

Measuring and Reducing the Cognitive Load for the End

Users of Complex Systems

James Oakes, Mark Johnson, James Xue and Scott Turner1

1 University of Northampton, United Kingdom

Abstract. With the proliferation of complex computer systems, end users face a

never-ending increase in the number of tasks, methods, inputs, passwords,

usernames (and so on) when using online and standalone computer-based

systems and applications. This paper examines a method and approach to

measure how complex a system is to use, and how to reduce the complexity of

such systems by minimising the requirement for human inputs as much as

possible, in order to reduce the cognitive load for that user, or group of users.

This paper addresses a study completed around using virtualised computer

management systems interfaces of two well-known products AWS (Amazon

Web Services), Oracle Cloud, and compares the complexity of the steps and

interface for end users to a private cloud less well-known system called the IDE

(Intelligent Design Engine). By using a set of derived formula, we examine how

this can be applied to systems that have qualitative data feedback from the

experiment process, and how to convert this effectively into quantitative data.

This data is then analysed numerically using a unique approach to provide

additional and meaningful results based of the original end user data.

Keywords: Cognitive Load, Virtualise, Cloud, Intelligent, Expert Systems

1 Introduction

1.1 Cognitive Load and End Users

Every task a human being undertakes requires a certain amount of cognitive power, or

mental effort, in order to carry it out to completion [1], [2]. As an example, this could

be from a singular simple task, such as clicking a mouse button, to a set of activities

that need to be carried out in a specific sequence in order to complete an overall task

successfully, such as cooking a meal using a set of ingredients and following a recipe.

The question that rises from this, is how can the complexity of a task or set of tasks be

measured, and is it possible to understand the cognitive load for a user or group of

users?

The evidence from other studies and this work suggest it is possible to understand

this, and other similar experiments in various experimental settings have provided

evidence and results that demonstrate how to measure cognitive load [3], [4], [5].

Within the field of work, this method of study is generally referred to as Cognitive

Load Theory (CLT) in relation to task orientated problem solving. One reason and

requirement for making this feasible is because, like most processes, there is usually a

start and an end, and a subsequent number of tasks in-between that are usually

performed in a certain sequence. Once the process completes, this can result in a

successful end and objective being met, or perhaps even in a full or partial failure.

Understanding the sum of all the tasks in process is therefore essential to be able to

measure the overall complexity load [6]. Some processes are simple, for example

pressing a power on/off button on a Television (TV) remote control. You could

consider that there are a few steps to this process, one locating the TV remote, two

locating the correct button (power), and three physically pressing this button, to

achieve the desired effect (e.g. switching the TV on/off). Conversely, other processes

can be considered complex, such as the creation of a Virtual Machine (VM), due to

the number of steps and the inherent know-how and technical expertise required to

complete [7].

Further to existing studies, this paper examines how the cognitive load for a

complex process (set of tasks) can be measured using a unique formula and method

referred to as the Complexity Load Rating (CLR). The work examines the feasibility

and challenges around recording qualitative feedback and results from end users and

proposes a method to translate this into numerical or quantitative data [8], [9], [10].

The results are then calculated for each group of users, and are then evaluated to

present evidence on how a complex process (such as VM provisioning) can be

simplified as a result of the steps being developed with higher levels of automation

and the use of pre-coded system intelligence [11], [12], [13].

1.2 Experiment Definitions

The following experiment was performed to measure the CLR of volunteer human

participants using the Intelligent Design Engine (IDE), AWS and Oracle Cloud

systems to provision a Virtual Machine (VM). In terms of participants, a total of

ninety end users were split into three broad technical capability groups of expert,

experienced and novice; all users were given access to a web-browser interface

(Chrome); the user types are described in the Table 1 below:

Table 1. End User Evaluation Group Demographic.

User Group

 Type
Definition Quantity of Users

Novice Users

A user with little or no formal training in

computer science and no work

experience in computing disciplines.

30

Experienced Users

A user with some training in computing

disciplines, up to A-level standard, with

some formal training or 1-3 years’ work

30

 experience in the field

Expert Users

A user with training in computing

disciplines, with a bachelor’s degree

level or above, or with more than 5

years’ work experience in the field

30

It should be noted, that end users were asked to categorise themselves into one of the

three groups listed in Table 1. Once each category was filled (at a threshold of 30

users), no further end users of this type were included in the experiment to attempt to

achieve a wider and equal spectrum of feedback based on general end user expertise

levels. Table 2 below features definitions of how the process analysis was broken

down into the tasks and sub-task components. For the purposes of this experiment and

calculating the user feedback, we acknowledge sub-components of tasks, but never

ask the users to provide their results at this level of granularity; instead, we only deal

with the qualitative result given at the task level.

Table 2. Process, Task, Sub-component Definitions.

Categorisation Definition

Process

A set of tasks which make up a complete process flow; for

example the steps/tasks required for the building of a virtual

machine

Task

An action, which is part of a process, such as creating an RSA

public and private key pair for a user and then deploying it

Sub-Component

A task may be made up of sub-components, such as key

generation, key distribution, and setting key permissions, and

testing the private and public key handshake

Furthermore, for each task, we now consider the definitions associated with the task

complexity rating as per Table 3:

Table 3. Task Complexity Definition.

Task Type Definition Weighting

 Score

Simple

Intuitive, no training required. An example of a

simple tasks would be answering a question such as

“What is your age?”, accessing a URL via a browser

to load a website, or sending a 10-20 worded SMS
(Short Message Service) message

1

Moderate

Basic training required, some experience and know-

how necessary to execute the task. An example of a

moderate complex tasks would be following a recipe

with 3-4 ingredients to prepare and make a meal,

writing a BASIC computer program to calculate the

Body Mass Index (BMI) value of a human being, or

being able to describe and use Pythagoras theorem

to calculate the length of the hypotenuse.

3

Difficult

Advanced training required, experience essential on

how to implement and complete the task. An

example of a difficult task would be completing a

residential home extension architectural drawing to

conform to local government planning and building

regulations, or being able to write a computer

program to graphically draw a chessboard, or being

able to explain in a classroom the full

implementation of Internet Protocol version 4

(IPv4), providing examples of network classes,
subnets and network routing.

5

Finally, Table 4 defines the three possible Process Mechanism definitions we will

allocate for each task:

Table 4. Process Mechanism Definition.

Task

 Mechanism

Definition

Manual
All sub-components of the task require

manual user inputs

Semi-Automated

Some of the sub-components of the task

require manual user inputs, some are

automated

Automated

No sub-components of the task require any

user inputs

It is worth pointing out the fact, that if a certain task is automated fully, no matter

how complex it is (and irrespective of the number of subcomponent tasks), it can

never be recorded as anything other than a simple task from an end user perspective.

The reason for this being that the complex or intelligent system has been designed and

coded in such a way as to alleviate or negate the cognitive requirement (or load) away

from the end user.

1.3 Cognitive Load Rating

How to measure the cognitive load of a task is based upon the following general

conditions, described by the qualitative (subjective) terms below:

1) The end user interpretation of the task as either simple, moderate or difficult

2) Is the task (or set of tasks) which make up the process automated, semi-

automatic, or manual

It is important when collecting qualitative data, that not too many options are

presented for the end user evaluation data outputs, based on their experience and the

experiment process undertaken. For example, allowing human test subjects to input

unstructured data such as free-text, or even handwritten text, makes the collation and

analysis of data somewhat more difficult to interpret, simply because of the number of

permutations and recognition of what the written data means [14].

Therefore, in the context of this study, when we refer to task complexity, this is

defined or described (subjectively) by the end user as simple, moderate or difficult.

Furthermore, each task undertaken has a process mechanism described as either

automatic, semi-automatic, or manual. Of the three process outcomes, if a task is

automated it requires no input, and is automatically set to simple; semi-automatic and

manual task steps therefore require partial or full end user inputs and can receive a

simple, moderate or difficult rating.

It is natural that humans prefer providing qualitative feedback for some activity

they personally take part in [15]. Simple statements of whether something was good

or bad is often typical of how people relate their experiences [16]. By capturing all the

tasks for a process, it is possible to begin to measure the results from the

experimentation method by converting qualitative data into quantitative data, thus, in

effect performing a translation of words into numbers [17]. This leads us to the next

phase of the experiment framework of how to use these sets of parameter variables,

for Task Complexity (Table 3) and Process Mechanism (Table 4), by creating a

unique method for measuring the Cognitive Load Rating (CLR) for a task or set of

tasks; in this study we examine the complete process, of how an end user would

deploy a VM within a computer based cloud environment.

1.3 Cognitive Load Rating Formula

The proposed formula for measuring the complexity of a singular task is as follows:

Where the Cognitive Load Rating (CLR) for one task stands for 𝛽
Where Task Complexity stands for ∆
Where Process Mechanism stands for ∅

𝛽 =∆ x ∅ (1)

∑

This general formula can be applied to any process type, or cumulatively to a set of

processes, and is not just applicable to the field of computer science and VM

provisioning. In order to apply this formula to a set of processes it is necessary to

make this calculation able to measure the sum complexity of a set of tasks,

represented as follows:

Where 𝜆 stands for the CLR for a set (sum) of tasks

Where n stands for the number of tasks
Where t stands for the task identifier

n

𝜆 = ∑ (∆ x ∅)
t=1

(2)

Additionally, the formula can then be adjusted to work out the mean average of a

processes task complexity by using the following method (divides by the total number

of tasks represented by n):

Where 𝛫 stands for the CLR mean average for a set of tasks

n

Κ = t=1 (∆ x ∅)

n

(3)

2 Measuring the CLR for the IDE, AWS and Oracle Cloud

The question of how to measure the CLR for complex systems is a challenging

proposition. The primary reason for this is that systems designed for human end users,

typically receive subjective feedback, in the form of qualitative data. For scientists,

this is not a straightforward thing to measure, as it is easier for most to work directly

with quantitative data output sets, rather than qualitative results [18]. This does not

mean, however, that it is unfeasible or impossible to work with such data, as much

work has already been completed in the field to address various approaches, for

example converting words into numbers.

2.1 The 10-Step Sequence for Provisioning VM’s

After building many basic VMs on various cloud platforms, using the standard

interface offered through the IDE, AWS and Oracle web management portals, it was

observed that the following sequence of steps were necessary to provide the required

inputs to allow for each respective platform to provision a VM and make it accessible

and therefore useable. By usable, we mean the point at which an end user can log in to

the system and start using the VM. Table 5 explains the sequence in more detail:

Table 5. 10-Step VM Provisioning Process

Step

No.

VM Provisioning Task Description

1 Cloud Provisioning

Access

This is the task needed to access and authenticate to be

able to use the cloud platform, typically

username/password

2 Configure Role Setting up role access-based controls, such as

administrator

3 Select compute as

the option for VM

deployment

Public cloud offerings prefer to allow manual choices

for other offerings such as Database as a Service

(DaaS), Platform as a Service (PaaS), or Software as a

Service (SaaS). This experiment only deals with

Infrastructure as a Service (IaaS).

4 Select the image you

wish to use to install

to the VM (usually

the OS type/version)

Typically, the OS version and software packages, add-

on’s and any other supporting application software

5 Select the VM CPU,

Memory, and Disk

Parameters

VM Shell parameter definition phase

6 Define VM

Parameters

Define, IP addresses, netmasks, OS version, packages

and other such configurable parameters

7 Define VM Storage Select type and amount of disk storage to use

8 Add SSH Key,

create a

Private/Public key

and upload the pubic

key

Generation of an appropriate SSH encryption key to

secure communications and authentications

9 VM creation process VM shell creation, install and boot process

10 Accessing the VM

via the internet, or

via a remote network

Access involves opening Firewall ports to access the

system e.g. Transmission Control Protocol (TCP) 22

Secure Shell (Unix type), or TCP 3389 Remote Desktop
Connection (Windows)

2.2 Provisioning System Values

For each platform included in the experiment, the following system values in Table 6

describe the observed level of automation for each step in the VM provisioning

process. These are recorded as either manual, semi-automatic or automatic as defined

in Table 4. The three system platforms for AWS, Oracle and IDE 10-step automation

details are listed below.

Table 6. Provisioning Systems (AWS, Oracle and IDE)

Step

No.

VM Provisioning Task Oracle Step AWS Step IDE Step

1 Cloud Provisioning

Access

Manual Manual Manual

2 Configure Role Semi-Automatic Automatic Automatic

3 Select compute as the

option for VM

deployment

Semi-Automatic Semi-Automatic Semi-Automatic

4 Select the image you wish

to use to install to the VM

(usually the OS
type/version)

Semi-Automatic Semi-Automatic Automatic

5

Select the VM CPU,

Memory, and Disk

Parameters

Semi-Automatic Semi-Automatic Semi-Automatic

6 Define VM Parameters Semi-Automatic Semi-Automatic Automatic

7 Define VM Storage Semi-Automatic Semi-Automatic Semi-Automatic

8 Add SSH Key, create a

Private/Public key and

upload the pubic key

Manual Manual Automatic

9 VM creation process Automatic Automatic Automatic

10 Accessing the VM via the

internet, or via a remote

network

Manual Manual Automatic

The following weighting values described in Table 7 have been applied to the three

types of automation method, manual, semi-automatic and automatic.

Table 7. Weighting Automation Values

Step Method Weighting Value

Manual 10

Semi-Automatic 5

Automatic 1

2.3 Calculation of User Results

The CLR calculation for each user task results are derived in detail using the

following formula.

Where R is the derived result

Where 𝜇 is the user input

Where s is simple

Where m is moderate

Where d is difficult

Where x is manual

Where y is semi-automatic

Where z is automatic

R =

(𝜇 = (s ∧ x) → (1 × 10)) ∨ (𝜇 = (m ∧ x) → (3 × 10)) ∨
(𝜇 = (d ∧ x) → (5 × 10)) ∨ (𝜇 = (s ∧ y) → (1 × 5)) ∨
(𝜇 = (m ∧ y) → (3 × 5)) ∨ (𝜇 = (d ∧ y) → (5 × 5)) ∨
(𝜇 = (s ∧ z) → (1 × 1)) ∨ (𝜇 = (m ∧ z) → (3 × 1)) ∨

(𝜇 = (d ∧ z) → (5 × 1))

3 CLR Provisioning Results

As part of the experiments undertaken, three principle sets of results for the end user

demographic were collected. These include expert, experienced and novice user

groups (as defined previously in Table 1). Each user was observed, and the result for

the 10-step VM Provisioning process are listed in Table 5 recorded; this provides the

output for 3 sets of users listed in figure1, 2 and 3 respectively.

Fig. 1. CLR VM Provisioning Experiment – Expert Users.

Fig. 2. CLR VM Provisioning Experiment – Experienced Users.

Fig. 3. CLR VM Provisioning Experiment – Novice Users.

As can be noted from the graph output results, the left-hand axis records the overall

CLR for each user in their respective group, for provisioning a VM using the 10-Step

process, for AWS, Oracle and the IDE. The bottom axis records the numerical

identity of each user in that particular group.

4 Interpretation of CLR results

The following chart in Figure 4 provides guidance on how to interpret the CLR for

users of a particular system. As discussed earlier, the idea within the field of CLT is

to capture the mental energy or power required for a user to perform a certain process.

The actual CLR experiment provides a unique method for doing this, and by design is

agnostic to the system/process that it is used to measure. Therefore, the mechanism

used as part of this experiment can be applied to any process or system.

Note, that the guide in Figure 4 provides insight on how much mental power is

required for an end user, or group of users to use a system effectively. Interpreting the

results is designed to be easy to understand, where a lower CLR score suggests that a

system/process is easier for a user to perform or complete. The guidance categories

fall into one of seven - either very-low (0-5), low (6-10), low-medium (11-15),

medium (16-20), medium-high (21-25) and high (26-30) and very high (31+).

Fig. 4. CLR Guide – Mental Power Requirement

Based on the results in Figure 4, it consistently shows the same order of

complexity for the Oracle, AWS and IDE systems. The order of complexity from high

to low being Oracle, AWS, followed by the IDE as the simplest to use for end users to

provision a VM using the 10-step sequence. Interestingly, it was observed that

lowering the complexity for system usage is primarily based on the ability of making

more steps in a process fully automated, therefore resulting the end to end process

being considerably easier for the end users.

5 Conclusion

The data collected showed that of the three user groups, expert and experienced users

had a similar set of results, despite the difference in technical/experience ability

defined in Table 1; however, novice users showed an increased struggle to use the

systems, and there was a noted increase in the CLR for this group. Lowering of the

CLR for systems had a strong correlation to the number of tasks in the process that

were fully automated. As highlighted in the study, any task in the process which was

fully automated, had to be recorded as simple from the end user perspective, based on

the fact that there is nothing for the user to actually do to progress that particular step

towards the end objective. Therefore, it stands to reason that the CLR for users

reduces dramatically as more steps are automated, and fewer human inputs are

required. As a result of this study paper, it is the recommended that for those

responsible for building any type of system consider carefully the following two

principles to reduce the mental power/effort needed by end users to perform a process

by:

1) Reducing the requirement for human inputs wherever possible

2) Enabling the automation of a process and its set of tasks

References

1. J. Sweller, Cognitive Load During Problem Solving: Effects on Learning, Cognitive

Science, Vol 12, Issue2 (1988)

2. R. Yang, W. Wei, M. Cummins, Application of Cognitive Load Theory to the Design and

Evaluation of Usability Study of mHealth applications: Opportunities and challenges IEEE

International Conference on Healthcare Informatics (2017)

3. F. Paas, J. Merrienboer, Measurement of Cognitive Load in Instructional Research,

Perceptual and Motor Skills, p79, 419-430, (1994)

4. F. Paas, J. Tuovinen, H. Tabbers, P. Gerven, Cognitive Load Measurement as a Means to

Advance Cognitive Load Theory, Educational Psychologist, p.63–71, Lawrence Erlbaum

Associates, Inc., (2003)

5. E. Kotova, Intellectual Support of the Learning Content Planning Considering the

Cognitive Load, XIX IEEE International Conference on Soft Computing and

Measurements, (2016)

6. S. Feinberg, M. Murphy, Applying Cognitive Load Theory to the Design of Web-Based

Instruction, 18th Annual Conference on Computer Documentation Technology and

Teamwork Proceedings, (2000)

7. S. Selvi, C. Valliyammai, V. Dhatchayani, International Conference on Recent Trends in

Information Technology, Resource Allocation Issues and Challenges in Cloud Computing

(2014)

8. E. Green, Can Qualitative Research Produce Reliable Quantitative Findings? Field

Methods, Vol. 13, No. 1, February 2001 3–19, Sage Publications, Inc. (2001)

9. K. Srnka, S. Koeszegi, From Words to Numbers: How to Transform Qualitative Data into

Meaningful Quantitative Results, Schmalenbach Business Review, Vol. 59, (2007)

10. S. Verdinelli, N. Scagnoli, Data Display in Qualitative Research, International Journal of

Qualitative Methods, (2013)

11. J. Oakes, M. Johnson, J. Xue, S, Turner, Simplified Deployment of Virtual Machines using

an Intelligent Design Engine, Proceedings of the SAI Computing Conference London

IEEE, (2016)

12. I. Lokshina, R. Insinga, Expert Systems Supporting System Administrators Managing in a

Distributed, Heterogeneous Environment, Joint IST Workshop on Mobile Future and the

Symposium on Trends in Communications, (2004)

13. D. Menasce, M. Bennani, International Conference on Autonomic and Autonomous

Systems ICAS06, Volume: 00, Issue: C, IEEE, (2006)

14. O. Rusu et al, Converting Unstructured and Semi-structured Data into Knowledge, 11th

RoEduNet International Conference, IEEE, (2013)

15. X. Lui et al, Human Workload Monitoring Method Considering Qualitative and

Quantitative Data fusion, Second International Conference on Reliability Systems

Engineering, IEEE, (2017)

16. A. Austermann, S. Yamada, “Good Robot”, “Bad Robot” – Analyzing Users’ Feedback in

a Human-Robot Teaching Task, Proceedings of the 17th IEEE International Symposium

on Robot and Human Interactive Communication, Technische Universität München,

Munich, Germany, August 1-3, (2008)

17. R. Franzosi, From Words to Numbers: Narrative, data, and social science, Cambridge

University Press, (2004)

18. M. Penta, D. Tamburri, Combining Quantitative and Qualitative Studies in Empirical

Software Engineering Research, IEEE/ACM 39th IEEE International Conference on

Software Engineering Companion, (2017)

