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Abstract 
In the production of plastic components using injection moulding, concurrently maintaining a 
stable part weight and a high production rate remains a challenge. As a statistical tool, the 
response surface methodology was used in the present study to examine the effects of process 
parameters on part weight and production rate as responses of the production process. This was 
done in a bid to optimise the process parameters and obtain weight stability at high rates of 
production. The study took advantage of a validated numerical simulation using MoldFlow 
Insight to generate the input data required in the statistical analysis (response surface method). 
The influence of process parameters such as the mould temperature, the melt temperature, the 
packing time, and the packing pressure was studied using an analysis of variance. Results 
indicated that the packing time has an antagonistic impact on both responses, where an increase 
in packing time resulted in a high part stability, but a low production rate. The analysis of 
variance revealed that the part weight was more greatly affected by the packing time and 
packing pressure, but less so by the melt temperature and mould temperature. Real-scale 
injection testing using the optimal parameters producing the best trade-off between the part 
weight and production rate was performed to validate the efficiency of the optimisation 
procedure proposed in this work. The part weight and production rate predicted by the response 
surface methodology were in good agreement with the experimental observations, with relative 
errors less than 2.5%. 
  
Keywords: Plastic injection moulding, Numerical simulation, Moldflow, Analysis of variance, 
Part weight, Production rate.  
 
1- Introduction 
Nowadays, competition in the fabrication of plastic products requires to produce high quality 
components in the shortest processing lead time. Injection moulding is considered as an 
efficient mass production technology, with the capacity to produce complex shape parts at high 
production rates with minimal resulting waste material. However, high production rates are 
generally detrimental to the quality of the product, which is dependent on several factors, 
including part geometry, material properties, mould characteristics, and process parameters 
(Meiabadi et al., 2013). Several research groups have developed and employed different 
approaches to meet geometrical and dimensional requirements, while minimizing defects in 
plastic products. 
Computer-aided engineering (CAE) has been successfully used to numerically simulate the 
injection moulding stage while avoiding defects such as sinks, voids, dead zones, warpage, 
cracks, and weldlines (Meiabadi et al., 2017) . The analysis of variance (ANOVA) has also 



 
  
  

been used to quantify the weight of each process parameter on the quality of injected parts 
(Marwah et al., 2017). Recently, hybrid metaheuristic/numerical methods consisting of a 
combination of evolutionary algorithms, neural networks, and numerical simulation were used 
to optimise the process parameters in order to produce high quality injected parts with reduced 
defects such as shrinkage, warpage, and weldline. Spinal (2006) and Changyu et al. (2007) used 
a hybrid method integrating numerical simulation, neural networks, and evolutionary 
algorithms to reduce volumetric shrinkage. Chen et al. (2014, 2106) utilized a systematic 
optimisation method consisting of design of experiment methods, back propagation a neural 
network, a genetic algorithm, and a combination of particle swarm optimisation and genetic 
algorithms for multi-objective optimisation of warpage and part length. Chen et al. (2008) also 
employed another hybrid method combining the Taguchi method, the Davidon-Fletcher-Powell 
method, and back-propagation neural networks to optimise the quality of a product while weight 
was selected as the only product quality metric. Kurtaran et al. (2005) specifically proposed an 
optimisation method exploiting Moldflow, an artificial neural network, and a genetic algorithm 
to reduce warpage of a plastic bus ceiling lamp. In this study, the influence of mould 
temperature, melt temperature, packing pressure, pressure time, and cooling time on component 
warpage was simulated using Moldflow and validated by CMM measurements. These data were 
then implemented into a neural network which was combined with a genetic algorithm to define 
the optimum setting producing minimum warpage. Ozcelik et al. (2006) proposed a similar 
approach to minimize warpage in a thin shell plastic part. The impact of mould temperature, 
melt temperature, packing pressure, packing time, cooling time, runner type, and gate location 
on warpage was quantified using the Moldflow software, and the values were used as input 
factors in the Taguchi method for highlighting the critical process parameters. In this approach, 
a warpage model was built using a neural network (i.e., it was trained by the warpage data 
predicted via Moldflow simulations) as a prediction tool, and combined with a genetic 
algorithm to define the best process setting reducing the component warpage. The Design-
Expert software was also successfully used by Rajalingam et al. (2011) to optimise injection 
moulding parameters, such as mould temperature, injection pressure, and screw rotation speed, 
to improve the dimensional accuracy of a plastic part. Martowibowo et al. (2017) focused on 
the initial setting of the injection press to define the optimised parameters producing the 
minimum cycle time, using a hybrid approach combining numerical simulation (Moldflow) 
with a genetic algorithm. Chen et al. (2013) combined numerical simulation and statistical 
approaches to minimize the warpage and shrinkage occurring during solidification of the part 
as well as volumetric shrinkage occurring at the ejection stage of the process, using the 
MoldFlow software and Taguchi method. A similar finite element model (using Moldflow) was 
used by Faiz et al. (2017) to simulate the plastic injection process and optimise the warpage 
value. Using the Taguchi method, Mehat and Kamaruddin (2011) demonstrated that injection 
time and melt temperature were the key parameters influencing the mechanical properties of 
injected products. Tutar and Karakus (2010) proposed an advanced numerical scheme 
combining a volume of fluid method with the finite volume method for the simulation of mould 
filling, using a single-cavity and a multi-cavity mould. The flow front advancement predicted 
with this approach was in good agreement with those obtained by Moldflow simulations and 
experimental tests for all mould cavities. In another vein, Abohashima et al. (2015) confirmed 
that the most common defects appearing in thin-walled containers (i.e., inverted label and 
incomplete plastic filling, which are specific to food packaging) could be minimized using the 
proper process parameters obtained by the Taguchi approach. Other works also focused on 
decreasing the weldline in injected parts, using different strategies. In this respect, Sedighi et 
al. (2017) determined the best gate position leading to the minimum weldline length via a neural 
network trained by Moldflow simulation results and a genetic algorithm. Also, Shayfull et al. 



 
  
  

(2011) used the Taguchi method to highlight that melt temperature followed by cavity 
temperature, packing pressure, packing time, core temperature and filling time are respectively 
the most significant parameters affecting the weldline length.  
Although the effectiveness of these approaches has been demonstrated for optimising injection 
moulding process parameters, most of the studies analysed only one output characteristic at a 
time (minimizing one or several defects separately). Therefore, the interaction of process 
parameters on the properties of the final product (i.e., multi-objective optimisation) has received 
very little attention in the literature. This work aims to optimise the process parameters of the 
plastic injection moulding process, using a response surface methodology and validated 
numerical simulation combination to determine the best trade-off between the nominal part 
weight and a high production rate. 
 
2- Methodology 
 
2.1 Numerical simulation of the injection process and model validation 
Numerical simulations were performed using Moldflow Insight (Autodesk Inc.). The 
rectangular dogbone shape specimen illustrated in Fig. 1a was designed using CATIA software, 
and imported into Moldflow as a double-cavity mould with a rectangular gate and trapezoidal 
runner. The parts were meshed using a midplane mesh, as illustrated in Fig. 1b, where a sprue, 
runner, and cooling system are also visible. Each specimen contains 141,875 triangular 
elements with an edge length of 0.8 mm. 
 
Figure 1   (a) Rectangular dogbone specimens, all dimension in mm; (b) general view of the 
double-cavity mould meshed in MoldFlow 

 
 
The flow of the molten polymer inside the mould cavity is described by the conservation of 
momentum, mass, and energy (Eq. (1), (2), and (3)), which are discretized into finite elements 
and solved in Moldflow by the standard finite element method:   + ∇. ( )  = 0                                                                                                                    (1) =  −∇ + ∇. +                                                                                                          (2) 



 
  
  

 =  ∇. ( ∇ ) +  :∇ +                                                                                       (3) 
 
where ρ, t, V, P, τ, g, k, Cp, β, and T are the fluid density, time, velocity vector, pressure, viscous 
stress tensor, gravitational acceleration vector, thermal conductivity, specific heat capacity, 
expansivity, and temperature, respectively. The plastic material in this study was PP 512MN10 
provided by SABIC (Saudi Arabia). The polypropylene provides excellent flow properties 
during injection moulding, as well as a good combination of high impact strength and stiffness 
during service. It is widely used in vacuum cleaner housings, large size flower pots, foodstuff 
containers and ice cream containers, where good processability, high toughness, and low 
warpage are required. The properties of this polymer are listed in Table 1.   
 
Table 1     PP 512MN10 material properties  

Melt temperature 160°C 

Specific heat 2.753 J/kg °C 

Thermal conductivity 0.18 W/m °C 

Melt density 0.90 g/cm3 

Solid density 1.089 g/cm3 

Shear  modulus 640 MPa 

Elastic modulus 2.034 MPa 
 
Numerical simulation results were validated with real-scale injections, using a Krauss Maffei 
150 C2 injection press and the moveable half of the mould illustrated in Fig. 2. The process 
parameters representing the typical values for the injection moulding of this material (reported 
in Table 2) were used in both numerical simulations and experimental testing (Meiabadi et al., 
2013). The target part weight calculated by Moldflow was assessed at 17.71 g (i.e., calculated 
from the volume of the CAD model and the solid density of the material). Results presented in 
Table 2 confirm that the part weight and total cycle time obtained by simulation and 
experimentally are similar, with a relative difference below 4%, confirming that Moldflow can 
be used effectively to generate a database being implemented into Design-Expert V8 software 
for an analysis of variance.  
 
Table 2     Validation of simulation results using typical process parameters   

Process parameters Outputs Experimental 
results 

(real-scale 
injection) 

Simulation 
results 

(Moldflow) 
 

Relative 
difference Melt 

temperature 
(°C) 

Mould wall 
temperature 

(°C) 

Packing 
time 
(s) 

Packing 
pressure 
(MPa) 

Injection 
speed 

(mm/s) 
 

Cooling 
time 
(s) 

233 23 16.5 10 20 15 

Part 
weight 

(g) 16.34 16.15 3.8% 

Total 
cycle 
time 
(s)  

32.80 31.60 1.2% 

 



 
  
  

Figure 2   Moveable half of the mould used for the validation of the numerical simulations 
 

 
 
2.2- Response surface methodology 
The Response surface methodology (RSM) was used to determine the relationships between 
the input variables and output responses of the injection moulding process. This approach aims 
to quantify the relationship between the input variables and output responses by using a 
minimum error (i.e., residual error) in the form of a mathematical model relating a response η 
with the k levels of controlled variables, as reported in Eq. (4) (Moradi et al., 2017):             
 
η = f (x1, x2,…, xk) + Ɛ                                                                    (4) 
 
where x is a control variable and Ɛ represents the random experimental error due to some 
unknown or uncontrollable variables. Formally, the response variable is defined by a second-
order polynomial equation (Eq. (5)) as the response η is stated according to the input parameters 
(Moradi and Mohazabpak, 2017): 
  

2
0

1 1 , 1

k k

i i ii i ij i j
i i i j i j

x x x x
                                                                                

(5)                                                                                                                                                         
 
where 0 is a constant, i is a linear coefficient, ii is a quadratic coefficient, and ij is an 
interaction coefficient. In this work, the part weight and total cycle time are considered as the 
response variables (i.e., output responses), while the melt temperature, mould wall temperature, 
packing time, and packing pressure are selected as the independent variables (i.e., input 
variables). The total cycle time is an indication of the production rate (inversely proportional 
relation), calculated by the sum of the filling time, packing time, and cooling time during the 
plastic injection moulding stage. The part weight quantifies the stability of the process from 
part-to-part, and is simply measured using a precision balance. The response surface design is 
based on a central composite design full replication with four factors and three levels. In this 
approach, the coefficient for a given term represents the change in the mean response associated 
with a change in that specific term, while the other terms in the model are constant. The sign of 



 
  
  

the coefficient indicates the direction of the relationship between the term and the response. 
The size of the coefficient is usually used to assess the practical significance of the effect of 
that term on the response variable. The statistical significance of a given term is finally 
determined using the p-value (as reported in Table 5). Table 3 shows the values used for the 
three levels of independent variables, which were selected as low (-1), moderate (0), and high 
(1) values of process parameters implemented in designing the experiments. The specific values 
corresponding to each level were set based on the processing parameters recommended by 
Moldflow for the PP 512MN10.   
 
Table 3     Levels of independent variables 

Variables Sign -1 
(low) 

0 
(medium) 

1 
(high) 

Melt temperature (°C) A 215 225 235 
Mould wall temperature (°C) B 20 35 50 
Packing time (s) C 10 25 40 
Packing pressure (MPa) D 10 25 40 

 
3- Results and discussion 
3.1 Results 
The evolution of the part weight and total cycle time for 30 simulation runs (i.e., 30 different 
moulding conditions) is presented in Table 4. Based on the real-scale injection results, the filling 
time used for the numerical simulations was set at 0.1 s. Since the filling time is very small (i.e., 
can be neglected) and the cooling time is constant, the variation of the total cycle time (i.e., sum 
of filling, packing, and cooling times), depends only on the packing time, with no need for an 
analysis of variance since it depends only on one parameter.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
  
  

 
 
Table 4      Design of experiments variables and numerical simulation results 

 Independent variables 
(input) 

Response variables 
(output) 

Run  Melt 
temperature 

(°C) 

Mould wall 
temperature 

(°C) 

Packing 
time 
(s) 

 Packing 
pressure 
(MPa) 

 Part 
weight 

(g) 

 Total cycle  
time 
 (s) 

1 215 50 10 10 15.62 25.0 
2 215 20 10 40 15.87 25.0 
3 235 20 10 10 15.62 25.0 
4 225 35 25 40 16.47 40.0 
5 225 35 25 25 16.32 40.0 
6 225 35 25 10 16.15 40.0 
7 235 50 40 10 16.12 55.0 
8 235 50 10 10 15.43 25.0 
9 215 20 40 40 16.50 55.0 
10 235 20 40 40 16.50 55.0 
11 225 35 25 25 16.32 40.0 
12 225 35 10 25 15.64 25.0 
13 215 35 25 25 16.32 40.0 
14 215 50 10 40 15.66 25.0 
15 225 35 25 25 16.32 40.0 
16 225 35 25 25 16.32 40.0 
17 215 50 40 10 16.12 55.0 
18 225 50 25 25 16.28 40.0 
19 235 20 10 40 15.66 25.0 
20 225 35 25 25 16.32 40.0 
21 215 20 40 10 16.19 55.1 
22 235 35 25 25 16.32 40.1 
23 225 35 40 25 16.32 55.1 
24 235 50 10 40 15.47 25.0 
25 235 20 40 10 16.19 55.0 
26 235 50 40 40 16.44 55.1 
27 225 35 25 25 16.32 40.1 
28 215 20 10 10 15.82 25.1 
29 225 20 25 25 16.35 40.1 
30 215 50 40 40 16.44 55.0 

 
The independent and response variables reported in Table 4 were then implemented into the 
Design-Expert V8 software (Stat-Ease Inc.) to perform an analysis of variance and highlight 
the parameters producing the most significant effects on the part weight. This statistical analysis 
was done on the assumption that the factors are fixed, not random, while the design is crossed, 
and not nested.  
Table 5 presents the analysis of variance (ANOVA) for part weight. The first row (Model row) 
shows how much variations in the response are explained by the model, along with the overall 
model test for significance. The model is separated into individual terms in the next rows and 
tested independently. The Residual row shows how much variation in the response is still 



 
  
  

unexplained. Lack of Fit is the amount by which the model predictions deviate from 
observations. Pure Error is the difference between replicate runs. The Source column presents 
a meaningful name for the rows. The sum of the squared differences between the overall 
average and the amount of variation is explained by each row’s source. Degrees of Freedom is 
the number of estimated parameters used to compute the source’s sum of squares. Mean Square 
determines the sum of squares divided by the degrees of freedom. F Value compares the 
source’s mean square to the residual mean square. The p-value is a probability that measures 
the evidence against the null hypothesis. Lower probabilities provide stronger evidence against 
the null hypothesis. If the p-value is very small (less than 0.05 by default), then the source is 
significant. Significant model terms probably have a real effect on the response. In this work, 
the p-values for all model terms are lower than 0.05, indicating that all of them are significant 
and must be used to derive the regression equation. Results reported in Table 5 also propose 
that the packing time with a 2905.93 F-Value and a packing pressure with a 257.14 F-Value are 
the two most significant variables controlling the part weight, while the melt temperature and 
the mould temperature produce no significant impact on this response variable.  
 
Table 5     Analysis of variance (ANOVA) for part weight 

Source Sum of 
Squares 

Degrees 
of 

freedom 

Mean Square F 
Value 

p-value  
 

Model 1.915E+006 8 2.393E+005 582.96 < 0.0001 
A 

(Melt temperature) 
18552.96 1 18552.96 45.19 < 0.0001 

B 
(Mould temperature) 

40734.71 1 40734.71 99.22 < 0.0001 

C 
(Packing time) 

1.193E+006 1 1.193E+006 2905.93 < 0.0001 

D 
(Packing pressure) 

1.056E+005 1 1.056E+005 257.14 < 0.0001 

AC 20473.76 1 20473.76 49.87 < 0.0001 
BC 7921.43 1 7921.43 19.29 0.0003 
CD 47894.73 1 47894.73 116.66 < 0.0001 
C2 4.805E+005 1 4.805E+005 1170.39 < 0.0001 

Residual 8621.84 21 410.56   
Lack of Fit 8621.84 16 538.87   
Pure Error 0.000 5 0.000   

 
Fig. 3 presents the normal probability plot of the residuals displaying the residuals versus their 
expected values, assuming that the distribution is normal. Because the points are close to the 
expected values (i.e., straight line), this plot confirms the assumption that the residuals are 
normally distributed. So, it is reasonable to assume that the error terms are normally distributed, 
which is a regression model condition. 
 
 
 
 
 
 
 
 
 



 
  
  

 
 
Figure 3   Normal probability plot of the residuals 
  

 
 
Of all the different transformations on the responses available in Design-Expert, the power 
transformation is the one that allows transformation to any power in the –3 to +3 range. 
However, a Box-Cox plot can propose an adequate power transformation to apply to response 
data. The regression equation drawn from this analysis of variance and reported in Eq. (6) was 
used to predict the part weight according to each independent variable: 
 (  ℎ ) = 4347.9 − 32.1 − 47.6 + 257.5 + 76.6 + 35.8 + 22.3 +54.7 − 258.4                                                                                                                    (6) 
 
where A is the melt temperature, B is the mould wall temperature, C is the packing time, and D 
is the packing pressure. As stated above, the high values of the coefficients C and D in Eq. (6) 
produce significant changes on the part weight, and can be thus considered as the most 
significant control variables. For better clarity, the sensitivity of the part weight according to 
the four input variables was plotted in a perturbation plot (Fig 4) to visualize the effect of each 
factor on the output variable when other factors are kept constant. An increase in the packing 
time up to 0.5 coded unit (i.e., between 0 and 1 levels, corresponding in fact to 32 s) produces 
a significant change in the part weight when the other process parameters are set at the central 
point (melt temperature = 225°C, mould wall temperature = 35°C, and packing pressure = 25 
MPa). Above this local maximum point indicated by a black arrow in Fig. 4, a further increase 
in packing time produces a slight decrease in part weight. Furthermore, line D corresponding 
to the packing pressure shows that an increase in packing pressure (when other process 
parameters are constant at the central point) also produces an increase in part weight, probably 
due to compression of an extra material into the mould with a higher packing pressure. Lines A 
and B depict a slight decrease in part weight with an increase in melt or mould temperature 
when other parameters are on central point values.  
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Figure 4   Perturbation plot of part weight (A-Melt temperature, B-Mould temperature, C-
Packing time, D-Packing pressure)

Because the perturbation plot can only be used to quantify the effect of each variable, one at 
the time, the interaction of the process parameters on the part weight was quantified using the
3D surface plots illustrated in Fig. 5. Due to the high significance of the packing time depicted 
during the previous perturbation analysis, this input variable was combined with the three other 
process parameters to assess the interaction of parameters on the part weight. As predicted by 
the analysis of variance and the regression equation (low magnitude of the F-value and the 
coefficient for the parameters AC in Table 5 and Eq.(6)) the results reported in Fig. 5a confirm 
that an increase in packing time leads to a higher part weight regardless of the melt temperature. 
In this respect, a higher packing time in fact corresponds to the hydraulic pressure being 
maintained for a longer period, resulting in small changes in the pressure curve and no 
significant fluctuations in the part weight. The 3D surface plot presented in Fig. 5b confirms 
that the part weight is significantly affected by the packing time regardless of the mould
temperature. This confirms that as long as the polymer is in molten state (i.e., T > 160°C), the 
mould temperature is not a competitive parameter driving the part weight, but could be taken 
into account for the optimisation of the cycle time, where a higher mould temperature may lead 
to a decrease in the production rate. Finally, and as expected by the ANOVA (see F-value and 
coefficient of CD parameters in Table 5 and Eq. (6)), a simultaneous increase in packing time 
and packing pressure leads to a higher part weight, as reported in Fig. 5c.
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(a) 

 
Figure 5   Surface plots showing the interaction of (a) packing time and melt temperature, (b) 
packing time and mould temperature, and (c) packing time and packing pressure on part 
weight          

 

 
   

4- Multi-objective optimisation 
It is well accepted that the part weight and production rate (closely related to total cycle time) 
are two relevant quality indexes in plastic injection moulding, where the objective is to attain 
the desired part weight in the shortest total cycle time. Since the total cycle time is calculated 
as the sum of the packing time (variable), cooling time (constant), and filling time (very low, 
therefore negligible), minimizing this process parameter corresponds ultimately in minimizing 
the packing time. However, and as demonstrated above by the analysis of variance, the packing 
time is the main process parameter influencing the part weight. Therefore, it seems that it is not 
possible to achieve the desired weight in the shortest packing time. This challenge can be 
overcome using a higher packing pressure to counterbalance the consequences of minimizing 
the packing time. Before performing the statistical optimisation using the Design-Expert 
software (i.e., obtaining an optimal point and desired objectives), the range of input parameters 
was defined according to the values reported in Table 6, where the target part weight (17.71 g) 
should be reached within the minimum packing time. The influence of the packing time on the 
part weight illustrated in Fig. 5 was compensated by an increase in the packing pressure up to 
100 MPa in the optimisation criteria. The optimised process parameters producing the desired 
part weight while reducing the total cycle time are reported in Table 7. The part weight and 
cycle time predicted by the response surface methodology (RSM) approach were validated with 
real-scale injections using the process parameters reported in Table 7 and the same Krauss 
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Maffei 150 C2 injection press and the mould illustrated in Fig 2. RSM predictions and 
experimental results reported in Table 7 are similar (with a relative difference below 2.3%), 
confirming that the regression equation is accurate, the optimisation procedure is viable, and 
the numerical simulations are reliable. 
                             
Table 6     Range of optimisation criteria 

Parameters Name Goal Lower 
limit 

Upper 
limit 

 
Input parameters 
 
 

Melt temperature within the range* 215 275 
Mould temperature within the range* 20 50 
Packing time minimize 40 60 
Packing pressure within the range* 10 100 

Output parameters Part weight is target = 17.71 15.493 17.713 

*: i.e., range based on practical recommendations for this polymer 
 
Table 7     Validation of the RSM predictions using real-scale injection  

Optimised process parameters Output 
parameters 

RSM 
prediction 

Real- 
scale 

injection 

Relative 
difference Melt 

temperature 
(°C) 

Mould wall 
temperature 

(°C) 

Packing 
time  
(s) 

Packing 
pressure 
(MPa) 

273 20 40 100 

Part weight 
(g) 17.15 17.52 2.1% 

Total cycle 
time (s) 50.04 51.20 2.3% 

 
Fig. 6 demonstrates a desirability plot quantifying how the packing time and packing pressure 
influence the optimisation criteria (achieving the target part weight while reducing total cycle 
time concurrently). The envelop demonstrating the higher desirability at 80% (dark orange zone 
in Fig. 6) is obtained for a packing pressure ranging from 90 to 100 MPa and a packing time of 
30 to 40 s.  
 
3.1 Discussion 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
  
  

 
 
Figure 6   Effects of packing time and packing pressure on desirability 
 

 

 
5- Conclusions 
In the present research, a numerical simulation and a statistical analysis were combined to 
concurrently achieve part weight stability and increase the production rate of a PP 512MN10 
part obtained by the injection moulding process. Following a first validation step using real-
scale injections, Moldflow software was used to simulate the part weight and the cycle time for 
different process parameters, such as the mould temperature, the melt temperature, the packing 
time, and the packing pressure, based on a design of experiments obtained by a response surface 
methodology (simulating 30 moulding conditions). This database was then implemented into 
the Design-Expert software to perform an analysis of variance and propose a regression model 
to highlight the process parameters producing the most significant effect on the part weight.  
Results demonstrated that the packing time is the most significant process parameter 
influencing both part weight and total cycle time. Simulation results also confirmed that the 
total cycle time could be accurately assessed by taking into account only the packing time and 
the cooling time (where cooling time was set constant for all tests). Therefore, a higher packing 
pressure and, to some extent, a longer packing time, could be used to attain the desired part 
weight in a reasonable total cycle time. The response surface methodology was used 
successfully to determine the optimal process parameters producing the desired part weight and 
lower cycle time. A second validation step using real-scale injections confirmed that the two 
output variables predicted by the response surface methodology were similar to those obtained 
by experiments, with a relative difference below 2.3%. This work confirms that the optimisation 
of process parameters can be realized at low cost and at reduced time using a combined 
approach involving numerical simulation, statistical analysis, and only few experimental 
validations. 
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