
Creative Computing for All

A high-quality computing education equips pupils to use
computational thinking and creativity to understand and
change the world.

Computing programmes of study:

Move away from
consuming ICT to being
creators of content: makers,
creators, collaborators,
digitally critical, responsible
and active learners

ICT, Digital Literacy and
eSafety are still important
parts: not all Computer
Science

Three areas: IT, DL, CS

National Curriculum Framework:

‘ensuring that the national curriculum is taught in ways that enable all
pupils to have an equal opportunity to succeed’

• being able to program can be hugely empowering for many with SEN/D.

• some with Asperger’s syndrome find the predictability of computing reassuring;

• the immediate feedback on semantics and syntax in computer code can help some
with dyslexia;

• decomposing problems into their components might help some with ADHD;

• simple, text based interfaces can be used effectively by many with sensory or
motor difficulties.

https://www.gov.uk/government/publications/national-curriculum-in-england-framework-for-key-stages-1-to-4/the-
national-curriculum-in-england-framework-for-key-stages-1-to-4#inclusion

http://milesberry.net/2014/11/making-computing-more-inclusive

https://www.gov.uk/government/publications/national-curriculum-in-england-framework-for-key-stages-1-to-4/the-national-curriculum-in-england-framework-for-key-stages-1-to-4%23inclusion
https://www.gov.uk/government/publications/national-curriculum-in-england-framework-for-key-stages-1-to-4/the-national-curriculum-in-england-framework-for-key-stages-1-to-4%23inclusion
http://milesberry.net/2014/11/making-computing-more-inclusive

KEY STAGE 1
 Understand what algorithms are; how they are implemented as

programs on digital devices; and that programs execute by following
precise and unambiguous instructions.

 Create and debug simple programs
 Use logical reasoning to predict the behaviour of simple programs

An algorithm is: -
a precisely defined procedure

a sequence of instructions,
a set of rules,

for performing a specific task.

Computer programs
are comprised of a sets of

rules or instructions

KEY STAGE 2
Pupils should be taught to:
• design, write and debug programs that accomplish specific

goals, including controlling or simulating physical systems; solve
problems by decomposing them into smaller parts

• Use sequence, selection and repetition; work with variables
and various forms of input and output

• use logical reasoning to explain how some simple algorithms
work and to detect and correct errors in algorithms and
programs

PLANNING

Important to remember that the focus of a scheme of work should
remain on developing knowledge and understanding of computing
concepts through activities such as creating games and animations.

Naace – “Computing in the National Curriculum”

It is important that lessons are not driven by the tools available – either
hardware or software- but focussed on clear teaching and learning
objectives.

COMPUTATIONAL THINKING
Computational thinking and the concepts behind it, form the basis for much of computer
science. Computer scientists are interested in finding the most efficient way to solve problems.
They want to find the best solution that solves a problem correctly in the fastest way and using
the least amount of resources (time / space).

Is this the most efficient way to solve the problem?
Is this the fastest way?
Does it require the least amount of resources?
Does it solve the problem and give the right answer?
Can it be used to solve other problems?

ApproachesConcepts

http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computational-thinking/

http://barefootcas.org.uk/barefoot-primary-computing-resources/concepts/computational-thinking/

Can computational thinking be meaningful for all learners?
Are the P levels relevant to the computing curriculum?

Being able to understand and have some control over the world is hugely important. Technology
provides greater opportunities for young people with SEN to access the same things as their
peers, and ideally they can begin to have some influence on their experience in school and at
home through a better understanding, and ultimately manipulation, of a range of technologies.

P3 ii, ‘They apply potential solutions systematically to problems’, characterises exactly the sort of
pattern recognition and generalisation that lies at the heart of efficient software development,

P4, ‘They know that certain actions produce predictable results’, captures something of the
deterministic, logical nature of computer programs.

We can think in terms of a framework for teachers seeking to develop the beginnings of their
pupils’ computational thinking.

http://milesberry.net/2014/11/making-computing-more-inclusive

http://milesberry.net/2014/11/making-computing-more-inclusive

Pupils aren't just learning how to use a specific language or piece of hardware, but how to adapt
their knowledge for any kind of coding or problem they might meet.

● Abstractions
Ask a pupil 'what did you do at the weekend?' and you don't expect to hear all details, just the
essence of what they did. Taking the vital components of a program and disregarding the
superfluous is abstraction.
● Decomposition
If a pupil is going shopping they will need to break down the activity into a number of elements -
what do I need to take with me, what am I going to buy, where am I going. Decomposing a
problem into smaller parts is at the heart of many activities we do with our students.
● Algorithms
An algorithm is a sequence of instructions to make something happen, e.g. instructions for
making a cake.
● Evaluation
How can a program/activity be improved and made more efficient? E.g. I was late to school this
morning - did I take the fastest route? Maybe I shouldn't buy sweets on the way.
● Generalisation
Applying rules learnt in one context to another. For example if Mrs X asks me to not to shout out
in her lesson, then maybe I shouldn't do that in Mr Y's
class.”

Computational thinking as a foundation for programming

http://milesberry.net/2014/11/making-computing-more-inclusive

http://milesberry.net/2014/11/making-computing-more-inclusive

• Decomposition - splitting a problem into smaller parts
• Logical reasoning – predicting what a program will do before you press run
• Testing & Debugging - trying it out step at a time, finding and fixing mistakes
• Abstraction & Generalisation - which is the information that I need? Finding

common patterns and resusing solutions
• Sequencing – step by step nature of computer programs
• Repetition – loop a number of times or until: ‘repeat’ or ‘forever…until’
• Selection – conditional statements such as ‘if…then’, ‘if…else’, Variables –

used to keep track of the things that can change while a program is running e.g. the
score in a game

• Procedures, algorithms - program within a program

KEY TERMS

• Decomposition - splitting a problem into smaller parts
• Logical reasoning – predicting what a program will do before you press run
• Testing & Debugging - trying it out step at a time, finding and fixing mistakes
• Abstraction & Generalisation - which is the information that I need? Finding

common patterns and resusing solutions
• Sequencing – step by step nature of computer programs
• Repetition – loop a number of times or until: ‘repeat’ or ‘forever…until’
• Selection – conditional statements such as ‘if…then’, ‘if…else’, Variables –

used to keep track of the things that can change while a program is running e.g. the
score in a game

• Procedures, algorithms - program within a program

KEY TERMS

• Deducing and inferring within Reading
• Drawing conclusions from results in Science.
• Cause and effect pathways within History.

Make this explicit. Then make it transferrable within computing lessons.

Logical reasoning

An algorithm is a precise sequence of instructions, or set of rules, broken into steps for performing a
task. A program must be 100% exact.

Algorithms

Algorithms unplugged

•

Algorithms across subjects

Decomposition and debugging

Draw a flow chart to
explain how to play
Hide and
Seek/Tag/Stuck in
the mud etc.
Debug and correct
the errors

https://docs.google.com/file/d/0BwcpBYDoXDVeVVVuMjhEdHZBQkE/edit

Debugging

Sequences

https://docs.google.com/file/d/0BwcpBYDoXDVeVVVuMjhEdHZBQkE/edit

Selection
Telling the program to do something depending on decisions made: IF... THEN.... ELSE

Check through
grammar...repeat UNTIL
all correct capital letters are in
place.

Understand how algorithms are implemented as programs

Repetition
Repeat the same action until the task is done:
Check through grammar…repeat until all correct capital letters are in place

I know a song that will…
Get on your nerves
Get on your nerves
Get on your nerves
I know a song that will get on your
nerves, and it goes like this…

Variables
Variables store information and ‘hold’ a value:
The score in a game, lives or health in a computer game, a barrier counting the number of
cars in a car park, the cost of items scanned on a till.

Songs with variables:

Ten green bottles
Old Macdonald had a farm

Put a value into the pot
which is labelled with its
name. Then when it
changes the old value is
taken out and a new one
put in, but the label stays
the same.

Good sources of unplugged ideas:
Code.org http://code.org/
Barefoot Computing:
http://barefootcas.org.uk/activities/
Computer Science Unplugged:
http://csunplugged.org/
Junior Computer Science on Code-it.co.uk http://code-
it.co.uk/csplanning.html
Teach London Computing
http://teachinglondoncomputing.org/

UNPLUGGED ACTIVITIES

http://code.org/
http://barefootcas.org.uk/activities/
http://csunplugged.org/
http://code-it.co.uk/csplanning.html
http://code-it.co.uk/csplanning.html
http://teachinglondoncomputing.org/

SOME COMMONLY USED RESOURCES
KS1
• BeeBots
• 2Go
• Logo
• Code.org
• 2Code
• 2DIY
• Kodable
• Alex - app
• Light Bot

KS2
• Logo
• Blockly
• Code.org
• Scratch Jr
• Scratch
• 2Code
• Flowol
• Tynker
• Hopscotch - app
• Kodu
• Python

Making programming more accessible
• Pre-loaded Scratch project with comments
• Help sheet
• Paired programming
• Unplugged activities: walking or drawing the shape sequences
• Laminated Scratch blocks
• Using printed Scratch blocks supported by Widgit symbols
• Provide semi-completed programs and debugging challenges
• Use video-walkthroughs
• Limited number of relevant blocks
• Create custom blocks to scaffold a programming challenge
• Notebooks
• Mini plenaries
• Think pair share
• Peer review and feedback
• Provide angles and shapes
• Use other environments: Kodu, Scratch Junior, Blockly, Code.org
• Use Makey Makey, microphone, Webcam or Kinect as input devices

	Creative Computing for All
	Slide Number 2
	Slide Number 3
	National Curriculum Framework:��‘ensuring that the national curriculum is taught in ways that enable all pupils to have an equal opportunity to succeed’
	KEY STAGE 1
	KEY STAGE 2
	PLANNING
	COMPUTATIONAL THINKING
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	KEY TERMS
	KEY TERMS
	Logical reasoning
	Algorithms
	Algorithms unplugged
	Algorithms across subjects
	Decomposition and debugging
	Debugging
	Sequences
	Selection
	Slide Number 24
	Repetition
	Variables
	UNPLUGGED ACTIVITIES
	SOME COMMONLY USED RESOURCES
	Making programming more accessible

