was also
confirmed in copper (Cu) alloys. The percentage of phases formed at ambient temperature
is a significant factor in determining the difference in strength. Figure 9a illustrates that
the presence of Ti-3Al-9Mo intermetallic compound constitutes approximately 60% of the
alloy, leading to an increase in strength, as well as resistance to crack growth, propagation,
and dislocation movement. Conversely, Figure 9b reports that the amount of intermetallic
compound Ti-3Cu-Mo is less than ten percent by weight, resulting in a disparity in strength
between the two alloy compounds. In Figure 9b, the presence of Ti-2Cu-9Mo compound
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was established, which is also a strengthening factor. Previous studies have mentioned the
Ti-2Cu-9Mo phase, which can enhance the antibacterial ability of the alloy [47–50].
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4. Conclusions

In this study, a simulation-based investigation of the influence of aluminum and copper
on the mechanical properties of biocompatible Ti-Mo alloys. The results showed that the
addition of aluminum and copper can significantly improve the strength and hardness of Ti-
Mo alloys while reducing their elastic modulus. The findings of our study have important
implications for the development and production of metallic biomaterials for orthopedic
and biomedical applications. By understanding the effects of different compositions on
the mechanical properties of biocompatible Ti-Mo alloys, implants and other biomedical
devices can improved in terms of design and performance. However, it is important to
note that this study has limitations and there are areas that require future research. This
simulation was conducted under specific testing conditions, and experimental validation
is needed to confirm our results. Additionally, further investigation is needed to explore
the effects of different compositions, processing parameters, and testing conditions on
the mechanical properties of biocompatible Ti-Mo alloys. The present study utilized a
software environment for alloy design and simulation to improve the properties of Ti-xMo
alloys, which are commonly used for biocompatible parts but suffer from low strength and
hardness. The results can be concluded as follows:

1. The addition of copper to Ti-9Mo alloy leads to a decrease in elastic modulus with
a minimum value of 97 GPa, while the addition of aluminum increases the modulus to
118 GPa.

2. The inclusion of both copper and aluminum alloy elements to Ti-9Mo alloy enhances
the strength and hardness in all states, with a significant increase in strength observed in
aluminum alloys due to formed phases.

3. Alloys with copper have higher density than those with aluminum due to the
atomic characteristics of these elements. Copper has a larger atomic mass, making each
copper atom heavier. When added to an alloy, this increases the total density. Additionally,
copper atoms are more densely packed than aluminum in a crystal lattice structure, further
contributing to the higher density of copper-containing alloys.

4. Due to the risk of Alzheimer’s disease associated with aluminum alloys and the
increase in elastic modulus observed in all weight percentages examined, copper-containing
alloy compositions are considered useful due to their favorable strength and hardness
parameters, along with a decreased elastic modulus by 20 GPa compared to Ti-6Al-4V
alloy. Additionally, copper is an essential element for the human body with no human
health risks.

5. Ti-2Cu-9Mo and Ti-6Cu-9Mo alloys exhibit the best elastic modulus, strength, and
hardness among the examined alloys.
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15. Merİç, G.; Erkmen, E.; Kurt, A.; Eser, A.; Özden, A.U. Biomechanical effects of two different collar implant structures on stress
distribution under cantilever fixed partial dentures. Acta Odontol. Scand. 2011, 69, 374–384. [CrossRef]

16. Kligman, S.; Ren, Z.; Chung, C.-H.; Perillo, M.A.; Chang, Y.-C.; Koo, H.; Zheng, Z.; Li, C. The Impact of Dental Implant Surface
Modifications on Osseointegration and Biofilm Formation. J. Clin. Med. 2021, 10, 1641. [CrossRef] [PubMed]

17. Fiorillo, L.; Meto, A.; Cicciù, M. Bioengineering Applied to Oral Implantology, a New Protocol: “Digital Guided Surgery”.
Prosthesis 2023, 5, 234–250. [CrossRef]

18. Lourenço, M.L.; Cardoso, G.C.; Sousa, K.D.S.J.; Donato, T.A.G.; Pontes, F.M.L.; Grandini, C.R. Development of novel Ti-Mo-Mn
alloys for biomedical applications. Sci. Rep. 2020, 10, 6298. [CrossRef]

19. Senopati, G.; Rashid, R.A.R.; Kartika, I.; Palanisamy, S. Recent Development of Low-Cost β-Ti Alloys for Biomedical Applications:
A Review. Metals 2023, 13, 194. [CrossRef]

20. Salvador, C.A.; Bó, M.R.D.; Costa, F.H.; Taipina, M.O.; Lopes, E.S.; Caram, R. Solute lean Ti-Nb-Fe alloys: An exploratory study. J.
Mech. Behav. Biomed. Mater. 2017, 65, 761–769. [CrossRef]

21. Nunes, A.R.V.; Borborema, S.; Araújo, L.S.; de Almeida, L.H.; Kaufman, M.J. Production of a Novel Biomedical β-Type Titanium
Alloy Ti-23.6Nb-5.1Mo-6.7Zr with Low Young’s Modulus. Metals 2022, 12, 1588. [CrossRef]

https://doi.org/10.2320/matertrans.L-MRA2008828
https://doi.org/10.1016/j.jmbbm.2012.11.014
https://www.ncbi.nlm.nih.gov/pubmed/23507261
https://doi.org/10.37358/RC.19.4.7114
https://doi.org/10.5772/55860
https://doi.org/10.1007/s42242-021-00170-3
https://www.ncbi.nlm.nih.gov/pubmed/34721937
https://doi.org/10.3390/met13010082
https://doi.org/10.2478/intox-2014-0009
https://doi.org/10.1007/978-3-7643-8340-4_6
https://doi.org/10.1016/j.heliyon.2020.e04691
https://doi.org/10.3389/fphar.2021.643972
https://doi.org/10.1016/j.rsurfi.2022.100083
https://doi.org/10.1016/j.jmbbm.2018.01.017
https://doi.org/10.7150/ijbs.7.112
https://www.ncbi.nlm.nih.gov/pubmed/21278921
https://doi.org/10.1016/j.compstruct.2021.113569
https://doi.org/10.3109/00016357.2011.572287
https://doi.org/10.3390/jcm10081641
https://www.ncbi.nlm.nih.gov/pubmed/33921531
https://doi.org/10.3390/prosthesis5010018
https://doi.org/10.1038/s41598-020-62865-4
https://doi.org/10.3390/met13020194
https://doi.org/10.1016/j.jmbbm.2016.09.024
https://doi.org/10.3390/met12101588


Micromachines 2023, 14, 1081 12 of 13

22. Tshephe, T.S.; Akinwamide, S.O.; Olevsky, E.; Olubambi, P.A. Additive manufacturing of titanium-based alloys- A review of
methods, properties, challenges, and prospects. Heliyon 2022, 8, e09041. [CrossRef] [PubMed]

23. Zhang, X.; Liu, S.; Liu, Y.; Guo, H.; Shi, W. Titanium Alloy Fabricated by Additive Manufacturing for Medical Applications:
Obtaining, Characterization and Application—Review. Metals 2023, 13, 462. [CrossRef]

24. Li, Y.; Yang, C.; Zhao, H.; Qu, S.; Li, X.; Li, Y. New Developments of Ti-Based Alloys for Biomedical Applications. Materials 2014,
7, 1709–1800. [CrossRef]

25. Nnamchi, P.S.; Obayi, C.; Todd, I.; Rainforth, M. Mechanical and electrochemical characterisation of new Ti–Mo–Nb–Zr alloys for
biomedical applications. J. Mech. Behav. Biomed. Mater. 2016, 60, 68–77. [CrossRef]

26. Rouf, S.; Malik, A.; Singh, N.; Raina, A.; Naveed, N.; Siddiqui, I.H.; Haq, M.I.U. Additive manufacturing technologies: Industrial
and medical applications. Sustain. Oper. Comput. 2022, 3, 258–274. [CrossRef]

27. Yu, B.; Leung, K.M.; Guo, Q.; Lau, W.M.; Yang, J. Synthesis of Ag–TiO2 composite nano thin film for antimicrobial application.
Nanotechnology 2011, 22, 115603. [CrossRef] [PubMed]

28. Qiu, Z.-Y.; Chen, C.; Wang, X.-M.; Lee, I.-S. Advances in the surface modification techniques of bone-related implants for last 10
years. Regen. Biomater. 2014, 1, 67–79. [CrossRef]

29. Thakur, A.; Kumar, A.; Kaya, S.; Marzouki, R.; Zhang, F.; Guo, L. Recent Advancements in Surface Modification, Characterization
and Functionalization for Enhancing the Biocompatibility and Corrosion Resistance of Biomedical Implants. Coatings 2022,
12, 1459. [CrossRef]

30. Li, H.-Z.; Xu, J. MRI compatible Nb–Ta–Zr alloys used for vascular stents: Optimization for mechanical properties. J. Mech. Behav.
Biomed. Mater. 2014, 32, 166–176. [CrossRef]

31. Ji, P.; Chen, B.; Liu, S.; Li, B.; Xia, C.; Zhang, X.; Ma, M.; Liu, R. Controlling the mechanical properties and corrosion behavior of
biomedical TiZrNb alloys by combining recrystallization and spinodal decomposition. J. Mater. Sci. Technol. 2022, 110, 227–238.
[CrossRef]

32. Gartzke, A.-K.; Julmi, S.; Klose, C.; Waselau, A.-C.; Meyer-Lindenberg, A.; Maier, H.J.; Besdo, S.; Wriggers, P. A simulation model
for the degradation of magnesium-based bone implants. J. Mech. Behav. Biomed. Mater. 2020, 101, 103411. [CrossRef] [PubMed]
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