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Abstract 

To comply with the European Union Water Framework Directive (2000), National 

Governments are required to achieve good chemical and ecological status of freshwater 

bodies. Fine sediment has been shown to be a major cause of the degradation of lakes and 

rivers, and as a result research in geomorphology has been directed towards the 

understanding of fine sediment dynamics. It was identified by a review of published 

literature that at present a paucity of information on sediment dynamics existed for the East 

Midlands, UK. 

The use of tracers within a sediment fingerprinting framework has recently become a heavily 

used technique to investigate the sources of fine sediment pressures. However, 

uncertainties associated with tracer behaviour have been cited as major potential limitations 

to sediment fingerprinting methodologies. At present few studies have quantified the 

uncertainties associated with tracer use, or the exact reasons why different tracers are 

producing different sediment provenance results. 

This thesis had two aims based on these gaps in published literature. First, to assess the 

impact of sediment sampling methodology, tracer selection, particle size corrections and 

organic enrichment corrections on a fine sediment fingerprinting study. Secondly, to develop 

a partial sediment budget for the Upper Nene river basin and its major tributaries. The 

results of this thesis were presented in two parts. The first part investigated Aim 1 when 

fingerprinting; historically deposited sediment, suspended sediment and recently deposited 

sediment. The second part investigated Aim 2 by constructing a fine sediment budget for the 

Nene river basin, consisting of; sediment yield, sediment provenance, floodplain sediment 

accumulation and channel bed sediment storage. 
 
A mean difference of 24.1% between the predicted contributions of sediment originating 

from channel banks was found when using nine different tracer groups to fingerprint the 

river sediment samples. When fingerprinting contributions from urban street dusts mean 

differences between tracer group predictions were lower, at between 8% and 11%.  There 

was little indication that organic matter content and / or particle size caused differences 

between tracer group predictions. Within-source variability in tracer concentrations, and 

small contrasts between the tracer concentrations of the sediment source groups, were 

identified as probable causes of inherent uncertainty present in the fingerprinting analysis. It 

was determined that the ratio of the percentage difference between median tracer 
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concentrations in the source groups and the average within-source tracer concentration 

coefficient of variation could indicate the likely uncertainty in model predictions prior to 

tracer use. 

When fingerprinting historically deposited sediment, a reservoir core was fingerprinted with 

the least uncertainty, with tracer group provenance predictions ~28% apart and with 

consistent down-core trends. When fingerprinting an on-line lake core and four floodplain 

cores, differences between tracer group predictions were as large as 100%; the down-core 

trends in changing sediment provenance were also different. The differences between tracer 

group predictions could be attributed to the organic matter content and particle size of the 

sediment. There was also evidence of the in-growth of bacterially derived magnetite and 

chemical dissolution affecting the preservation of tracer signatures. 
 
 
Despite the prior indications that organic matter and particle size were causing tracer non-

conservatism in historical sediment cores, data corrections were found to often be 

ineffective at reducing the differences between tracer group predictions. The corrections 

were found to either have no effect on, or increase the mean differences between, tracer 

group predictions when fingerprinting river sediment. 
 
The sediment budget identified that the annual sediment yield of 13 - 19 t km-2 yr-1 for the 

Nene is low in comparison to other UK catchments. Channel banks were found to be the 

dominant sediment source in the Nene, typically contributing between 60% and 100% of the 

sediment. Rates of sediment accumulation on the Nene’s floodplain was found to be highly 

variable (920– 7,200 t km-2 yr-1); the presence of flood defences were likely to be a cause of 

this variability, and have caused a reduction in the accumulation rate since 1963. It was 

found that large quantities of sediment accumulated on channel beds during periods of low 

flows (~ 28% of the annual sediment yield), which was flushed from the bed by a series of 

flood events (leaving <1% of the annual sediment yield in temporary storage). 

 
An original contribution to research was made by quantifying the uncertainties associated 

with tracer use in a fine sediment fingerprinting investigation, as well as identifying the 

probable causes of the observed uncertainty. The fine sediment dynamics of the Nene basin 

were also investigated for the first time, and it was identified that the high contributions 

from channel banks in the Nene were highly a-typical for UK catchments. 
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1. Study context 
 

1.1. Introduction 

Under natural conditions fine sediment (usually defined as the fraction of less than 63µm in 

diameter (McCave et al., 1995)) is a key part of freshwater ecosystems and a major part of 

global geochemical cycling. Fine sediment is usually present in rivers in low concentrations, 

and is partly responsible for the delivery of essential nutrients to aquatic ecosystems 

(Walling, 2006). Anthropogenic activities such as modern agricultural practices, river 

modification and urbanisation have all been shown to significantly increase the supply of 

fine sediment to water bodies above background levels (Walling and Amos, 1999); often 

resulting in ecological damage such as a reduction in biodiversity (Newlon and Rabe, 1977), a 

reduction in fish reproductive success (Marks and Rutt, 1997) and harm to benthic 

invertebrates and macrophytes (Wood and Armitage, 1997). Fine sediment has also been 

shown to act as a vector for a variety of harmful contaminants such as toxic metals, nutrients 

and pesticides (Drouillard et al., 2006; Langston et al., 2010), further increasing the potential 

for ecological damage.  As a result research in geomorphology has focused on investigating 

fine sediment dynamics, with the intention that targeted mitigation measures can be applied 

most efficiently. This thesis contributes to the knowledge of sediment dynamics in an under-

investigated region of the UK, as well as enhancing the tools available to geomorphologists 

undertaking fine sediment investigations. 

 

1.2. Research rationale 

1.2.1.  A need for information on fine sediment dynamics in the UK 

The Water Framework Directive (WFD) (2000/60/EC) requires governments to achieve a 

‘good’ chemical and ecological status for water bodies.  While not explicitly addressed in the 

WFD the key role of sediments in overall water quality and compliance with the WFD has 

been highlighted (White, 2008; Tueros et al., 2009). The European Union (EU) Freshwater 

Fish Directive (2006/44/EC) also recognises the detrimental effect of sediment on the 

environment and specifies a maximum mean annual suspended sediment concentration 

(SSC) of 25mg l-1 (European Union, 2006). Given these requirements there is a clear need to 

assess sediment pressures in Europe, both for the purpose of water quality assessment and 
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for the targeted application of appropriate mitigation strategies, to move towards the goal 

of achieving “good chemical and ecological status” of water bodies.  

At present sediment dynamics have been widely investigated in river catchments in the 

northern and western regions of the UK. However there is a paucity of information for much 

of the remaining parts of the country (Figure 1-1 and Figure 1-2).   

 
Figure 1-1: The locations of published UK Sediment yield data derived from high and medium quality data 
(reproduced from, Walling et al., 2007). 

 
Figure 1-2: Catchments where information about sediment provenance has been obtained via sediment 
fingerprinting (reproduced from, Walling et al., 2007).  

Nene basin 

Nene basin 
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The Nene river basin is located in the East Midlands UK, has a total area of 1,634 km2 and is 

considered by the NRA (1994) to be a typical river of the East Midlands and also a typical 

heavily regulated river. It also represents a river basin in a region where a paucity of 

information has been identified. As this region of the UK is experiencing the second highest 

rate of urban growth, on-going changes to the area are applying increasing pressures to the 

aquatic ecosystem, which may increase in the foreseeable future (Natural England, 2012). 

The Anglian region catchment management plan (Environment Agency, 2009) reports that 

only 47% of surface waters in the Nene catchment achieve good ecological and chemical 

status; of the reasons stated for these failures, fine sediment is suggested to be prominent, 

however insufficient standards and data are available to determine where fine sediment is 

excessive. Ammonia and phosphate are highlighted as the most common chemical reasons 

for the failure to achieve good ecological status and are commonly associated with fine 

sediment (Meybek, 1982).  This project aims to address this paucity of data in the Nene 

basin and contribute to knowledge of the sediment dynamics in rivers typical of the East 

Midlands region. 

 

1.2.2.  Sediment fingerprinting 

Having identified the need for fine sediment investigations, the methodologies available for 

fine sediment assessment must also be considered. Fine sediment is considered as a diffuse 

pollutant, which has been shown to be highly spatially and temporally variable within even 

small geographical areas (Chon et al., 2012). It has also been recognised that the optimal 

means of mitigating the effects of fine sediment are at its source (Walling and Collins, 2008). 

As a result the information needed for suitable targeted mitigation requires the investigation 

of contributions from a wide variety of sediment sources within a large proportion of a 

catchment, with consideration given to the complex interconnectivity of environments 

(Collins and Walling, 2004). Because of this highly time consuming requirement, sediment 

fingerprinting methodologies have gained widespread adoption in geomorphological 

research. The principle of sediment fingerprinting is based upon comparing the properties of 

fine sediment deposited in a lake, deposited on a floodplain or transported by a river to 

those of the potential sediment sources present in a catchment. It relies on the ability of 

sources to be differentiated on the basis of their measured properties and on the 

assumption that properties of the sources reflect those of the sediment after delivery to a 

river, floodplain or lake (Collins et al., 1997a). Using this method a suitably representative 

database of source and sediment samples provides sufficient information from which to 
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quantify the relative importance of sediment sources in a catchment. This approach 

represents a far more practical methodology than the difficult and time consuming 

alternatives such as the direct measurement of a large number of erosion rates and 

sediment delivery ratios (Peart and Walling, 1988).  

 

Although researchers have recognised the significant potential of sediment fingerprinting in 

a range of environments e.g. lakes (Miller et al., 2005) floodplains (Collins et al., 1997b) 

sediment stored on channel beds (Walling et al., 2006) and suspended sediment (Gruszowski 

et al., 2003); uncertainties exist regarding its correct application. For example, a wide variety 

of different tracers have been employed in the published literature which include magnetic 

minerals (e.g. Caitcheon, 1993), lithogenic radionuclides (e.g.Gruszowski et al., 2003),  fallout 

radionuclides (e.g. Walling et al., 1999a), geochemistry (e.g. Collins et al., 1997a), particle 

size, shape and colour (e.g. Krein et al., 2003) and organic tracers (e.g. Collins et al., 2010). At 

present very little research has explored the effects of tracer selection on fingerprinting 

results. In addition to an uncertainty associated with tracer selection, tracers have been 

shown to be affected by particle size distribution (e.g. Thompson and Morton, 1979) and 

organic enrichment of sediment (Motha et al., 2003) so the need for data corrections has 

long been known.  However these corrections often attempt to represent a complex and 

little understood relationship with a simple one, and are therefore only applied in a 

situational basis if at all (Koiter et al., 2013).  Specific sediment sampling locations have been 

shown to have their own inherent sources of error when fingerprinting, for example 

preservation of signatures in lake sediment cores are often affected by post depositional 

changes to tracer properties (D'Haen et al., 2012). As of present, the above summary 

suggests that little systematic research has been done into the effect of sampling location, 

tracer selection and correction for particle size and organic content on the outcome of 

fingerprinting studies. It is therefore not possible to determine the extent to which 

experimental design affects the accuracy of fingerprinting results. Given these uncertainties, 

which have been highlighted in a number of recent publications (e.g. Koiter et al., (2013); 

D'Haen et al., (2012)); Smith and Blake, (2014), there is clearly scope for a comparison of 

different experimental designs to assist in future provenance investigations and test the 

validity of existing research. This project aims to contribute towards filling this research gap. 
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1.3. Aims and Objectives 

From the research gaps highlighted above, two aims and four objectives of this project were 

identified: 

 

Aim 1: To assess the impact of sediment sampling methodology, tracer selection, particle 

size correction and organic enrichment correction on a fine sediment fingerprinting study. 

 

Objective 1: To conduct a fine sediment fingerprinting investigation, using multiple 

combinations of different tracer groups and different fine sediment sampling methods and 

quantify the differences between the fingerprinting results. 

 

Objective 2: To investigate the factors affecting the consistency of fingerprinting results 

derived using different tracer groups. 

 

Objective 3: To repeat the fine sediment fingerprinting investigation while utilising simple 

corrections for organic enrichment and particle size distribution. 

 

Aim 2: To develop a partial sediment budget for the Upper Nene river basin and its major 

tributaries. 

 

Objective 4: To develop a partial sediment budget for the Nene river basin, incorporating 

measurements of: sediment yield, floodplain sediment accumulation, channel bed sediment 

storage and sediment provenance. 
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1.4. Format of the project 

Following this introduction and research rationale the aims of this thesis are addressed in 

nine chapters, the structure of these are shown in Figure 1-3.  

 

 

Figure 1-3: The structure of this thesis. 

 

Chapter 2 addresses Objectives 1, 2 and 3 by providing an introduction to sediment 

fingerprinting. It begins with a literature review charting the developments in sediment 

fingerprinting methods, and an exploration of the experimental designs used in published 
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literature. This chapter further highlights potential sources of error and common 

assumptions associated with performing sediment fingerprinting based research. Chapter 3 

begins with a discussion of sediment dynamics in UK catchments. Particular emphasis is 

given to sediment budgets as in Objective 4, to provide a basis for comparison of the results 

obtained for the upper Nene. 

 

Chapter 4 provides a description of the methods used in this thesis. It begins by describing 

the methods and calculations relevant to the development of a partial sediment budget for 

the Nene basin (Figure 1-4). These methods include those used to obtain the fine sediment 

samples used in the sediment fingerprinting investigation. The methods used to measure the 

tracers used in the sediment fingerprinting section of this thesis are then outlined along with 

the methods used to measure the organic content and particle size distribution of samples 

(Chapter 5). This is followed by a description of the statistical procedure and un-mixing 

model used in this study. 

 

 
 

Figure 1-4: The Partial sediment budget outline, sediment sources are highlighted in brown and sinks are in 
green.  

 

The results of this study are presented and discussed in Chapters 6, 7 and 8. Chapters 6 and 

7 address Objectives 1,2 and 3 based on sediment fingerprinting. Chapter 6 investigates the 
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fingerprinting of historically deposited sediment and Chapter 7 investigates the 

fingerprinting of suspended and recently deposited channel bed and overbank sediment. 

Chapter 8 addresses Objective 4, by investigating the components of a fine sediment budget 

for the Nene river basin. Chapter 9, the final chapter, summarises the major findings of this 

work in relation to published research, and by forming recommendations for future 

research. It also evaluates whether the aims have been successfully fulfilled.
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2. Sediment Fingerprinting  
 

2.1. Introduction 

This chapter explores sediment fingerprinting methodologies and the use of tracers to 

determine sediment provenance. Its aim is to explore the potential impacts of tracer 

selection and tracer behaviour on a sediment fingerprinting study using a review of 

published literature, to aid in the fulfilment of Objectives 1, 2 and 3. 

 

2.2. The development of sediment fingerprinting 

Initial investigations into sediment provenance focused on the direct monitoring and 

measurement of potential sediment sources, using methods such as erosion pins (Davis and 

Gregory, 1994), profilometers (Sirvent et al., 1997) and surveys of erosion features (Werrity 

and Ferguson, 1980). The time and resource costs of these sampling methods were quickly 

identified as a major limitation to conducting sediment provenance investigations (Peart and 

Walling, 1988). As a result the use of tracers to infer sediment provenance gained increasing 

popularity (e.g. Klages and Hsieh, 1975). However, it was quickly recognised that no single 

tracer could accurately differentiate between potential sediment sources (Walling et al., 

2003). As a result, the use of a mathematical un-mixing model, composite fingerprints 

consisting of multiple tracers, as well as statistical procedures to identify the fingerprint of 

tracers able to differentiate between sediment sources were developed.  

 

The first methodology to be widely adopted as a framework for fingerprinting studies was 

that of Collins et al., (1997), which can be viewed as the basis of many present day 

methodologies. Even in the early stages of tracer use it was recognised that there were 

multiple potential sources of error associated with their utilisation. In the methodology 

developed by Collins et al., (1997)  a test for tracer conservatism was used to minimise the 

possibility of tracers being used which were altered during transport. It was also recognised 

that organic matter and particle size distribution (especial specific surface area) exerted a 

strong influence on the conservatism of many tracers (Gibbs, 1973; Foster et al., 1998), so 

corrections were included on the basis of the percentage organic matter content and 

sediment specific surface area of the sediment and the source samples. Other than 

recognising these potential sources of error, results from this methodology and comparable 
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methodologies of the time were provided only as a mean contribution from each sediment 

source.  Goodness of fit, a measure of how well the measured data for sediment and its 

sources fits the un-mixing model, provided the only indication of the accuracy and precision 

of the results. 

Arguably the most significant development after the Collins et al. (1997) methodology was 

the addition of error analysis in the form of Monte Carlo uncertainty estimation by Rowan et 

al., (2000). This removed the requirement of judging the robustness of model outcomes 

solely using goodness of fit, which as demonstrated, could be potentially near-equivalent for 

widely different model outcomes (Beven, 1993) and is misleadingly improved by the 

inclusion of highly correlated tracers (Beven, 1996). The Monte Carlo uncertainty analysis 

repeats the un-mixing model through a range of values representative of the within source 

variation in tracer measurement for each sediment source, and often also incorporates the 

analytical error associated with the measurement of the tracer properties (Collins et al., 

2010). The selection of an average value and scaling indicator to represent the range of 

values used in the Monte Carlo simulation initially focused on means and standard 

deviations, however robust alternatives (i.e. median and median absolute deviation) have 

gained popularity due to the common presence of outliers and non-normally distributed 

nature of tracer properties (Collins et al., 2012). Further modifications to fingerprinting 

methodologies have been introduced to account for tracer behaviour, for example Collins et 

al., (2010) introduced weightings to prioritise the tracers with the smallest within-source 

variability. A weighting was also applied to account for the discriminatory efficiency of each 

tracer used in the model. In addition contributions from channel banks were constrained at 

a maximum contribution of 50%, as a review by (Walling and Collins, 2005) indicated that 

only two catchments studied in the UK showed contributions to suspended sediment load of 

over 50% from channel banks and subsurface sources. 

Given that the outlined developments in sediment fingerprinting methodologies have 

commonly focused on the exploration of error, a major drawback remains that almost no 

studies attempt to validate fingerprinting results against independently derived data.  A 

study by Minella et al., (2008) combined sediment fingerprinting with the monitoring of 

storm runoff and suspended sediment concentration. Sediment fingerprinting and direct 

monitoring both indicated a reduction in sediment inputs from agricultural fields and 

unpaved roads after the implementation of improved land management practices. However 

this cannot be considered a validation of fingerprinting results, just a logical link between 
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two means of measurement. In the absence of this independent source of data validation, 

consistency in results obtained in different parts of a catchment has been interpreted as 

improving the robustness of model results (Collins et al., 2010).  

An example of the potential errors which can occur when sediment fingerprinting is used 

without independent validation is given by Fu et al., (2006). This study showed that the use 

of different combinations of geochemical tracers could produce significantly different model 

outcomes. The authors suggest that unless multiple combinations of tracers are selected the 

results may be biased by tracer selection and the sensitivity of the model is not fully 

explored. In an investigation by Nosrati (2011) an average difference in predictions of 

between 1.1% and 7.4% was found between geochemical tracers, and tracing using soil 

enzyme activity. For individual samples, however, the tracer predictions differed by up to 

48%. Evrard et al., (2013) used a conventional fingerprinting approach based on fallout 

radionuclide activity and geochemical concentrations and an alternative diffuse reflectance 

infrared Fourier transform spectroscopy tracer analysis. Differences between the predicted 

contributions made by these methods were generally below 10%, but differences in many 

samples were as large as 20% to 30% and in one study catchment differences in predicted 

contributions were as high as 70%.  

In addition to these uncertainties, Smith and Blake (2014) showed that tracers can fail to 

identify major source groups in river sediment despite there being a statistically sound 

theoretical basis for the fingerprint used. Lees (1997) used laboratory based mixing of known 

proportions of sediment source materials and showed that the assumption of linear 

additivity, which is required for successful un-mixing of sediment sources was not fulfilled 

when remanence carrying magnetic minerals were used. Additional uncertainties have been 

shown to be associated with the different mathematical un-mixing models used to apportion 

contributions from sediment sources. An example of this was shown in a study by Haddadchi 

et al. (2013), who demonstrated that differently programmed un-mixing models could 

produce provenance predictions up to 33% differently when models used local optimisation, 

and 95% differently with global optimisation. Similarly, Smith and Blake (2014) showed that 

using the mean and median absolute deviation to represent sediment source tracer 

concentrations, as opposed to the mean and standard deviation, could produce different 

sediment provenance results. 

From these research studies it is therefore apparent that the lack of understanding regarding 

errors in the sediment fingerprinting process is a major limitation to its reliable application. 
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The impact of tracer selection has been somewhat reduced in recent work by Collins et al., 

(2013), which has focused on the use of different statistical procedures to identify multiple 

composite signatures so that un-mixing models can be run using a range of tracers, reducing 

the potential impacts of tracer selection and increasing the robustness of the final output.  

A range of potential errors, which most commonly relate to tracer behaviour and 

conservatism in the environment are highlighted in detail in two recent review papers 

written by Koiter et al., (2013) and D'Haen et al., (2012).  The remainder of this chapter 

explores the potential causes of error relating to tracer behaviour identified in these 

reviews, beginning with a discussion of the tracer groups used in published fingerprinting 

studies. 

 

2.3. Tracers  

A number of guidelines for tracer selection exist in the literature. It has been shown that 

using the minimum number of tracers is advantageous, to reduce problems of solution 

equifinality (Rowan et al., 2000), and tracer selection should avoid a high level of co-linearity 

to minimise the likelihood of an artificially high goodness of fit (Devereux et al., 2010). The 

major requirements for tracers are that they are conservative, measurable and able to 

differentiate between at least two sediment sources (D'Haen et al., 2012). Collins and 

Walling, (2002) showed that the ability of tracers to differentiate between sediment sources 

varied significantly between catchments, so a ‘generic’ fingerprint which can be applied to a 

wide range of catchments is a near impossibility. Therefore the choice of appropriate tracers 

to be used in a fingerprinting study will be highly dependent upon the characteristics of the 

catchment investigated and the time scale over which tracers are being used e.g. in tracing 

in process studies or for palaeo-environmental reconstruction. A summary of the frequency 

of use of different tracer groups in the published literature, used on different spatial and 

temporal scales is shown in Figure 2-1.  
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Figure 2-1: The frequency of tracer groups use at varying temporal and spatial scales (reproduced from 
D'Haen et al., (2012)). 

Figure 2-1 shows that geochemical tracers, mineral magnetic signatures, radionuclides and 

the physical properties of the sediment represent the most commonly utilised tracers, 

especially at local (< 10 km²) and intermediate (10 – 10 000 km²) scales which are most 

relevant to the majority of published fine sediment fingerprinting studies.  

The tracers used in this study are geochemical tracers, mineral magnetic signatures and 

radionuclides. They were selected because they are the most commonly utilised tracer 

groups in the published literature and all could be measured at the University of 

Northampton. Each tracer type is discussed in detail below. 

 

2.3.1.  Mineral magnetic signatures 

A suite of magnetic measurements has the advantage over most tracers in that they are 

quick to measure, require relatively inexpensive equipment and are non-destructive. For 

these reasons magnetic tracers have a well-established background of use both alone 

(Oldfield, 1977; Blake et al., 2006; Foster et al., 2008) and in combination with other tracers 

(Gruszowski et al., 2003).  

 

Magnetic measurements are controlled not only by various types of iron bearing minerals 

but also by mineral grain size (Walden, 1999). Minerals are formed and destroyed in 

different environments, as well as being related to the mineralogy of the bedrock parent 

material. This provides their potential to differentiate between sediment sources. For 
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example, during soil formation, ferrimagnetic minerals are typically formed at small particle 

sizes (<0.02µm) that are close to the super paramagnetic and stable single domain boundary 

(Dearing et al., 1996), at which size they exhibit frequency dependent susceptibility, 

providing the potential to differentiate between surface and subsurface sediment sources 

(Dearing, 1999). Combustion commonly results in the formation of large canted anti-

ferromagnetic haematites allowing for the identification of urban sediments on the basis of 

the measurement of hard IRM (HIRM) (Blake et al., 2006; Wang et al., 2012). In addition 

magnetic tracers have also been shown to successfully differentiate on the basis of lithology 

(Owens et al., 1999b). The interpretation and application of magnetic measurements is 

therefore approached from the standpoint of targeting specific mineral types and grain size 

fractions which may be characteristic of different land utilisations or geographic regions 

where sediment may originate.  

 

Mineral magnetic measurements benefit from simple organic corrections due to magnetic 

minerals not being part of the organic fraction of sediments, they are often however highly 

affected by the particle size distribution of the sample (Thompson and Morton, 1979). 

Common magnetic tracers used in this study and their associated mineral assemblages are 

described below (Table 2-1).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



2: Sediment Fingerprinting 

30 
 

 

Table 2-1: The properties of commonly utilised mineral magnetic measurements (Walden, 1999; Wang et al., 
2012; Yang et al., 2010). 
Measurement Minerals measured Interpretation 
Susceptibility 
measurements 

  

Low Frequency 
Susceptibility (χlf) 

All minerals: Diamagnetic, 
paramagnetic, canted anti-
ferromagnetic, ferrimagnetic  

Primarily determined by magnetic mineral type. Where 
present ferrimagnetic minerals will dominate even in small 
quantities. In the case of a low concentration of ferrimagnetic 
minerals canted anti-ferromagnetic grains will dominate.   

Frequency Dependant 
Susceptibility (χfd) 

Ultrafine super paramagnetic 
grains 

Represents the concentration of ultrafine super paramagnetic 
minerals at the super paramagnetic - stable single domain 
border (<0.02um diameter). Ultrafine magnetite commonly 
formed in topsoils is the most significant contributor to χfd 
making it highly indicative of sediment derived from top soils. 

Percentage Frequency 
Dependant 
Susceptibility  
(χfd %) 

Ultrafine super paramagnetic 
grains 

The Frequency Dependant Susceptibility (χfd) expressed as a 
percentage of (χlf) removes the influence of overall mineral 
concentration. Values range from 0-14% with measurements 
below 5% being indicative of very low concentrations and 
those above 10% indicating a sample dominated by ultrafine 
super paramagnetic grains. As this measurement is a ratio it 
is not suitable for use in un-mixing models but represents a 
useful qualitative indicator. 

   
Remanence   
ARM (40µT)  Highly sensitive to stable single 

domain ferrimagnetic minerals. 
Samples are exposed to an alternating field which decreases 
linearly from the initial field size. This removes any of the 
samples natural remanence. A 0.04T biasing field is then 
applied inducing artificial remanence. This measurement is 
selective of true stable single domain ferrimagnetic grains in 
the 0.02 to 0.4µm range (Maher, 1988). 

Susceptibility of ARM 
(χarm) 

 Highly sensitive to stable single 
domain ferrimagnetic minerals. 

ARM normalised to field strength (χarm) is more commonly 
expressed than ARM to ensure the results obtained are 
comparable to existing literature as different laboratories 
often use different field strengths.  

Saturation isothermal 
remnant 
magnetization  
(SIRM) 

Close to all minerals capable of 
carrying a remanence 

A magnetic field of +1T magnetises nearly all remanence 
carrying minerals and is representative of both mineral 
assemblage and grain size. 

Isothermal remnant 
magnetisation in a -
100mT backfield 
(IRM -100) (SOFT IRM) 

 'Soft' ferrimagnetic minerals A -0.1T backfield has been shown to be sufficient to reverse 
the polarity of the majority of single domain magnetite in a 
sample while being incapable of reversing the field of larger 
multi-domain high coercively minerals.  

Hard  Isothermal 
remnant 
magnetisation (HIRM) 

high-coactivity 
antiferromagnetic minerals 

A representation of the SIRM incapable of being reversed in a 
backfield of -0.1T. This measurement is indicative of high 
coercivity canted antiferromagnetic minerals or coarse multi-
domain magnetite which commonly occurs in high 
concentrations in un-weathered or mildly weathered bedrock 
and as a product of combustion.  
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2.3.2.  Radionuclide activities 

Radionuclides can be classified into two groups: (1) fallout radionuclides, which are 

produced in the atmosphere and deposited onto the ground and the surface of any water 

body, or (2) lithogenic nuclides, occurring as a product of natural decay series in a rock or 

soil or in a primordial form (Unscear, 2000). The fallout nuclides most commonly used as 

tracers are 137Cs and unsupported 210Pb (210Pbun). 7Be, which is produced by cosmic ray 

bombardment, is also a commonly used fallout radionuclide (Blake et al., 2002). However 

due to its short half-life (53.44 days) it is less frequently utilised as a tracer.   Fallout 

radionuclides have the advantage that they are independent of lithology and soil type, 

providing an increased chance of differentiating between sediment sources on the basis of 

land utilisation (Collins and Walling, 2004). 137Cs is the most commonly used fallout 

radionuclide. It was created during thermonuclear weapons tests, and in nuclear accidents, 

with the peak weapons fallout occurring in 1963 in the northern hemisphere (Cambray et al., 

1989). Unsupported or excess 210Pb (210Pbun) is the proportion of 210Pb in a sediment or soil 

sample that is not in equilibrium with its parent isotope (226Ra). It originates from the natural 

atmospheric decay of 226Ra as part of the 238U decay series (Appleby, 2001). 210Pbun transport 

to the ground occurs predominantly with rainfall, and along with 137Cs, it has been shown to 

rapidly sorb to soil particles (Taylor et al., 2012). The activities of fallout radionuclides are 

expected to vary due to their distribution through soil profiles, presenting the possibility to 

differentiate between land utilizations as demonstrated in Figure 2-2. In the case of channel 

banks which, are not exposed to fallout, greatly reduced activities or activities below the 

limits of detection are expected (Walling, 2004).  
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Figure 2-2: The vertical distribution of 137Cs and unsupported 210Pb in soil profiles in the Dart catchment UK 
(Reproduced from Walling and Woodward, 1992). 
 

Fallout radionuclides experiencing both variable fallout history and having a short half-life 

have the disadvantage over other tracers in that they cannot be used in a 

palaeoenvironmental context (Walling, 2004). 

 

Lithogenic radionuclides have received less attention than fallout radionuclides, with very 

few studies making use of them. As the technique of gamma spectrometry provides 

measurements of these as a by-product of fallout radionuclide measurement, there is 

therefore potential for a significant increase in their application. A review of radionuclides by 

Walling (2004) omits to mention them as tracers and a search of available literature reveals 

very few occurrences of the use of these radionuclides in fingerprinting studies despite the 

call by Murray et al. (1987) to evaluate their potential as the only direct cost in collecting the 

data is the time taken to interrogate the gamma spectrum and derive calibrations. In 

published literature their use is more common as qualitative indicators of sediment 

provenance. Of the fingerprinting studies they have been used in, they have been shown to 

be able to successfully differentiate between sediment sources (Foster et al., 2007; Foster et 

al., 2002). They have also been shown to associate with different minerals in the 

environment, for example 238U and 232Th are commonly associated with heavy minerals, 
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whereas 40K is concentrated within small clay minerals (Tsabaris et al., 2007).  An attempt to 

differentiate between geologies in the French Alps showed that 226Ra could successfully 

differentiate between the different sedimentary geologies for 70% of source samples (Evrard 

et al., 2011).   

 

2.3.3.  Geochemical tracers 

Of the different types of tracers used, geochemical tracers are the most commonly utilised 

at all scales and in both a contemporary and historical context (D'Haen et al., 2012). The 

most common form of geochemical tracer is concentrations of major and trace elements; 

which is likely due to the ability of ICP-OES or ICP-MS to rapidly measure multiple elements 

and their proven track record in provenance studies (Collins et al., 1997a; Carter et al., 

2003). Stable isotopes form a second type of geochemical tracer which have been 

successfully used, especially vegetative-derived carbon and nitrogen, and have shown 

promise at differentiating between differing land uses (Fox, 2005); and lead isotopes, which 

have been used for historical reconstruction (Farmer et al., 1996). An example of the 

potential of trace element concentrations to differentiate between sediment sources is rare 

earth elements, which are generally not subject to anthropogenic inputs, and have been 

shown to be effective petrogenetic indicators (Wilson, 1989). For this reason, they have 

been used to trace the provenance of stream sediments (Chung et al., 2009). In the urban 

environment, pollutants have been used to indicate sediments originating from urban street 

dusts and sewage treatment (de Miguel et al., 2005; Neal et al., 2005). Geochemical tracers 

can exhibit widely different behaviours in the environment and can be classified into three 

fractions, the available fraction which is readily added or dissociated from the soil or 

sediment, the reactive fraction which can be altered by chemical processes and the inert 

fraction trapped within the mineral matrix (Rodrigues et al., 2010). It is therefore important 

to consider the potential mobility of the tracers utilised. 

 

2.4. Tracer conservatism 

As previously highlighted, the behaviour of tracers during their journey with sediment from 

the point of initial erosion to the point of its collection or deposition is a major potential 

source of error in sediment fingerprinting studies. Two recent review papers address the 

conservatism of tracers in fingerprinting studies (Koiter et al. (2013) D'Haen et al. (2012)). 
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Figure 2-3 shows the major processes affecting tracer conservatism from source to sink, 

which these reviews highlight. 

 

Figure 2-3: A simplified diagram of the processes potentially affecting tracer conservatism on the journey of 
sediment from source to sink, summarising the major sources of tracer non-conservatism highlighted in a 
review by Koiter et al., (2013). 

 

The following sections address the processes affecting tracer conservatism highlighted in published 

research. 

2.4.1.  Changes in particle size distribution 

Processes resulting in changes to sediment particle size distribution are the most commonly 

highlighted in published reviews and have been shown to occur constantly throughout each 

part of a river catchment. It has been shown that the largest and most dense particles would 

be most difficult to transport and the most readily deposited (Mclaren, 1981). However 

floccs composed of many smaller particles loosely bound together as aggregates are also 

likely to be impacted in this way (Droppo et al., 1997). 



2: Sediment Fingerprinting 

35 
 

The impacts of selective transport and deposition of particle size fractions may vary with 

differing tracers. Mineral magnetic measurements have been shown to be highly dependent 

on grain size, for example individual haematite minerals can be larger than the <63µm 

particle size fraction, which is commonly selected for analysis in fingerprinting investigations 

(Walden, 1999). Alternatively smaller minerals can often exhibit a disproportionate effect on 

overall susceptibility and remanence (Walden, 1999). As a result in field studies investigating 

the relationship between particle size distribution and mineral magnetic measurements, the 

relationship has often been shown to be complex (Foster et al., 1998; Oldfield et al., 2009). 

Fallout radionuclides have also been shown to have an affinity with finer particles, 

particularly clay minerals, due to their larger surface area and greater potential for sorption. 

Ab Razak et al., (1996) showed 137Cs was predominantly associated with clays and 210Pbun co-

varied to some extent with clay. Livens and Baxter (1988) found that none of the total 

fixed 137Cs was attached to sand-sized particles. However aggregates of clay minerals or clay 

coatings on the surface of coarser particles can result in increased 137Cs association with 

coarse floccs composed of large and small individual particles (D’Haen et al., 2012). 

Lithogenic radionuclides have also been shown to have trends of increasing activity with 

increasing particle size, in some studies. 40K, for example, has been shown to be associated 

with fine clay particles whereas 235Th was associated more with heavier minerals in the 

coarser particle size fractions (Bihari and Dezső, 2008). 

Geochemical element concentrations have also been shown to often be related to sediment 

particle size. For example, a study of sedimentary Jurassic and Cretaceous soils in the UK 

showed most elements in a <63µm fractionated sample of soil are concentrated in the 

<20µm fraction (Pye et al., 2007). Similarly Lanthanides have been shown to easily adsorb to 

clay minerals (Mahler et al., 1998). The exceptions are elements associated with 

anthropogenic pollution such as lead and zinc which are often associated more with larger 

particles within the <63µm fraction (Horowitz and Elrick 1987; Pye et al., 2007).  

Particle size impacts are likely made more severe by the preferential abrasion of soft 

sediment particles into smaller particles (Schumm and Stevens, 1973), causing a change in 

the relationship between tracers and particle size and also a change in measured particle 

size distribution of the sediment which is unrelated to its selective transport or deposition. 

This potentially invalidates any correction for particle size based on the original sediment 

source material. For example Ohta (2008) reported an increase of between 21-59% of the 

material in the <40um size fraction of a fine sediment sample after abrasion for a 48h period 
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in a tumbling mill. However in the case of 137Cs activity in abraded material, little difference 

in activity has been observed when comparing it to naturally occurring <40µm material (Dyer 

and Olley, 1999). 

2.4.2.  Enrichment or depletion of organic material  

Organic matter can be classified as either allochthonous (derived from sediment sources 

external to the fluvial or limnic environment) or autochthonous (produced within the fluvial 

or limnic environment). During erosion and transport of sediment to a river numerous 

processes have been shown to change the proportion of allochthonous organic matter 

associated with the sediment. For example Nadeu et al. (2011) showed that eroded 

sediment can be depleted in organic matter when compared to its source materials. 

Alternatively the organic fraction of sediments has been shown to be carried further through 

a catchment, by being carried in suspension longer, primarily due to its association with 

small particles and its lower density (Nadeu et al., 2011). Likewise any preferential erosion 

and hillslope transport of finer particle size fractions can result in a greater delivery of 

organic material to a lake or river. This was shown by Wang et al. (2010) in a catchment 

based study which showed that exported sediments were significantly enriched in organic 

carbon, with enrichment ratios varying between 1.2 and 3.0.  

 The accumulation of fallen leaves, aquatic vegetation, biofilms and aquatic life represent the 

primary inputs of autochthonous organic matter. Evidence for the organic enrichment of 

lake, river and wetland sediment by both allochthonous and autochthonous organic matter 

has been reported in numerous studies (Carr et al., 2010). Kanassanen and Jaakkola (1985) 

identified an increase in algal-derived organic matter in lake sediments. Alternatively 

Kaushal and Binford (1999) showed increased allochthonous organic inputs to lake 

sediments resulting from deforestation. 

 

The impacts of organic enrichment or depletion have been shown to vary between different 

tracers. For example ~30% of 210Pbun activity was shown to be associated with organic 

matter in soils in a forested catchment (Wallbrink et al., 1997). Hirner et al. (1990) showed 

the elements B, V, Mn, Co, Ni, Cu, Zn, As, Mo, Ag, Cd, Sb, Hg and Pb were all enriched by up 

to three orders of magnitude within the organic fraction of sediments. In urban street dusts, 

pollutants such as Zn, Cu and Pb have been shown to be associated with the organic fraction 

(Robertson et al., 2003). For example, Gibson and Farmer (1986) showed that 41% of copper 

and 29% of zinc was associated with the organic fraction of urban street dusts. 
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An examination of the published literature particularly highlights the paucity of research 

performed on the processes affecting organic material within the fluvial system. 

2.4.3.  Chemical transformations 

The review by Koiter et al. (2013) highlights numerous chemical processes which can alter 

tracers during transport and, in particular, when sediment is in long term storage. A change 

of pH or redox potential occurring when sediment enters a river, or through the anoxic 

reducing conditions which are often present in long term sediment stores, represent the 

primary situations in which transformations can occur. Figure 2-4 shows a summary of the 

chemical transformations which may affect tracers. 

 

 

 

Figure 2-4: Distribution of total pools of potentially toxic elements in soils — the size of the different 
fractions and the most relevant soil processes vary according to the element of interest and environmental 
conditions (reproduced from Rodrigues et al., (2010)). 

In the case of magnetic minerals, chemical transformations have been shown to occur, both 

depleting the tracers and enriching them.  For example oxidation and reduction reactions 

associated with groundwater table variations have been shown to result in the dissolution of 

minerals, beginning with the smaller grain sizes (Dearing, 2000). Alternatively, Oldfield and 

Wu (2000) and Maher and Thompson (1999) demonstrated the presence of autochthonous 

bacterially produced iron oxides in lake sediment. 

Geochemical elements exhibit varying mobility within the environment.  For example Ca2+, 

Na+, K+, Fe2+and Mg2+ are selectively leached relative to the relatively immobile hydrolysate 

constituents Al3+ and Ti4+ (Roy et al., 2006). As a result indices of alteration such as Al/Na, 
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Al/K, K/Na, Ti/Na and Rb/K ratios have been used to indicate dissolution of the mobile 

phases (Roy et al., 2008). 137Cs has been demonstrated to be very stable in regards to 

chemical dissolution (Walling and Quine, 1992). However Foster et al., (2006) showed the 

mobilisation of 137Cs in sediment contained in coastal lagoons affected by saline pore waters. 

The lithogenic radionuclides 40K and 235U have been shown to have a high mobility in the 

environment when compared to the largely immobile elements such as Cs, Th, Ac, Ra and Pb 

(Table 2-2). Relatively immobile radionuclides have however been observed to be mobile in 

some situations, especially when ground water or salt water come into prolonged contact 

with soil or sediment. For example 226Ra, which is the parent isotope of 210Pbun and a 

lithogenic radionuclide tracer, has been shown to be mobilised by groundwater resulting in 

an enrichment in lake and wetland sediment (Brenner et al., 2004).  

Table 2-2: Down-core mobility of radionuclide elements in undisturbed soil profiles (Reproduced from Balonov et 
al., (2010)) 

Element Number of reported measurements Kd (activity concentration in soil  solid phase / activity 
concentration in the liquid phase) 

Cs 469 1200 
U 178 200 
Th 46 1900 
Ac 4 1700 
K 237 13 

Ra 51 2500 
Pb 23 2000 

 

Plant uptake and the biogeochemical cycling of chemical elements is also a key process 

which can alter tracers, especially when utilising tracers in sediment on a floodplain where 

vegetation grows on deposited sediment. For example Papastefanou et al., (2005) showed 

that half of the 137Cs Chernobyl fallout was being cycled through plants 40 months after its 

fallout. This represents a large concentration which could potentially be removed or 

redistributed by grazing animals, or the cutting of vegetation, changing the sediment 

provenance results obtained with this tracers use. Geochemical tracers also can be highly 

bioavailable for plant uptake depending on the redox conditions found in the deposited 

sediment (Table 2-3), highlighting a potential source of error with the use of these tracers. 
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Table 2-3: Bioavailability of trace metals under different soil conditions (reproduced from Kabata-Pendias (2004)) 

Soil condition Bioavailability  

Redox pH Easy Moderate 

Oxidizing <3 Cd, Zn, Co, Cu, Ni Mn, Hg, V 

Oxidizing >5 Cd, Zn Mo, Se, Sr, Te, V 

Oxidizing Fe-rich >5 None Cd, Zn 

Reducing >5 Se, Mo Cd, Zn, Cu, Mn, Pb, Sr 

Reducing, with H2S >5 None Mn, Sr 

 

2.4.4.  Post-depositional alterations 

The use of tracers with deposited sediment brings additional assumptions and requirements. 

The most apparent is that sediment must remain conservative during transport, deposition 

and post-deposition storage, in contrast to only transport for suspended sediment (Foster 

and Lees, 2000). Over long timescales the properties of the source materials must also 

remain conservative. For a number of tracers it is immediately apparent that this 

requirement is not fulfilled, such as 137Cs, which was not present in the environment until 

the atomic era, so they are not suitable for tracing studies in an historical context. Similarly, 

heavy metals should not be used quantitatively in an historical context as the atmospheric 

flux of many metals onto soil surfaces means that soil concentrations today are likely much 

higher than they were in the past (Foster and Charlesworth, 1996).  

It is far less often considered that anthropogenic activities have resulted in temporal 

changes in source properties; an example of which are roads and road verges used in tracing 

studies by Miller et al., (2005) and Collins et al., (2010). Such papers commonly include 

elements such as Cu, Ni and Cr as tracers which are likely present as a result of vehicle 

emissions which will have changed in magnitude over the previous 100 years. This raises the 

question whether an increase in a tracer concentration in an historical sediment sample (e.g. 

lake or floodplain sediment) represents an increased contribution from road sources, or an 

increase in tracer concentration in the source road dusts as a result of increased traffic 

density. It is therefore unclear whether omitting these source groups and their associated 

tracers is best practice or whether it is more desirable to include them and acknowledge the 

uncertainty of the results. 
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2.5. Corrections to account for differences in particle size and organic 

enrichment 

The potential changes to tracers have been shown to often focus around changes to the 

particle size distribution and organic content of sediment. Published literature contains 

many examples of the use of simple corrections to account for these changes. Including 

corrections for particle size only (Walling et al., 1999a; Collins et al., 2010; Zhang et al., 

2012), corrections for both particle size and organic enrichment (Collins et al., 1997a; Zhang 

et al., 2012; Kim et al., 2013) and no corrections (Hatfield and Maher, 2009; Devereux et al., 

2010). It is, however, uncommon for only an organic correction to be applied. 

2.5.1.  Organic enrichment corrections 

Simple organic enrichment corrections rely on tracers not being associated with the organic 

fraction. With the use of mineral magnetism this type of organic enrichment correction is a 

common procedure as organic matter is only weakly diamagnetic (Dearing, 1999). In the 

case of radionuclides and geochemistry, tracers have often been shown to be associated 

with the organic fraction (Motha et al., 2003) meaning a correction accounting for dilution 

by organic matter would be detrimental to model accuracy. A number of more complex 

approaches have been used to account for organic matter - tracer relationships. For example 

the removal of the organic fraction using hydrogen peroxide (Fu et al., 2006); although in the 

case of many tracers such as mineral magnetic signatures, this method itself could 

potentially alter the tracers in the minerogenic fraction (Sandgren and Snowball, 2002). 

Motha et al., (2003) investigated specific relationships between organic matter and tracers. 

It was shown that 137Cs enrichment ratios of between 1.29 and 2.16 occur in the organic 

fraction of source materials. These methods, however, do not account for autochthonous 

organic material, and greatly increases the analysis time and resource requirements. 

It is widely accepted that little is known about the relationships between tracers and organic 

enrichment (Koiter et al., 2013), which is often cited as the reason why organic corrections 

are omitted from published fingerprinting studies. 

2.5.2.  Particle size corrections 

Particle size corrections feature more frequently than organic corrections in published 

sediment fingerprinting studies. Limiting analysis to the <63um particle size fraction of 

source samples and sediment is the most common method of mitigating the impacts of 

differences in particle size distribution (Collins et al., 1997). Further corrections are 
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commonly applied to account for variations in the <63µm fraction by normalising tracer 

measurements to the specific surface area (SSA) of source and sediment samples. 

SSA corrections assume a linear relationship between particle size and tracer quantity. As 

has been discussed in previous sections, chemical and physical processes during erosion 

transport and deposition result in the selective erosion and chemical weathering of mineral 

fractions, meaning that in the environment a linear relationship is often not encountered. 

For example Foster et al. (1998), Blake et al. (2006) and Oldfield et al. (2009), showed 

relationships between particle size and magnetic mineral tracers were complex. Russell et 

al., (2001) used individual corrections for particle size effects on tracers and found that the 

fingerprint properties had particle size correction values ranging from 0.12 and 4.55 

indicating a wide range of different relationships between different tracers and SSA which 

can occur in a single catchment. Research by Motha (2003) shows varying relationships 

between tracers and sediment specific surface area, 210Pbun activity increased in the 2–20μm 

fraction compared to the <2μm fraction, activity then gradually decreased with increasing 

particle size. However, the study concluded that there was often a simple relationship 

between particle size and tracer properties for the geochemical and radiometric properties, 

but no simple relationships between particle size and mineral magnetic properties. 

At present published research has shown relationships between specific surface area and 

tracers to be highly variable. However, unlike relationships with organic material specific 

surface area often follows linear trends with tracer concentrations. 
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3. Fine sediment dynamics in river catchments 
 

3.1. The need to investigate fine sediment 

The detrimental effect of anthropogenic pollutants on water quality has long been 

recognised. As a result various regulations have been introduced requiring both reduced 

pollutant inputs from anthropogenic activities and the application of mitigation measures by 

National Governments. Water quality in Europe is primarily legislated through the Water 

Framework Directive (Directive 2000/60/EC). The Directive requires governments to achieve 

a ‘good’ chemical and ecological status of water bodies. The assessment of sediment is not 

directly required by the WFD resulting in much criticism, which specifically highlights the key 

impact of sediment on overall water quality (e.g. White, 2008; Tueros et al., 2009).  The EU 

freshwater fish directive does recognise the detrimental effect of sediment on the 

environment and specifies a maximum mean annual suspended sediment concentration 

(SSC) of 25mg l-1 (European Union, 2006). The suitability of a single figure being applicable to 

all catchment types in England and Wales has been questioned (Foster et al., 2011). Instead 

it is often seen that fine sediment investigation and mitigation must take into account the 

catchment as a whole unit recognising the diffuse nature of sediment inputs and the 

complex interconnectivity of environments within a basin (Chon et al, 2012). 

3.2. Sediment budgets 

Having identified a need to mitigate sediment pressures, attention must be given to the 

investigation of sediment inputs, movement and storage in the river system so that 

mitigation measures can be targeted in the most efficient manner. Sediment budgets 

provide a conceptual framework for quantifying inputs, outputs and storage of sediment 

within a catchment, and have been constructed at scales ranging from small lake catchments 

(Charlesworth and Foster, 1999) to large river basins (Walling et al., 2006).  From a practical 

standpoint they provide a useful means of understanding catchment processes and 

potentially predicting the effectiveness of future mitigation measures (Walling and Collins, 

2008; Collins et al., 2010). 

A sediment budget attempts to consider the sediment dynamics of a catchment in its 

entirety. They are not limited to a single aspect of dynamics such as the sediment yield at 

the outflow of a catchment or in a reservoir, or rates of erosion in a specific field plot. The 
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under-exploited potential for sediment budgets to act as a management tool is highlighted 

by Walling and Collins (2008) and Hinderer (2012). The reason for this under-exploitation is 

that use of a sediment budget approach requires measurements that are difficult of obtain 

of the sediment inputs from various sediment sources, in addition to the quantification of 

sediment storage and sediment yield (Hinderer, 2012). Quantification of sediment budgets is 

also hindered by uncertainties in parts of various methodologies used; for example the 

potential error in 137Cs based soil erosion estimates highlighted by Parsons and Foster 

(2011). A further example is in the uncertainties regarding the suitability of plot-based soil 

erosion estimates when extended to larger scales, such as those used, for example in the 

formation of the Revised Universal Soil Loss Equation (Parsons, 2004). Values being reported 

for the sediment delivery ratios based only upon the un-measured difference between 

estimates of soil erosion and sediment yield (Parsons, 2012) are also a source of uncertainty. 

However, despite these potential limitations the quantification of a sediment budget 

represents a useful framework to investigate fine sediment dynamics.  

The following sections address the components of a sediment budget describing their 

importance and a summary of their measurement in UK catchments. 

3.3. Inputs from sediment sources 

Sediment sources in the UK are typically classified by land utilisation. Table 3-1 shows a 

review of measured contributions from different land utilisation classes in UK catchments. 

Overall pasture and cultivated land are most commonly the dominant sediment sources, 

although the table does not account for the percentage coverage of each land use in the 

investigated catchments. 
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Table 3-1: Percentage contributions from sediment sources derived from sediment fingerprinting in UK 
catchments (reproduced from Walling et al., 2007).  

River / Catchment Area km2 Woodland Pasture / Moorland Cultivated Channel Banks 

Ettrick Water 500 3 49  48 

Teviot 1110 15 21 24 39 

Tweed 4390 7 20 35 39 

Swale 1350  42 30 28 

Ure 914 0.7 45 17 37 

Nidd 484 6.9 75 2.8 15 

Ouse 3315  25 38 37 

Wharfe 814 4.4 70 3.6 23 

Aire 282  45  55 

Aire   57  43 

Aire 1932  7 20 33 

New Cliftonthorpe 0.96  30 33 6 

Lower Smisby 2.6  26 37 6.2 

Upper Hore 1.6 11 63  26 

Hafren  78 28  4 

Upper Severn 8.7 22 68  12 

Upper Severn 580 48 29  23 

Rhiw 140 2 89 2 7 

Vymwy 778 2 83 4 11 

Perry 181 2 71 22 5 

Severn 4325 2 65 25 8 

Tem 852 1 40 53 5 

Jubilee 0.31  3.1 37 12 

Belmont 1.5  3.9 30 11 

Frome 77  14 38 48 

Stretford Brook 55  9 48 43 

Dore 42  2 56 42 

Worm 69  25 20 55 

Garron Brook 93  14 46 40 

E.Avon 89  19 64 17 

W.Avon 85  25 71 4 

Till 55 1 46 33 20 

Chiltern 16  30 69 1 

Sem 21  10 78 12 

Ebble 109  37 52 11 

Nadder 221  4 54 32 

Nadder 221 1.3 16 69 14 

Upper Avon 324 1.8 12 78 8.2 

Wylye 446 1.7 14 73 11 

Lower Avon 1477 1.4 16 64 19 

Waldon 78 4 48 27 21 

Upper Torridge 115 2 48 29 21 

Torridge 258 2 47 28 23 

Barle 128 6 85 1 8 

Bathem 64 1 87 3 9 

Lowman 54 2 54 40 4 

Dart 46 3 82 11 5 

Exe 601 3 72 20 5 

Culm 276  30 60 10 

Culm 276  35 53 12 
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Figure 3-1 indicates that channel banks, as a sediment source in the UK, rarely exceeds a 

50% contribution to total sediment yield. A general range of contributions shown is 85-95% 

from surface sources and 5-15% from channel/subsurface sources but emphasis is given to 

the wide range of values encountered.  

 

 

 

Figure 3-1:  Frequency distributions of the percentage contributions from surface sources and subsurface 
sources in UK catchments, reproduced from Walling et al., (2007). 

 

3.3.1.  Connectivity and sediment delivery 

The proportion of gross erosion which reaches a lake or river in a given time interval is 

known as the sediment delivery ratio (SDR) (Walling, 1983).  On geological timescales the 

ratio of eroded sediment to the amount of sediment delivered to a stream system will be 1; 

as material deposited within a catchment cannot accumulate indefinitely (Parsons, 2012). 

This is not the case over years to millennia. For example, in the case of the Pang and 

Lambourn catchments, Berkshire UK, 51% and 31% of sediment mobilised from cultivated 

land was sequestered before reaching the river channel (Walling et al., 2006) and in the case 

of the Rosemaund catchment in Herefordshire and the Smisby catchment in Derbyshire 

between 14.2% and 25.7% of eroded sediment was sequestered before reaching the river 

channel (Walling et al., 2002).  

 

Due to the practical constraints of its measurement SDR is often not directly measured in 

field-based studies. Modelling approaches are more frequently used, where SDR is 
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estimated using drainage basin area, gradient and rainfall, amongst other factors (de Vente 

et al., 2007). In field based studies an estimate is often derived from differences between 

measured values in a sediment budget (i.e. erosion rates and sediment yield), an approach 

much criticised by Parsons (2012). Therefore these multiple complex factors affecting the 

SDR and lack of field based measurements have resulted in a large margin of error 

associated with its prediction (Walling, 1983). Trends in field based and modelling work have 

become apparent however with the SDR often being inversely related to catchment area 

(Walling, 1983). This is usually explained by the greater opportunities for sediment to 

become trapped in sinks, such as foot slopes, which give rise to longer sediment transit 

times through a catchment (de Vente et al., 2007).  Floodplains represent an important 

example of a sediment sink as they are scale dependent emergent features. They occupy a 

larger percentage of the total catchment area with increasing catchment size and effectively 

isolate adjacent hill slopes from the main river channel unless rivers run across them. 

 

The primary route of overland sediment movement varies in catchments with different 

topographies. In hilly catchments the energy available in overland flows is able to form 

gullies which act as direct conduits for sediment to reach a river. In low gradient catchments 

bank erosion and overbank flows are more effective means of sediment delivery given the 

common absence of consolidated overland flows (Salant et al., 2008). In UK catchments the 

role of roads and sunken lanes has been emphasised as increasing connectivity between 

agricultural fields and rivers (Gruszowski, 2003; Boardman, 2013) and sub-surface drainage 

has also been shown to contribute a high proportion of sediment in drained lowland 

agricultural catchments (Russell et al., 2001) 

 

From a management standpoint an understanding of the sediment delivery ratio (SDR) is 

important as a large amount of temporary sequestration is likely to result in delayed 

catchment responses to changing erosion processes, such as might occur before or after 

mitigation measures or have occurred in the past (Walling and Collins, 2008). This is 

especially relevant as Parsons (2012) raises a criticism of sediment fingerprinting in that 

temporary sequestration of sediment is not addressed in its application. SDR returns to the 

classic idea in fluvial geomorphology of reaction and relaxation times in catchment response 

to changing sediment pressures or fluvial energy, many aspects of which are little 

understood, such as how landscapes respond to cumulative changes through time (Owens et 

al., 2010). 
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3.3.2.   Cultivated Land  

Conventional agricultural practices have been shown to cause erosion rates to greatly 

exceed pre-agricultural levels. In comparison to international catchments the UK generally 

exhibits low rates of erosion (Table 3-2). 

Table 3-2 : Soil erosion rates in natural and undisturbed land in 7 countries (Reproduced from Slaymaker, 
2003).  

Country Natural t km-2 year-1 Cultivated t km-2 year-1 

China <200 15000-20000 

U.S.A. 3-300 0-17000 

Ivory Coast 3-20 10-9000 

Nigeria 50-100 10-3500 

India 50-100 30-2000 

Belgium 10-50 300-3000 

U.K. 10-50 10-300 

 

The erosion of cultivated land occurs by three processes; rill erosion, inter-rill erosion and 

gully erosion. Inter-rill erosion represents the breaking up of soil particles by the energy 

contained in rainfall, as well as unconsolidated runoff in the form of sheetwash. It is rarely of 

importance as a mechanism for soil redistribution, only for an increase in erosion rate, due 

to the low concentration of energy available for sediment transport (Evans, 2002). Gully and 

rill erosion are the primary means of sediment entrainment and transport in cultivated land. 

Gully erosion has been found to comprise between 10% and 94% of catchment soil erosion 

where it occurs (Poesen et al., 2003). Gully erosion involves the formation of deep gullies in 

the land surface, eroding both surface and subsurface material. Rill erosion involves the 

formation of a series of shallow channels across a field surface as shown in Figure 3-2.   
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Figure 3-2: Rill erosion originating from a spring at the ironstone – mudstone lithology boundary in the Nene 
basin close to Moulton, Northamptonshire, UK.  

Four main factors have been shown to affect the rates of these erosion processes; these are 

soil texture, poor crop cover, valley morphology and the presence of tramlines which 

concentrate flow and heavy rainfall, generally exceeding 15mm a day (Chambers et al., 2000; 

Cerdan et al., 2010). 

Soil texture can reduce or increase rates of erosion depending upon local topography and 

land use. Clayey soils are more cohesive than their coarser counterparts and are therefore 

less susceptible to inter-rill erosion by raindrops. However the particles are also easier to 

transport due to their low mass and the greater runoff to be expected on less permeable 

clay soils (Evans, 1990). Data presented by Evans (1993) showed that in sandy soils in the UK, 

gully erosion in valley bottoms was an important process whereas in soils composed of clays 

and silts rill erosion on hillslopes became the dominant process. An effective generalisation 

is that as clay content increases, erosion by water decreases and therefore sandy soils erode 

most frequently, but soils rich in both silt and fine sand erode most severely (Evans, 1990; 

Evans, 2002). 

Management practices can further increase or reduce soil erosion. For example, poor 

cropping practices can break up soil structure and remove organic matter making soils more 

susceptible to compaction, thereby increasing runoff.  Bare cultivated earth has in turn been 

shown to be subject to the highest rates of erosion of any land use across Europe (Cerdan et 
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al., 2010). In a study of 12 catchments in the UK, 80% of the recorded erosion events 

occurred on land cropped with winter cereals (Chambers et al., 2000). Numerous mitigation 

measures aimed at reducing soil erosion have been shown to be effective. Buffer zones and 

wetlands provide a commonly used mitigation measure, however their effectiveness has 

proved highly variable (Kay et al., 2009). The high variability is attributed to the combination 

of low plant cover, a high water table and increased runoff reducing their effects in winter 

months. The presence of tile drains also provides a bypass to buffer zones (Gelbrecht et al., 

2005). 

3.3.3.  Pasture 

In many studies pasture has been shown to be a relatively small contributor to the total 

sediment load of a river e.g. the river Wye and its sub catchments (Walling et al., 2008). 

Likewise sediment concentrations in runoff from pasture have often been shown to be 

insignificant (Fullen, 1998).  This is commonly attributed to continuous vegetation cover and 

relatively undisturbed soils presenting a barrier to rill and gully erosion common on 

cultivated land, and is highlighted in a review by James and Alexander (1998). This review 

indicated that erosion by animals and by surface wash in un-concentrated overland flows 

were instead the predominant erosion mechanisms present on upland pasture. As a result of 

these mechanisms, in catchments such as the Old Mill Reservoir, South Devon, UK, pasture 

has been shown to be the dominant sediment source. This was attributed to increased 

animal stocking densities (Foster and Walling, 1994). Collins et al., (2010) also showed a 

significant contribution of fine sediment from pasture due to the congregation of animals 

and poaching of riparian zones.  

Bare soil on pasture can often be found where animals congregate such as along farm tracks, 

close to gates and fences (Figure 3-3). Sheep and deer have been shown to create scarring 

by rubbing against vegetation (Evans, 1997). These bare soils are subject to erosion by wind 

and rain until they are re-colonised by vegetation. 
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Figure 3-3: Poaching along the river Nene close to Cogenhoe, Northamptonshire, UK (photograph taken 
19/07/2012). 

 

3.3.4.  Channel banks 

Channel banks have been recognised as a major source of sediment in the UK and 

worldwide. Estimates for the contribution of channel banks to sediment yield in UK 

catchments typically range from between ∼10 and 40% (Figure 3-1). There are three primary 

mechanisms which affect rates of channel banks erosion:  

1. Sub-aerial processes, which include processes such as wetting and drying of the banks 

and freeze–thaw activity (Couper and Maddock, 2001).  

2. Fluvial entrainment; the action of the water entraining material from channel banks.  

3. Mass failures become the dominant process at points where the channel banks become 

too high to structurally support themselves. Such mass failures have been documented 

in the Swale - Ouse catchments, UK (Lawler et al., 1999).  

Lawler (1995) indicated that in small catchments sub-aerial mechanisms are the 

dominant erosion process. In middle-order basins fluvial entrainment becomes the more 

important process, and in larger catchments bank retreat due to mass failure mechanisms 

becomes an important process. It has also been pointed out that this is likely to be equally 
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the case when moving downstream through reaches of an individual catchment in so called 

‘process domains’ (Abernethy and Rutherfurd, 1998; Couper and Maddock, 2001).   

The weakening of channel banks by sub-aerial erosion has been shown to be a contributing 

factor when considering fluvial entrainment and mass failures. For example Couper and 

Maddock (2001) showed that rates of erosion were greatest in high flows with a short lag 

time between sub-aerial preparation such as desiccation or freeze thawing and the high flow 

event. Different sub-aerial processes affecting river banks have been shown to vary in 

intensity. For example freeze–thaw in the River Arrow caused noticeably more bank retreat 

than was caused by desiccation; therefore a seasonal pattern of channel bank erosion 

occurred, with maximum rates occurring in the winter (Couper, 2003).  Another factor 

influencing bank erosion is the moisture content of the bank material which acts to decrease 

cohesion between particles. This can result in the highest rates of erosion occurring after 

sustained wet periods (Simon et al., 2000). Dry periods which lead to the drying of channel 

banks can likewise disrupt their structure, increasing rates of erosion (Dietrich and Gallinatti, 

1991). Aquatic organisms such as invasive signal crayfish have been shown to be a potential 

cause of increased channel bank erosion. By digging holes of 10-20 m-2 in channel banks 

(Harvey et al., 2011) they have been observed to accelerate bank erosion (Guan, 1994). In 

contrast riparian vegetation has been shown to strengthen channel banks particularly 

reducing fluvial entrainment of bank material and mass failures. However in upper reaches 

of rivers collapse of tree roots may result in increased rates of bank erosion (Abernethy and 

Rutherfurd, 1998). Therefore numerous complex processes have been shown to affect rates 

of channel bank erosion. Unlike other sources, channel banks are in direct contact with the 

river channel therefore high levels of connectivity are of relevance to this source. The 

complex nature of bank erosion can be seen in studies such as presented by Bull (1996), 

where the location and presence of bank erosion and sediment mobilisation were highly 

variable between flood events. 

3.3.5.  Urban street dusts 

The process of urbanisation rapidly changes the nature of the environment. Permeable soils 

are replaced with impermeable surfaces and river channels are heavily engineered and 

constrained (Taylor et al., 2012). Vegetation is often removed resulting in temporary or 

permanent areas of bare earth; the weathering of soils is replaced with the weathering of 

structures and vehicles. These changes fundamentally alter the hydrology and composition 
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of sediment and its movement, creating a very different environment to rural areas (Barbosa 

et al., 2012). 

Annual sediment yields for urban areas are typically cited in the region of 0.4 to 5 t 

km2 yr−1 (Taylor and Owens, 2009) representing a small quantity when compared to 

cultivated land or many areas of pasture. Sediment in urban areas does however benefit 

from the increased connectivity provided by roads and engineered waterways (Carter et al., 

2003). Urban sediment discharges have been attributed to two major transport pathways, 

the first being separate or combined sewer overflows (CSOs) and the second as surface 

runoff or snow melts transporting street dusts (Burton and Pitt, 2001). A greater quantity of 

sediment is also expected to originate from urban areas during the initial stages of 

development and construction, due to the increased areas of bare earth and availability of 

construction materials (Wolman 1967). 

CSOs represent a combination of sewage treatment solids as well as street runoff. This gives 

them a far higher concentration of phosphate and nitrate and a higher Biological oxygen 

demand (BOD) than storm runoff (Gasperi et al., 2010), which is characterised by its primary 

composition of street dusts (Table 3-3). 

Table 3-3: The origin of urban sediments (Taylor and Owens, 2009). 

 Street dusts CSOs 

Soil Erosion   

Atmospheric dusts   

Sewage treatment solids   

Road sediment   

Construction sediments   

Winter gritting of roads   

 

Sediment provenance studies are infrequently performed in urbanised catchments. As a 

result the review shown in Figure 3-1 does not include any estimates of contributions from 

urban street dusts. Studies by Charlesworth et al. (2000) and Charlesworth and Lees (2001) 

show that the rapidly changing nature of sources can make high resolution urban source 

tracing impractical in a historical context.  A study examining contemporary sediment in the 

highly urbanised River Aire catchment during high flow events showed 19–22% of inputs 

were from street dusts and 14–18% was solids derived from sewage treatment (Carter et al., 

2003). 
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Like other sediment sources inputs from urban areas and their impacts are dependant 

primarily on rainfall and the nature of the preceding time period. Storm events provide the 

energy necessary to transport sediment from distal sources such as the above-mentioned 

street dusts as well as in more extreme events exceeding the capacity of CSOs allowing for a 

discharge of sewage into water courses (Lee et al., 2002). Numerous investigations have 

identified what is known as “first flush” where the majority of pollutants move in the initial 

storm of the season or initial period of an individual storm event and especially in the case of 

pollutant discharges is highly affected by an antecedent dry period (Lee et al., 2002). This 

effect has not been shown to be a constant for all environments and all pollutants however, 

with some research showing increasing inputs through a series of storm events or in the 

later stages of a storm (Lee et al., 2004). Urban street dusts are typically a more finite 

sediment source so it may be expected that a depletion of material available for transport 

may occur in some urban catchments during closely spaced storm runoff events. 

 

3.4. Sediment in the fluvial system 

3.4.1.  Suspended sediment yield 

Sediment yield is defined as the amount of material per unit area per unit time eroded and 

delivered to a stream system (Vanmaercke et al., 2011).  As a consequence sediment yield is 

dependent on the rate of erosion and the sediment delivery ratio. A major benefit is that it 

provides a useful figure to quantify overall sediment movement in a catchment which can be 

easily compared to other catchments (Walling et al., 2007). Sediment yield has been shown 

to be catchment specific and to vary largely between different catchments (Collins and 

Walling, 2004). Its controlling factors have been shown to include the amount of runoff, 

catchment size, lithology, topography, soil type, land management practices and 

connectivity; although land use has often been viewed as the primary factor affecting 

sediment dynamics and controlling impacts of the other environmental factors (Lexartza-

Artza and Wainwright, 2011). UK catchments generally exhibit low sediment yields when 

compared to their southern European counterparts (Vanmaercke et al., 2011). A review of 

UK sediment yields (Table 3-4) summarises high – medium quality estimates of sediment 

yield for 107 UK catchments. These estimates were determined to be high – medium quality 

when a greater than 1 year period of turbidity monitoring was available; or a rating curve 

was developed using automated sampling, performed at minimum on a daily basis, or 
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weekly with the inclusion of storm events. The quality of lake based reconstruction was 

related to individual studies. 

Table 3-4: Ranges of medium – high quality sediment yield estimates in UK catchments (reproduced from Walling 
et al., 2007). 

Catchment type Size km2 Number Sediment yield range t km-2 yr -1 Sediment yield average t km-2 yr -1 

Upland Rough Pasture <10 20 3-286 109 

 10-100 3 51-169 111 

Upland Agriculture <10 4 6.7-49.7 27 

 10-100 3 35-46 41 
Lowland: limited anthropogenic 

impact <10 1 4-9 7 

Lowland: Agriculture <10 19 8-131 51 

 10-100 18 2.-58 28 

 100-1000 27 1-311 46 

 1000-10000 10 4-59 31 

Lowland Urban <10 1 10 10 

 10-100 1 10 20 

 

UK sediment yields range from 1- 286 t km-2 yr-1. The Nene represents a lowland agricultural 

catchment with a total area of between 1000-10,000 km2 where a sediment yield of 28-51 t 

km-2 yr-1 is typical (Walling et al., 2007). 

Suspended sediment is the form in which sediment contributes to sediment yield in fine 

sediment based research. Bedload and dissolved load can also be considered part of 

sediment yield, however, are of little relevance when considering fine sediment pressures. 

Suspended sediment represents sediment actively being transported at the time of 

sampling. Suspended sediment concentration (SSC) is primarily dependent upon supply 

(Salant et al., 2008) therefore it can be expected that an increase in SSC will be associated 

with a greater energy available for erosion and sediment transport such as during a storm 

(Wood, 1977).  

3.4.2.  Floodplain sedimentation 

Deposition of sediment on floodplains during extreme events can often result in a significant 

reduction in sediment yield at a catchment outlet (Walling and Owens, 2002). As a result a 

store of historical sediment and its associated pollutants accumulates through time in 

floodplain locations. In section 3.4.1 the floodplains were identified as a scale emergent 

feature producing a barrier between hillslopes and river channels, which impacts the degree 

of connectivity within a catchment. This section specifically addresses the additional role of 
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floodplains as a store of sediment and a potential source of sediment within the context of a 

sediment budget. 

 

Analyses of extreme events suggest that a single flood event has the potential to exceed the 

normal annual geomorphic activity (erosion) in a catchment (Gonzalez-Hidalgo et al., 2013).  

A proportion of the sediment moved during overbank flow events will be sequestered on the 

floodplain. For example a study by Walling et al. (1999b)  showed that between 39-40% of 

the total annual sediment yield of the River Ouse, UK, and 50% for the River Wharfe, UK, will 

be deposited in this way. 

 

Rates of overbank sedimentation derived from floodplain cores are often only a few 

millimetres a year (Lambert and Walling, 1987). This can increase in some catchments to up 

to several centimetres a year, particularly in catchments heavily modified by anthropogenic 

activity (Marron, 1989). Table 3-5 shows historical rates of floodplain sedimentation in UK 

catchments. Post 1963 accumulation rates are highly variable and lie between 0 and 16,000 t 

km-2 yr-1 with an average rate of accumulation of 4,062 t km-2 yr-1. Comparing the post 1963 

results to the 210Pbun results for the previous 100 years shows an average reduction in 

accumulation rate of 10.4% in the post 1963 time period. This suggests a relatively recent 

trend of decreased connectivity between some UK rivers and their floodplains. 
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Table 3-5: Historical rates of floodplain sedimentation in selected river catchments in the UK using 137Cs  
(over the previous 30-40 years) and 210Pbun (over the previous 100 years) chronologies (reproduced from 
Gruszowski, 2003). 

137Cs derived 
rate (t km2 yr-1) 

210Pbun 

derived rate 
(t km-2 yr-1) 

Difference in 
accumulation 

rate: 210Pb - 137Cs 

Percentage 
difference 

(%) 
Location Reference 

600-6000    River Culm, Devon (Walling and He, 1993) 
4500 4200 300 7.14 River Exe, Stoke Canon (Walling and He, 1994) 
2200 2700 -500 -18.52 River Culm, Silverton Mill (Walling and He, 1994) 
3500 3200 300 9.38 River Culm, Silverton Mill (Walling and He, 1994) 
1700 1900 -200 -10.53 River Avon Bredonfield (Walling and He, 1994) 

 700-5900   River Culm, Devon (He and Walling, 1996) 
1300 1500 -200 -13.33 River Culm, Devon (Walling and He, 1997b) 
800    River Stour, Dorset (Walling and He, 1997a) 

2060 (100-
5540)    Rivers Ouse and Wharfe, Yorks (Walling et al., 1998) 

1260    River Tweed (Owens et al., 1999a) 
900    River Teviot (Owens et al., 1999a) 

1770    Ettrick Water (Owens et al., 1999a) 
9500 10400 -900 -8.65 Lower River Ouse, Yorkshire (Owens et al., 1999a) 
2400 2300 100 4.35 Middle River Ouse, Yorkshire (Owens et al., 1999a) 
6400 6800 -400 -5.88 Upper River Ouse (Owens et al., 1999a) 
5000    River Swale, Yorkshire (Owens et al., 1999a) 
1800 4200 -2400 -57.14 River Ure, Yorkshire (Owens et al., 1999a) 
1700 1700 0 0.00 River Nidd, Yorkshire (Owens et al., 1999a) 
1300 1100 200 18.18 River Wharfe, Yorkshire (Owens et al., 1999a) 
2900 2700 200 7.41 River Culm, Silverton Mill (Walling and He, 1999) 
2800 3300 -500 -15.15 River Severn, Buildwas (Walling and He, 1999) 
900 800 100 12.50 Warwickshire Avon (Walling and He, 1999) 

2200 2000 200 10.00 River Rother, Shopman Bridge (Walling and He, 1999) 
9500 10400 -900 -8.65 River Ouse, York (Walling and He, 1999) 
2100 4600 -2500 -54.35 River Vyrnwy, Llanymynech (Walling and He, 1999) 

12200 14200 -2000 -14.08 River Severn, Atcham (Walling and He, 1999) 
1500 2800 -1300 -46.43 River Wye, Preston on Wye (Walling and He, 1999) 
8600 9500 -900 -9.47 River Severn, Tewkesbury (Walling and He, 1999) 
4600 6600 -2000 -30.30 Warwickshire Avon, Pershore (Walling and He, 1999) 
8800 10100 -1300 -12.87 River Usk, Usk (Walling and He, 1999) 
3900 3300 600 18.18 Bristol Avon, Langley Burrell (Walling and He, 1999) 
5100 6400 -1300 -20.31 River Thames, Dorchester (Walling and He, 1999) 
7000 9300 -2300 -24.73 River Torridge, Great Torrington (Walling and He, 1999) 
6000 6500 -500 -7.69 River Taw, Barnstable (Walling and He, 1999) 
5600 4300 1300 30.23 River Tone, Bradford on Tone (Walling and He, 1999) 
4500 4200 300 7.14 River Exe, Stoke Canon (Walling and He, 1999) 
3500 3200 300 9.38 River Culm, Silverton (Walling and He, 1999) 
5100 4000 1100 27.50 River Axe Colyton (Walling and He, 1999) 
400 400 0 0.00 Dorset Stour, Spetisbury (Walling and He, 1999) 

1100 1400 -300 -21.43 River Rother, Tittleworth (Walling and He, 1999) 
3900 4800 -900 -18.75 River Arun, Billingshurst (Walling and He, 1999) 
5100 7100 -2000 -28.17 River Adur, Partridge Green (Walling and He, 1999) 
1500 2300 -800 -34.78 River Medway, Penhurst (Walling and He, 1999) 
5100 4500 600 13.33 River Start, Slapton (Walling and He, 1999) 

0-16000    River Ouse, Yorkshire (Walling et al., 1999b) 
0-7000    River Tweed (Walling et al., 1999b) 
2000 3000 -1000 -33.33 Upper River Tweed, Scotland (Owens and Walling, 2002) 
2200 2600 -400 -15.38 Middle River Tweed, Scotland (Owens and Walling, 2002) 
1900 4800 -2900 -60.42 River Teviot, Scotland (Owens and Walling, 2002) 
900    Smisby, Leicestershire (Walling et al., 2002) 

1300    River Swale, Yorkshire (Walling and Owens, 2002) 
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Sediment movement and the rate of overbank sedimentation have been shown to be 

variable during different periods of an individual flood event, and during different flood 

events (Carter et al., 2003). Different sediment sources also vary in importance between 

different flood events (Owens et al., 1999b), making the long term relevance of 

contemporary data questionable. The sampling and dating of floodplain sediments have 

been used to overcome this problem. For example Owens et al. (1999b) showed long term 

changes in the sources of sediment deposited on the floodplains of the rivers Ouse and 

Warf; UK, during the previous 100 years, providing context to the results of their 

contemporary sampling programme.  

 

3.4.3.  Channel beds 

Channel beds represent an important store of fine sediment in river catchments. Not only is 

the degradation of channel bed habitats by fine sediment considered an important 

ecological issue (Collins et al., 2010) but the stored sediment often represents a source of 

easily mobilised sediment ready to be transported when flows increase (Walling and Amos, 

1999). 

The logistical difficulty in sampling channel bed sediment quantities over a sufficient range 

of river reaches and frequency of timescales has resulted in relatively few studies 

quantifying channel bed storage. The large spatial and temporal variation in sediment 

storage may be the primary reason for this (Walling et al., 2003). What research has been 

done has indicated that typically between 2% and 10% of the total annual 

suspended sediment yield of a river resides on or in the channel bed (López-Tarazón et al., 

2012). However, in some catchments this percentage has been shown to be significantly 

larger; at 18% and 57% in the lowland permeable Frome and Piddle catchments respectively 

(Collins and Walling, 2007a). Published estimates of the quantities of sediment stored on the 

beds of UK catchments are provided in Table 3-6. Storage varies from below 230 t km-2 to 

over 5000 t km-2. 

 

 

 

 
Table 3-6: Storage of fine sediment on channel beds in UK rivers derived using the re-suspension technique 
developed by (Lambert and Walling, 1988) (Reproduced from Gruszowski, 2003). 
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Water + bed surface agitation t km-2 Location Reference 

230 River Exe Devon (Lambert and Walling, 1986; Lambert and Walling, 1988) 

1730 River Swale Yorkshire (Walling et al., 1998) 

1430 River Nidd Yorkshire (Walling et al., 1998) 

2910 River Ouse / Ure Yorkshire (Walling et al., 1998) 

1590 River Warfe Yorkshire (Walling et al., 1998) 

1920 River Ouse  Yorkshire (Walling et al., 1998) 

640 River Tweed (Owens et al., 1999a) 

1120 River Teviot (Owens et al., 1999a) 

570 Ettrick water (Owens et al., 1999a) 

>5000 River Piddle, Dorset (Walling and Amos, 1999) 

 

The storage of fine sediment on channel beds is generally in the form of either a coating of 

the bed surface by a mantle of sediment or the storage of sediment inside the bed, filling the 

pore spaces between sand and gravel particles. Mantling is especially characteristic of rivers, 

where sediment inputs exceed their transport capacity (Lisle and Hilton, 1992). The 

colonisation of sediments with benthic algae, microbial and fungal growth and subsequent 

formation of extracellular polymeric substances has been shown to be an important factor 

reducing how easily mantled sediment is mobilised (Droppo et al., 2001). 

The accumulation of fine channel bed sediment is especially an issue in groundwater-fed 

permeable catchments such as in lowland UK and is likely due to the lack of episodic  high 

flow regimes which scour channel beds and release fine sediment into suspension (Collins 

and Walling, 2007b). The accumulation and redistribution of sediment on channel beds has 

been shown to occur during the waning periods of a flood, where sediment is winnowed 

from riffles and deposited in pools mantling the underlying substrate (Lisle and Hilton, 1992). 

Walling et al. (1999b) and Asselman (1999) showed that fine channel bed deposits 

accumulated during low flows and subsequently discharged during the opening periods of 

high flows. Channel bed composition also played an important role in this study with sandy 

beds having a more consistent accumulation and remobilisation pattern, whereas gravel bed 

sediments were only important in one or two events during the 20 year SSC record. 
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4. Field Sampling Methodology 
 

4.1. Introduction 

This chapter describes the field sampling methodology used in this project; it is divided into 

two sections detailing palaeolimnological reconstruction and contemporary sampling 

methods. Each section is sub-divided to address the components of a simplified sediment 

budget required by Objective 4; and is designed to provide a range of sediment samples 

from different parts of the fluvial system, for use in a sediment fingerprinting investigation 

(Objectives 1, 2 and 3).  A summary of all of the methods used and their relevance to the 

Objectives of this project is shown in Table 4-1. 

 

Table 4-1: A summary of the methods used in the thesis and their relevance to the projects objectives. 

Method Location Objective Purpose Timescale 

Historical 
reconstruction 

    

Reservoir sediment 
coring 

Sywell Reservoir Objective 1,2 & 3 Sediment yield reconstruction and 
historical sediment fingerprinting 

ca. 1-100 years 

Reservoir bathymetric 
survey 

Sywell Reservoir Objective 4 Sediment yield reconstruction ca 1-100 years 

On-line lake sediment 
coring 

Stanwick Lake Objective 1, 2, 3 & 4 Historical sediment fingerprinting  ca. 1-100 years 

Floodplain coring Earls Barton, 
Kingsthorpe, Stanwick 
and Upton 

Objective 1, 2, 3 & 4 Historical sediment fingerprinting 
and floodplain sediment 
accumulation rate reconstruction 

ca 1-100+ years 

     

Contemporary 
monitoring 

    

Stage and turbidity 
monitoring 

Dodford and 
Northampton 

Objective 4 Quantification of sediment yield 15 minute frequency  

Time integrated 
suspended sediment 
traps 

Eight tributary sub 
catchments 

Objective 1, 2, 3 & 4 Sediment fingerprinting of 
suspended sediment 

Monthly  

Channel bed re-
suspension 

Nineteen tributary sub 
catchments 

Objective 1, 2, 3 & 4 Quantification of channel bed 
sediment storage, fingerprinting of 
channel bed sediment 

Quarterly 

Overbank sediment 
deposition 

Seventeen locations 
on the Nene’s 
floodplain 

Objective 1, 2, 3 & 4 Fingerprinting of sediment sources 
during high flow events 

Four overbank events 
during a one year 
period. 
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The field sampling methodology relating to the construction of a partial sediment budget 

was primarily devised to address the three requirements for a suitably robust sediment 

budget laid out by Parsons, (2012). Namely: 

 

“First, no sediment budget should be produced without an explicit statement of the 

timescale over which it is purported to be valid, or without a demonstration of process 

stability over that timescale.  

 

Second, no sediment budget should include unmeasured elements, the values for which are 

determined simply by subtraction on the assumption of budget closure.  

 

Third, any sediment budget must provide estimates of uncertainty associated with any 

reported value.” (Parsons, 2012, pp.68) 

 

The first of Parsons’ requirements were fulfilled by the use of a Palaeolimnological 

reconstruction to assess long term (~100 years) changes in sediment provenance and 

sediment yield in a representative lake catchment. Additionally changing sediment 

accumulation rates over a ~100 year timescale and sediment provenance were established 

at four locations on the Nene’s floodplain. Contemporary monitoring and sampling aimed to 

cover a wide range of flow conditions and a sufficiently large spatial area to determine 

monthly - quarterly changes in sediment provenance and changes in sediment yield on a 15 

minute basis. The sampling was performed over a total of a 22 month period to ensure a 

sufficiently long time period was sampled and to gain an indication of short-term process 

stability. 

 

To address Parsons’ second requirement an estimate of soil erosion in-field and field to 

channel deposition was omitted from the sediment budget as it was judged that such an 

estimate could not be reliably measured within the time available for this research project. A 

soil erosion model could have been used and the difference between predicted soil erosion 

and the measured sediment yield interpreted as sediment sequestration such as that 

described in Banasik et al. (2005) however, this would violate Parsons’ second requirement. 

This does produce a limitation of this study in that sediment yield is the only estimate of soil 

erosion and connectivity, which must be considered in any interpretation of the results 

presented in later chapters.  
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Parson’s third requirement is addressed in the following sections, which describe the 

sampling methods related to each part of the sediment budget, with a justification for the 

methods used, together with an explanation of how estimates of uncertainty were 

determined.  

 

4.2. Study catchment 

4.2.1.  Catchment description 

The Nene river basin is located in the East Midlands, UK. The river originates south of 

Daventry and flows through Northampton, Wellingborough and Peterborough. The basin has 

a total area of 1,634 km2. Sampling was conducted in the upper – middle Nene basin 

upstream of Stanwick, with a total catchment area of 1060 km2.  The maximum elevation is 

226m Above Ordnance Datum (AOD) decreasing to 40 m AOD at Stanwick (Figure 4-1), The 

catchment follows a trend of high and steeply sloped ground in the west, gradually moving 

to flat ground in the east close to Oundle (Figure 4-1). Catchment lithology is primarily 

Jurassic marine sedimentary deposits of silts and clays with some ironstone and limestone 

(Figure 4-2). Deposits of Quaternary sand and gravel are found adjacent to the main river 

channel, and glacial diamicton is found extensively at high altitude in the centre and north of 

the basin. The 2007 UK Land Cover Map indicates that the catchment land utilisation is 56% 

cultivated, 22% pasture and 9% urban (Figure 4-3). A comparison with the land cover of the 

catchment in the 1930s indicates that at that time the Nene basin was approximately 50% 

pasture and 25% cultivated land (Stamp, 1932).  Therefore, a large change in catchment land 

utilisation has occurred over the previous 80 years. The catchment has an average annual 

rainfall of 638 mm recorded at Athorp over the previous 140 years (Figure 4-4). There is little 

evidence of any changes to the total annual rainfall during this period. 
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Figure 4-1: Elevation and slope of the terrain in the Nene basin. 
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Removed for copyright reasons 

Figure 4-2: The Lithology of the Nene basin (British Geological Survey, 2011). 
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Removed for copyright reasons 

Figure 4-3: Land Cover in the Nene basin in 1930s and 2007 (Stamp, 1932; Morton et al, 2011). 

 
 

 
Figure 4-4: Total annual rainfall 1871 – 2010 recorded at Althorp. 

 
The Anglian region catchment management plan (Environment Agency, 2009) reports that 

only 47% of surface waters in the catchment achieve good ecological and chemical status;  of 

the reasons stated for the failures, fine sediment is suggested to be prominent although the 

extent of its role remains uncertain. Modifications to the river in the form of flood defences 

are highlighted as a major detrimental factor affecting water quality. Figure 4-5 shows the 

locations of the raised flood defences in the Nene river basin. 

 
 
Removed for copyright reasons 

Figure 4-5: The locations of raised flood defenses in the upper Nene river basin (Data courtesy of the 
Environment Agency Anglian Region). 
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4.2.2.  Observed erosion and sediment delivery 

Figure 4-6 shows photographs of the landscapes typical of the tributary catchments of the 

Nene basin. Cultivated land is predominantly separated from the channel by margins of 

grassland or woodland as show in Figure 4-6, A Figure 4-6, B, Figure 4-6, C and Figure 4-6, E. 

Grazed grassland is also mostly separated from river channels by a margin of woodland or 

riparian fencing. Where grassland was observed to be in contact with the river channel, the 

land was most commonly grazed by sheep with low stocking densities and little evidence of 

poaching or excessive erosion (Figure 4-6, A, Figure 4-6, F). However, some poaching can be 

observed in a few isolated areas (Figure 4-6, I). The river channel in much of catchment is 

shallowly incised with poorly defined channel banks (Figure 4-6, E), some sloped riparian 

zones are present but these are generally well vegetated (Figure 4-6, E). Evidence of channel 

bank erosion was visible in some river reaches in isolated areas. For example, Figure 4-6, G 

shows part of a stretch of channel bank in a wooded area with evidence of erosion 

accelerated by the presence of animal burrowing. 

Some areas with a greater potential for sediment to enter the river were also observed. 

Figure 4-6, D shows part of a ~100m reach of channel where the river channel is deeply 

incised creating an easily eroded steeply sloping lightly vegetated face. Figure 4-6, J shows 

an artificial ditch located ~400m from any river channel however, it is connected via an 

underground pipe to a river channel.  Numerous subsurface field drains from a neighbouring 

agricultural land enter the ditch, providing the potential for sediment transport to the river 

channel. An area of cultivated land in contact with the river channel is shown in Figure 4-6, 

K. This ~10m section of channel was also characterised by a deeply incised and bare channel 

bank showing evidence of erosion.  

 

 

A B 
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Figure 4-6: Photographs of the Nene basin, highlighting potential sediment sources and connectivity. 
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4.3. Palaeolimnological reconstruction 

This section describes the methods used for historical Palaeolimnological reconstruction in 

this project.  Figure 4-7 shows the locations of the sampling sites referred to in this section. 

 

Figure 4-7: The locations of historical sediment sampling sites in the Nene basin (Surface water and town 
locations derived from Ordnance Survey (2009).  

 

4.3.1.  Sediment Yield 

Sediment yield is a key part of a sediment budget and represents a simple figure to 

summarise overall sediment movement through a catchment. A discussion of its importance 

in a sediment budget and a list of reported estimates of sediment yields in the published 

literature are provided in Chapter 3. 

 

In the UK a long term (decades to centuries) record of measured sediment yield is not 

available for the vast majority of catchments, meaning a surrogate source of data is 

required. Palaeolimnological data from depositional environments such as lakes and 
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reservoirs represent the primary surrogate used in the literature (Foster et al., 2012). As 

published Palaeolimnological data is currently unavailable in the Nene basin, a small lake 

catchment was investigated as part of this project. 

 

The acquisition of Palaeolimnological data requires a lake with an undisturbed sediment 

record and with a sediment record representing a sufficiently long timescale (Foster et al., 

2011). In addition to these criteria, the lake catchment must also be representative of the 

headwater catchments of the Nene basin, trap the majority of sediment derived from 

catchment sources and contain a sufficient quantity of sediment for analysis. It has been 

shown that an increase in sediment yield in Europe is expected post-1950 (Foster et al., 

2011), making a minimum of 62 years accumulated sediment desirable for the purpose of 

assessing recent changes in sediment dynamics. Dearing and Foster, (1993) indicate that a 

lake – catchment ratio of ca. 30:1 in the UK generally provides both a high trap efficiency and 

a sufficient quantity of sediment to determine changing sediment yields in most UK 

catchments. 

 

For this study, Sywell reservoir was selected as an appropriate lake catchment. It is located 

in the centre of the Nene basin (Figure 4-7). The catchment lithology consists of Jurassic age 

mudstone, sand and ironstones as well as Quaternary glacial diamicton as does much of the 

Nene basin as a whole. Land use has changed from being predominantly grassland in the 

1930s to being dominated by cultivated land at present, as is the case in the Nene basin as a 

whole. On this basis the site was considered representative of headwater catchments in the 

Nene basin. Construction of Sywell reservoir was completed in 1906, providing a 105 year 

record of sediment deposition, which according to Foster et al., (2011) is an adequately long 

record to determine sediment yield before and after the introduction of intensive agriculture 

in the 1950s, and evaluate decadal to century long changes. It has also been carefully 

managed since its construction as a water supply reservoir, so it could be ascertained 

through interviews with the park managers that the site had not been dredged, a key 

requirement of site selection  (Dearing and Foster, 1993). The lake – catchment ratio is 31:1 

falling close to the optimum identified by Dearing and Foster (1993) suggesting a good trap 

efficiency and that an adequate quantity of sediment will likely be present for analysis. 

A total of 7 sediment cores were retrieved from the reservoir using a small inflatable boat 

and a ‘mini-Mackereth’ pneumatic corer (Mackereth, 1969) and the location of each core 
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was recorded using a Garmin eTrex H handheld GPS (5m accuracy). The cores were collected 

in transparent Perspex tubes of ca. 5cm internal diameter and 1m length using the methods 

of (Foster and Walling, 1994) and were maintained in a vertical position during transport. 

Upon return to the laboratory, the cores were extruded and sliced into 1cm slices for 

analysis. Measurements of the wet density and dry density after oven drying at 40°C for 

each slice were recorded. 

 

A bathymetric survey (Figure 4-8) of the reservoir was performed using echo sounding and a 

differential GPS in a series of nine transects (the work was performed with the assistance of 

Dr Jill Labadz, Nottingham Trent University, who also provided the echo sounder and 

differential GPS system used to locate echo sounding transects). Results were corrected to 

the maximum reservoir volume at the spill weir and extrapolated to produce a bathymetric 

map of the reservoir using ARC GIS 10 and the “topo to raster” function, based on 

Hutchinson and Dowling (1991). 

 

The error associated with this estimate was explored by comparing the depths of sediment 

accumulated in the seven cores to produce an average depth of accumulated sediment and 

a standard deviation representation of variability. 
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Figure 4-8: Coring locations in Sywell reservoir and the locations of the bathymetric survey measurements 
(Base map from Ordnance Survey (2013). 

 

4.3.2.  Historical sediment in a semi-cut off floodplain lake 

Floodplain lakes have been used to investigate trends in historical suspended composition 

and sediment contamination (Foster et al., 1998; Winter et al., 2001). The term ‘on-line lake’ 

has been used to describe floodplain lakes which are in direct hydraulic contact with a river 

channel, and these receive sediment continuously during all flow conditions (Foster et al., 

1998) unlike ‘offline lakes’ which are only in direct contact with the river channel at high 

flow levels.  To obtain a continuous record of suspended sediment a semi-cut off meander 

located at Stanwick was investigated (Figure 4-7). The location was selected to include all of 

the study area in the upstream catchment including the urban areas of Northampton, 

Wellingborough and Rushden. 

 

Two cores were taken from the lake at the deepest point, determined using a plumb line.  

Cores were collected using a Perspex core tube of ca. 5cm diameter and 1m in length, 

manually pushed into the bed from an inflatable boat.  The cores were maintained in an 

upright position during transport and the longest least disturbed core was prepared using 

the same methods as the reservoir cores. 

 

4.3.3.  Historical floodplain deposition 

Overbank deposition on the floodplain represents both an important long term sediment 

store and a present day source of sediment, therefore its investigation can be regarded as a 

key part of a sediment budget (Walling et al., 1999b) (For a discussion of the relevance of 

floodplain deposition in river catchments see section 3.4.2.  In addition to the importance of 

floodplain deposition in a sediment budget, sediment movement during overbank flows also 

has numerous properties beneficial to determining sediment provenance. The most 

important property is that a large proportion of a catchment’s total sediment movement 

often happens during brief overbank flows, providing a time effective period to sample a 

large proportion of a river’s total sediment transport (Conaway et al., 2012). Another major 

advantage of studying overbank flows is the greater connectivity and mixing provided by 

increased flow during these periods (Godfrey et al., 2008). Therefore, a sediment sample 

taken from a floodplain is likely to be representative of the sediment derived from a large 
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proportion of the upstream catchment (Macklin et al., 1994; Bölviken et al., 1996).  However 

this does not mean that one flood can be considered representative of all overbank flows 

and sediment movement. Sediment movement during different flood events and rates of 

overbank sedimentation have been shown to be variable, with different sediment sources 

being mobilised during different periods of a single flood event, and during different flood 

events (Carter et al., 2003). Sampling of floodplain sediment cores has been used to 

overcome these problems of intra flood variability and provide a general long term (<200yr) 

trend of changing sediment accumulation and provenance (Lambert and Walling, 1987; 

Owens et al., 1999b).  

 

A sediment core was retrieved from four locations on the Nene floodplain (Figure 4-7). 

These were selected to represent the different terrain types in the Nene basin and 

encompass the areas upstream and downstream of Northampton and Wellingborough. Four 

sites were investigated in order to provide a suitably robust indication of variability within 

the upper Nene basin. To ensure an adequately long and undisturbed record of sediment 

deposition, each site was investigated using historical maps and  archival records to  ensure 

that they had been both uncultivated over recent history and subject to regular flooding as 

suggested by Owens et al. (1999b) and Foster et al. (2011). This posed a significant challenge 

as many areas of the floodplain have been disturbed by the construction of a canal, 

construction of flood defences and by ploughing for agriculture.  

 

Two cores were retrieved from each site using a steel percussion corer of ~ 6 cm diameter 

and 75 cm length. The core tube was manually driven into the floodplain surface using a 

sledge hammer and was retrieved using a tripod and chain hoist.  On retrieval, the cores 

were retained in the corer during transport. Upon return to the laboratory the cores were 

extruded from the corer and the longest and least disturbed core was sectioned into 2cm 

intervals according to the method of Walling et al. (1999b), which aims to minimise the 

influence of short term flood events and focus instead at long term changes in sediment 

dynamics. The slices were dried at 40°C and the wet and dry density recorded. 

 

4.4. Contemporary Monitoring 

This section describes the methods used in the contemporary sediment sampling campaign 

of this project. Figure 4-9 shows the sampling locations referred to in this section.
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Figure 4-9: Locations of the contemporary fine sediment sampling sites (Surface water and town locations derived from Ordnance Survey (2009).
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4.4.1.  Stage and turbidity derived estimates of sediment yield 

A disadvantage of Palaeolimnological data is the inability to examine the dynamics of 

individual storms or inter-storm periods. Sampling is also limited to locations where a 

suitable lake or reservoir is located. To overcome these limitations a continuous high 

resolution dataset of sediment discharge is required. Frequent manual sampling of 

suspended sediment combined with continuous flow measurement to produce rating curves 

has been used to estimate suspended sediment concentration (SSC) and create a record of 

suspended sediment discharge, such as those used in a 1967 - 1978 study of the Nene 

published by Wilmot and Collins (1981). However, this technique has the disadvantage of 

requiring a large number of samples over a series of high and low flow conditions, and not 

fulfilling this requirement can lead to a large underestimate or overestimate of sediment 

yield (Ferguson, 1987). Hysteresis effects can also give rise to poor rating curve regression 

models introducing a further source or error. Walling (1977) showed that errors of up to  

+280% can be encountered when estimating annual sediment yields using rating curves and 

of between -90% and + 900% when investigating monthly yields. The use of turbidity 

measurement provides an alternative to the production of rating curves. Turbidity meters 

are generally considered as being a more accurate means of deriving a record of SSC (Olive 

and Rieger, 1988; Lewis, 1996). Turbidity meters operate on the grounds that a calibration 

can be developed between measured turbidity and SSC, therefore an automated 

measurement of turbidity can act as a surrogate for very frequent manual sampling. 

However, limitations do exist with this method, as turbidity is not simply a measurement of 

SSC, rather it is a measurement of SSC, particle size and the optical properties of the river 

water. High productivity in river water has also lead to problems of algal growth and the 

fouling of sensors (Foster et al., 1992). 

 

To produce a near-continuous record of SSC sampled at 15 minute intervals, two Partech 

System 770 turbidity meters equipped with Partech IR-40 infrared turbidity sensors were 

installed in two of the Nene’s major tributaries (Figure 4-10). Each sampling location was in 

an Environment Agency stage gauging station to provide a parallel 15 minute interval record 

of flow and turbidity. The sensors were fitted with covers to shield them from sunlight and 

limit algal growth; while this was somewhat successful, algal growth was still a problem and 

the record needed correcting at certain times of the year. To correct the data empirical 

mode decomposition (EMD) in the R statistics package based upon the method developed by 
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(Huang et al., 1998) was used to remove the low frequency trend in the data resulting from 

algal fouling. An example of uncorrected and corrected data can be seen in Figure 4-11.  

 

 
Figure 4-10: The locations and of the turbidity meters and stage gauging sites (Surface water and town 
locations derived from Ordnance Survey (2009). 
 

Table 4-2 shows the dates of operation of each turbidity meter. 

 

Table 4-2: The periods of operation of the two turbidity meters. 
 

Site Dates of operation 

Dodford September 2011 – August 2013 

Northampton February 2012 – August 2013 
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Figure 4-11: The effect of EMD correction on an example period of turbidity data affected by algal fouling 

 

Calibrations between turbidity and SSC were established using 0.5l water samples taken 

from the river channel during a range of flow conditions and a range of seasons, to take 

account of seasonal changes in the optical properties of river water or changes in sediment 

properties, and to provide a sufficient range of calibration samples (Peart and Walling, 

1982). 

 

The SSC of calibration samples was determined by vacuum filtration as used by (Orwin and 

Smart, 2005). The bottles of water were filtered through pre-dried (at 105°C) and weighed 

Watman 0.45μm cellulose nitrate membrane filter paper. The resultant filter papers and 

sediment were dried (at 105°C) and re-weighed. SSC was calculated using Equation 4-1. 

 

Equation 4-1: 

SSC (mg l-1) = (Filter paper and sediment weight (mg)- filter paper weight (mg)) / volume of 

sample (l) 

 

The calibration curves developed for each meter are shown below in Figure 4-12. 
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Figure 4-12: Polynomial calibration curves for the Dodford and Northampton turbidity meters.  
 

Values above the calibration range of 9999 at Dodford were given the value of 300 mg l-1 and 

those above 5000 at the Northampton site were given the value of 250 mg l-1. The figure of 

9999 was the maximum at which the meter would record at Dodford and 5000 was the limit 

of the calibration samples at the Northampton site. 

 

4.4.2.  Contemporary suspended sediment sampling 

A method was required to assess monthly changes in sediment provenance. A total of eight 

time-integrated suspended sediment traps were deployed across the catchment. The trap 

design was developed by (Phillips et al., 2000) and is shown in Figure 4-13. They have been 

(A) Dodford 

(B) Northampton 
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shown to effectively provide a suspended sediment sample under a range of flow conditions, 

and to effectively trap a sufficiently representative range of particle sizes for fine sediment 

investigation (Russell et al., 2000). They have been successfully utilised in many sediment 

provenance investigations (Collins et al., 2010; Smith and Blake, 2014). Alternative methods 

of sampling suspended sediment include the collection of bulk water samples Collins et al., 

1997), this method has the advantage that multiple samples can be fingerprinted in short 

succession, allowing for the identification of changing sediment sources over an individual 

flood event (Walling et al., 1999). However it does require the researcher to be present to 

collect the samples so limits the number of sites which can be investigated, and it requires 

the collection of logistically challenging volumes of water (50-300 l per sample). 

 

 

 
Figure 4-13: A time integrated sediment trap, as described by Phillips et al., (2000). 
 

The locations of the traps were selected to cover a range of tributary sub-catchments with 

different geologies, land uses and topographies, while avoiding the navigable area of the 

Nene main channel. The locations of the traps are shown in (Figure 4-9). Each trap was 

emptied on a monthly basis into ca. 10 l plastic containers and returned to the laboratory for 

analysis.  

 

Damage to traps due to high flows and vandalism meant that an uninterrupted record of 

samples throughout the study period was not obtained. The sites at Kislingbury and Dodford 

were particularly susceptible to high velocity flows and a disproportionate number of traps 

were lost from these sites.  The range of data obtained for each trap is shown in Table 4-3. 

 

 

1m 

4mm inlet hole 

4mm outlet hole 98mm 
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Table 4-3: Number and timing of suspended sediment samples collected during the study period. 

 

O
ct - N

ov 2011 

N
ov - Dec 2011 

Dec - Jan 2012 

Jan - Feb 2012 

Feb - M
ar 2012 

M
ar - Apr 2012 

Apr - M
ay 2012 

M
ay - Jun 2012 

Jun - July 2012 

July - Aug 2012 

Aug - Sept 2012 

Sept - O
ct 2012 

O
ct - Dec 2012 

Dec - Jan 2013 

Jan - Feb 2013 

Feb - M
ar 2013 

Total 

Weedon 1     1  1 1 1 1 1 1 1 1 1 1 11 

Weedon 2 1 1 * 1 1 1 1 1 1 1 1 1 1 1 1 1 16 

Dodford 1 1 1 1 1  1   1 1 1  * 1 1 12 

Heyford    1 1 1 1 1 1 1 1 1 1   1 11 

Kislingbury     1    1 1 1 1 1 * 1 1 9 

Northampton  1   1 1  1 1 1 1 1 1 1 1 1 12 

Wellingborough 1 1 1 1 1 1 1 1 1 1 1 1  1 1 1 15 

Knuston 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 16 

Total 4 5 4 5 8 5 6 6 7 8 8 8 6 7 7 8 79 

* Sample was collected as part of the next month’s sample. 

 

 

4.4.3.  Contemporary overbank sediment deposition 

While sediment cores provide a record of long-term changes (<200 years) in sediment 

sources, an examination of sediment transported during single flood events was deemed 

necessary; firstly to assess inter-flood variability in sediment sources (Objective 4), and 

secondly due to the use of this sampling period in published sediment fingerprinting studies 

(Gruszowski, 2003) (Objectives 1,2 and 3). For a full discussion of overbank sedimentation 

see Section 3.4.2. Overbank sediment samples from four high flow events during the study 

period were collected once high water levels had receded to below bank-full. Sediment 

samples were collected from the leaves of vegetation as described by (Walling et al., 1997). 

The primary vegetation selected was Common Comfrey (Symphytum officinale) and 

Common Nettle (Urtica dioica). The vegetation was washed with native river water in a 5l 

plastic container, the resultant water and sediment was transported to the laboratory for 

analysis in 1 l Nalgene bottles. Figure 4-9 shows the locations of the sampling sites used and 

they were selected to cover the region of the Nene basin being sampled using suspended 

sediment traps, channel bed sampling and floodplain coring. The specific locations where 

samples were collected were determined by the presence of trapped overbank sediment. 

 

4.4.4.  Channel bed sediment storage 

Channel beds represent an important store of fine sediment in a sediment budget (Objective 

4). Not only is the degradation of channel bed habitats by fine sediment considered an 
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important ecological issue (Collins et al., 2010), but the stored sediment often represents a 

source of easily mobilised sediment, ready to be transported when flows increase (Walling 

and Amos, 1999). For these reasons channel bed sediment is commonly utilised in 

fingerprinting studies (Collins and Walling, 2007; Collins et al., 2013), and is necessary for the 

fulfilment of Objectives 1, 2 and 3. For a full discussion of channel bed sedimentation see 

Section 3.4.3.  

 

The method developed by Lambert and Walling, (1988) was used to estimate the quantities 

of sediment stored on the bed of major tributaries, and provide a representative sample of 

channel bed material for further analysis. A total of 18 sites were sampled on a quarterly 

basis from the period June 2011 to April 2013, for a total of 7 repetitions (Table 4-4). An 

alternative method which is commonly utilised is the deployment of gravel traps such as 

used by Petticrew et al., (2007), which can be used to better quantify the rates of sediment 

infiltration into gravel river beds. However due to the absence of a deep layer of gravel in 

many of the Nene’s tributaries, and the requirement of this project only to quantify 

sediment storage, these were not utilised. 

 
Table 4-4: Periods of bed disturbance sampling. 

Sampling Period 

June 2011 

September 2011 

January 2012 

June 2012 

September 2012 

January 2012 

 

Sampling was performed as close to the confluence of major tributaries and the main 

channel as accessibility allowed, while avoiding back water effects. Sampling locations are 

shown in (Figure 4-9). Conventionally, the bed disturbance method has been used on a 

combination of riffles and pools (Owens et al., 1999a), or as a pair of samples in the centre 

and edge of a channel (Collins and Walling, 2007a). In the case of the Nene, the narrow 

width of tributaries, obscured river bed and highly variable channel bed morphology made 

these methods unsuitable. Therefore sampling was performed in the centre of each river 

channel reach.  
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 A cylinder with a surface area of ca. 0.2 m2 was pushed into the river bed creating a seal 

between the cylinder and bed and the depth of water was recorded. The bed within the 

cylinder was then disturbed to a depth of 5 cm using a wooden pole and two 0.5 l 

subsamples were immediately taken from the water within the cylinder. Three repetitions 

were performed within the ca. 30 m reach of river at each sampling location to provide an 

indication of local variability. Sediment stored on channel beds was calculated using 

Equation 4-2. 

 

Equation 4-2: Calculation of sediment storage on channel beds. 

Scb=(Sb/Vb)*Vt 

 

Where Scb=sediment storage on the channel bed (kg m-2), Sb= mass of sediment in the 

bottle (Kg), Vb= volume of bottle (litres), Vt= Volume of sampling tube (litres). 

 

The sampling methodology used has the disadvantage of not taking into account the full 

temporal and spatial variability of the sediment residing on the channel beds (Collins and 

Walling, 2007b). It was however expected that multiple repetitions spaced evenly over the 

study period and spread over the Nene basin, would provide a representative picture of 

temporal and spatial variability. 

 

4.5. Sediment source sampling 

Sediment sources in published fingerprinting studies are most frequently classified by land 

utilisation (see Section 3.3 for a discussion of major sediment sources). Lithology has also 

been determined to be an important factor affecting tracer concentrations and has been 

utilised as a classification of sediment sources (Owens et al., 1999b). The major sediment 

source types selected in the Nene were agricultural surface sources, channel banks and 

urban street dusts, as these have been shown to be the major contributors to in-stream 

sediment (Walling et al., 1999a; Carter et al., 2003; Walling et al., 2006). However as 

lithology was identified to be a potential control on tracer measurements (Section 2.3) the 

source sampling was structured to include a representative range of lithologies present 

under each source group. 
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Sampling took place over a period of 12 months to account for any seasonal variability in 

source type properties (Carter et al., 2003). The locations of the samples collected are shown 

in Figure 4-14 and the number of samples for each source group and their distributions over 

the various lithologies of the Nene basin are shown in Table 4-5. 

 

 
Figure 4-14: The locations of sediment source sampling (Surface water and town locations derived from 
Ordnance Survey (2009). 
 

Table 4-5: The lithological and land cover distribution of source sampling. 
 Total 

Clay Silt Sand G
ravel 

Diam
icton 

Disturbed land 

Ferrugnious Lim
e and 

Ironstone 

lim
estone 

M
arlstone 

M
udstone 

Sand and G
ravel 

Sand and Ironstone 

Sandstone Siltstone and 
M

udstone 

Silts and Clays 

W
hite Sands 

U
nclassified 

Surface agricultural  
sources (total) 247 21 43 5 2 12 15 53 22 39 1 26 3 5 

Surface agricultural 
sources  
(Cultivated land) 

173 14 34 5 1 10 14 37 12 25 1 18 2 0 

Surface agricultural  
sources  
(Grassland) 

74 7 9 0 1 2 1 16 10 14 0 8 1 5 

Channel Banks 65              

Urban street dusts 21              

• Lithology was not considered a controlling factor on the composition of urban street dusts. 

• Channel bank samples were collected on the basis of collecting a range of samples for each tributary sub-

catchment investigated. 
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Samples of topsoils were collected from the top 2 cm of the surface using a non-metallic 

trowel (Carter et al., 2003). Each sample was composed of an amalgamation of five sub 

samples taken from within a 15 m radius of a randomly selected sampling point, to further 

increase the representativeness of the source sampling (Collins et al., 2010). Urban street 

dust was collected using a dustpan and brush from the material deposited at the side of a 

range of major and minor roads. Channel bank samples were collected from the lower and 

middle bank horizons of a visibly eroding channel bank. The outermost exposed 2cm of 

material were removed prior to sampling, in order to minimise contamination from 

displaced surface material or deposited fluvial sediments.  

 

 

4.6. Summary 

• Sampling was structured around the formation of a partial sediment budget (Objective 

4) and to provide sediment samples to be used in the sediment fingerprinting 

investigation (Objectives 1, 2 and 3). 

 

• Each part of the sampling methodology was structured to fulfill the requirements laid 

out by Parsons (2012) to produce a suitably robust sediment budget. 

 

• Table 4-6 summarises the methods used, the sampling frequency, the sampling periods 

and the number of samples obtained in this project. 

 

Table 4-6: A summary of the sediment sampling methodology. 

Part of Budget Context Methodology 
Number of Sampling 

Frequency Dates of Operation 
Sites 

Sediment Yield: 
Reservoir catchment Historical Reservoir Cores and 

Bathymetric Survey 1 n/a n/a 

Sediment Yield: 
Turbidity Contemporary Turbidity Meters 2 15 Minutes 

Dodford = Sept 2011 – April 
2013  Northampton = Jan 

2012 – April 2013 

Suspended sediment Historical Cores from a semi 
cut-off meander 2 Once - Twice n/a 

Suspended sediment Contemporary Time integrated 
Sediment traps 9 Monthly Oct 2011 - April 2013 

Floodplain storage Historical Floodplain cores 4 Once - Twice n/a 

Overbank flows Contemporary Washing vegetation 16-20 Four times 
April 2012, July 2012, 

October 2012, November 
2012. 

Channel Bed storage Contemporary Bed disturbance 
experiments 19 Quarterly June 2011 – February 2013 
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5.  Laboratory and sediment fingerprinting methodology 
 

5.1. Introduction 

This chapter begins by describing the methods used to measure the organic matter content, 

particle size distribution and tracer concentrations of the sediment and source samples. It 

then details the statistical procedure used to derive the optimum fingerprints for the un-

mixing models. It concludes by describing the composition of the mathematical un-mixing 

model used. The methods described are relevant to Objectives 1, 2 and 3 addressing 

sediment fingerprinting. The sediment fingerprinting results were then used to determine 

sediment provenance as part of the sediment budget constructed for Objective 4. 

5.2. Sample preparation 

Upon return to the laboratory, sediment samples were initially de-watered by settling 

overnight, followed by decanting and pipetting off surplus clear water. The sediment was 

then oven dried at 40°C. A 40°C temperature was selected to minimise possible thermal 

changes to the mineral magnetic properties of the sediment which were used as fingerprint 

signatures (Dearing, 1999). The source and sediment samples were then gently manually 

disaggregated using a pestle and mortar. Source samples were sieved to <63µm to conform 

to common practice in sediment provenance studies, aimed at reducing potential impacts of 

differences in particle size on tracer concentration (Koiter et al., 2013). 

 

5.3. Particle size distribution and organic matter content 

The particle size characteristics of the source and sediment was represented by the measure 

of specific surface area (SSA) and the organic matter content was measured as loss on 

ignition (LOI). These measurements have been utilised as the basis for corrections in many 

published sediment provenance studies. For a discussion of their use see Section 2.5. The 

following two sections explain how these were measured and the reasoning behind the 

choice of method used.  

5.3.1.  Particle size distribution 

Suspended sediment particles in rivers have often been shown be transported as large 

composite particles (aggregates) rather than as discrete particles (absolute particle size) 
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(Walling and Woodward, 2000). It was determined that sediment in the Nene is primarily 

transported as discrete particles; therefore absolute particle size was selected as the most 

meaningful means of quantifying particle size distribution and correcting for the effects of 

particle size on fingerprint properties (Woodward and Walling, 2007). The majority of 

fingerprinting studies utilising particle size corrections use hydrogen peroxide to remove 

organic matter and chemical dispersion to further disaggregate particles (Collins et al., 

1997a), as the aggregation of particles by organic matter can lead to the underestimation of 

fine particle size fractions (Di Stefano et al., 2010). The removal of organic matter using 

hydrogen peroxide, followed by chemical dispersion was selected to assess the absolute 

particle size distribution of the samples collected in the Nene catchment. Organic matter in 

the samples was first removed using 10 ml of 30% hydrogen peroxide added to ~ 0.1 g of soil 

or sediment. The samples were left for 24 hours at room temperature and then heated at 

70°C until bubbling had stopped; 5 ml of 3% sodium hexametaphosphate solution was then 

added to the cooled samples and left to stand for 2 minutes before analysis (Gray et al., 

2010).  

 

Laser granulometry was used to measure the particle size distribution of the source and 

sediment samples. A number of methods exist for quantifying < 63µm particle size 

distribution including: microscopy, sedimentation techniques, optical and electrical sensing 

zone methods and laser light scattering techniques (ie. laser granulometry). Sedimentation 

methods using pipette or hydrometer based analysis have been commonly used in published 

literature (Galehouse, 1971; Plumb, 1981). These methods have a number of requirements 

which must be carefully controlled for such as: temperature to avoid convection currents, 

concentrations of sediment used must be low enough to avoid interactions between 

particles and the density and shape of all of the sediment particles are assumed to be equal 

(Konert and Vandenberghe, 1997). These methods are also very time consuming and require 

large samples ca. 10-50 g (Di Stefano et al., 2010). Laser granulometry has the advantage of 

very fast analysis time (typically <5 minutes per sample), it requires no manual calibration 

and can quantify a wide range different sized particles. The technique has also been shown 

to have a higher accuracy and better reproducibility then sieving and pipette sedimentation 

alternatives (Konert and Vandenberghe, 1997). A drawback of laser granulometry is that any 

estimate of SSA assumes that sediment particles are spherical and measurement occurs only 

in two dimensions, so particle size is calculated using cross sectional area. As a result it has 

been argued that this method underestimates the clay particle size fraction (Loizeau et al., 
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1994). Given its advantages and the availability of laser granulometry at the University of 

Northampton it was selected for use in this study.  

 

The sediment and source samples were added to 500 ml Type 1 ultrapure water in a Malvern 

Hydro 2000 unit, where the sample was subjected to two minutes of ultrasonic dispersion 

immediately prior to analysis (Blott et al., 2004). Each sample was measured for a total of 60 

seconds at 8-12% obscuration (Blott et al., 2004), using a Malvern Instruments laser 

granulometer, and the characteristics in Table 5-1 were recorded. Due to time constraints 

each sample was only analysed once; however, preliminary tests of the methodology 

confirmed consistency between the results of three consecutive repetitions. 

 

Table 5-1: Particle size sorting characteristics as used by Foster et al. (2008). 

Measurement Description and units 

D10 The 10th percentile (μm) 

D50 The 50th percentile (μm) 

D90 The 90th percentile (μm) 

Span A sorting index defined as  (D90-D10) / D50 

Specific Surface Area 
(SSA) 

A measure of the surface area of the whole particle size distribution 
based on the assumption that all particles are spherical (m2 g-1)  

 

5.3.2.  Organic matter 

Loss on ignition (LOI) is the most common method to quantify the organic content of soils 

and sediments utilised in the majority of sediment provenance studies (Collins et al., 1997). 

Loss on ignition has the disadvantage that water can be lost from clay minerals during 

heating, resulting in an overestimation of organic content. As a result LOI can only be 

considered a semi-quantitative technique (Dankers, 1983). A more accurate estimation of 

organic content can be derived using wet oxidation followed by titration with ferrous 

ammonium sulphate or combustion followed by the collection and measurement of evolved 

carbon dioxide (Schumacher, 2002) as used by Smith and Blake (2014). Heiri et al., (2001) 

found that a reasonably consistent result (~2% error) could be obtained using LOI, providing 

a consistent sample mass, temperature and heating time were used. For this reason, and the 

insufficient time available for the use of a wet oxidation technique, LOI was selected as a 

measurement of organic matter in soils and sediments. 

 

High temperature LOI has been demonstrated to be unsuitable on highly carbonaceous soils 

and can lead to the liberation of water from clay minerals (Ball, 1964). For this reason, low 
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temperature LOI was used following the method of Grimshaw et al., (1989). Ceramic 

crucibles were heated in an oven at 105°C to remove any residual moisture and their mass 

was recorded to three decimal places of a gram. One to two grams of sample was weighed 

into each crucible and oven dried at 105°C for 2 hours and the mass of the sediment and 

crucible together were recorded. The full crucibles were placed in a Carbolite muffle furnace 

at 450°C for 4 hours. The hot crucibles were allowed to cool for 5 minutes in a desiccator 

before the crucibles were weighed again. Loss on ignition was calculated using the following 

formula. 

 

Equation 5-1: Loss on ignition 

Loss on Ignition (%) = (pre-ignition weight - post–ignition weight) / pre-ignition weight) *100 

 

5.4. Analysis of Tracers 

The tracers used in this study were selected on the basis of being the most commonly 

utilised in published sediment provenance studies (D’Haen et al., 2012) . For a full discussion 

of the tracer groups used, with reference to published literature, see Section 2.3. 

 

5.4.1.  Mineral magnetic signatures 

The measurement of mineral magnetic signatures in this study used ca. 10g of the prepared 

source and sediment samples packed tightly to a depth of ca. 2 cm in 10ml sample pots. The 

measurements performed, equipment used and relevant calculations made, are shown in 

Table 5-2 and follow the protocols laid out by (Lees, 1997). The analyses were performed in 

the order in which they appear in the table. 
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Table 5-2: Magnetic measurements used as by Foster et al., (2008), measurements highlighted in bold were used 
as fingerprinting tracers.  

 

Ten repeat measurements of ten individual sub-samples of sediment were performed to 

estimate magnetic signature measurement errors. Each sample was removed from the 

sample container and randomised in a pestle and mortar between measurements. The 

average measurement and standard deviation was calculated for each sample and used to 

calculate the coefficient of variation in Table 5-3. The average coefficient of variation of all 

ten sub samples was used to quantify the error associated with the tracer measurement. 

 

 

 

 

 

 

 

Property 
Measured (M) 

or 
Derived (D) 

Units Instrument / calculation used 

Low frequency susceptibility (χ lf) M 10-6 m3 kg-1 Bartington Instruments MS2b sensor (470 Hz) 

High frequency susceptibility (χhf) M 10-6 m3 kg-1 Bartington Instruments MS2b sensor (4700 
Hz) 

Frequency dependant 
susceptibility (χ fd) D 10-9 m3 kg-1 ((χ lf  - χhf)/m)*100   (m = sample mass) 

 

Anhysteretic Remanent Magnetisation 
(ARM(40µT)) 

M 10-3 Am2 kg-1 Molspin® anhysteretic remanent magnetiser, 
Molspin® slow-speed spinner magnetometer 

Saturation Isothermal Remanent Magnetisation 
(SIRM) M 10-3 Am2 kg-1 Molspin®  pulse magnetiser, 

Molspin® slow-speed spinner magnetometer 

Soft Isothermal Remanent Magnetisation 
(IRM(-100mT)) 

M 10-3 Am2 kg-1 Molspin® slow-speed spinner magnetometer 

Susceptibility of ARM (χarm) D 10-6 m3 kg-1 ARM x 3.14 x 10 

S Ratio D Dimensionless -1 x (IRM100mT / IRM 0.88T 

Hard Isothermal Remanent Magnetisation 
(HIRM) D 10-3 Am2 kg-1 IRM1T/(1-Sratio))/2 
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Table 5-3: Established measurement errors for magnetic susceptibility and remanence measurements. 

  Low frequency susceptibility (10-6 m3 kg-1)  Frequency dependant susceptibility 
(10-9 m3 kg-1) 

Sample Mean Standard 
deviation 

Coefficient of 
variation (%) 

 Mean Standard 
deviation 

Coefficient of 
variation (%) 

Sediment trap December – January 
2012 
Northampton 

0.42 0.004 0.9  19.54 3.54 18.1 

Sediment trap September – October 
2012  
Kislingbury 

0.37 0.003 0.79  15.53 2.19 14.12 

Bed sediment September 2012 
Knuston 0.15 0.003 2.23  4.62 4.87 105.45 

Upton floodplain core slice  4 0.23 0.001 0.63  3.23 1.73 53.50 
November flood Ditchford 0.53 0.005 1.02  26.87 1.93 7.17 
Sediment trap December – January 
2012 
Wellingborough 

1.25 0.006 0.47  49.35 1.58 3.21 

Bed sediment September 2012  
Northampton 0.86 0.004 0.41  28.47 4.86 17.06 

Stanwick floodplain core slice 24 0.30 0.001 0.40  16.94 2.22 13.11 
October flood 
Heyford 0.26 0.002 0.75  9.16 3.60 39.34 

Sediment trap January – February 
Weedon 1 0.25 0.001 0.41  10.44 0.77 7.35 

Average 
  .80    15.59 

 

 
Saturation Isothermal Remanent 

Magnetisation (10-3 Am2 kg-1)  
Soft Isothermal Remanent 

Magnetisation (10-3 Am2 kg-1)  
Hard Isothermal Remanent 

Magnetisation (10-3 Am2 kg-1) 

Sample Mean Standard 
deviation 

Coefficient 
of variation 

(%)  Mean Standard 
deviation 

Coefficient 
of variation 

(%)  Mean Standard 
deviation 

Coefficient 
of variation 

(%) 
Suspended 

March – April 
Northampton 

6.22 0.47 7.58  4.73 0.46 9.79  0.74 0.02 2.73 

Suspended 
May - June 

Heyford 
3.39 0.04 1.20  2.48 0.06 2.38  0.46 0.02 4.56 

November 
flood 

Ditchford 
6.59 0.08 1.16  5.04 0.10 1.97  0.78 0.04 5.66 

October 
Flood Heyford 3.03 0.03 0.85  2.12 0.04 1.93  0.46 0.03 6.15 

Stanwick 
floodplain 

core slice 24 
2.41 0.01 0.55  1.78 0.02 1.29  0.32 0.01 4.48 

Upton 
floodplain 

core slice  4 
2.67 0.01 0.45  1.71 0.05 2.81  0.48 0.02 4.75 

Average   1.96    3.36    4.72 

 

5.4.2.  Radionuclides 

Radioactive decay can result in the emission of alpha, beta particles and gamma rays. 

Gamma rays are the most commonly measured in sediment due to the practical constraints 

of measuring alpha and beta particles which are easily blocked by air or solid matter 

(Wallbrink et al., 2003). Radionuclide activity in this study was determined by high 

resolution, low-level gamma spectrometry using Ortec hyper-pure germanium (HPGe) 

detectors as used by Foster et al. (2007) and based on the methods described by Gilmore 
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(2008). Hyper-pure germanium (HPGe) gamma detectors provide a measurement of gamma 

decays of elements at known decay energies, measuring activity concentrations of specific 

radionuclides. Liquid-scintillation counting can provide better detection efficiency but lower 

resolution and is most commonly used to measure beta decay, so was not employed in this 

research (Papastefanou, 2009).   

 

Samples of source and sediment of ca. 3 g were packed to a depth of 4 cm in PTFE sample 

pots and sealed with a turnover cap and paraffin wax. They were left to equilibrate for a 

minimum of 21 days to allow for in-growth of 222Ra (Pennock and Appleby, 2002). A 

summary of the radionuclides measured in this study is provided in Table 5-4. 

 

Table 5-4: A summary of radionuclides used as environmental tracers in this thesis (after Foster et al., 2007). 

 

 

Samples were measured for a minimum of one day (>86,400s) and the resulting spectra 

were analysed by calculating the number of photon counts at each decay energy. The area of 

each peak was manually identified using Ortec Gamma Vision software, version 6.08. The 

results were corrected for detector efficiency, background interference, sample mass, 

surface area and storage time. 

  

The measurement error of each tracer was determined using the error associated with the 

calculated net area of each radionuclide decay peak, which was provided by the Gamma 

Vision software. The used values were derived as an average of the 253 samples measured 

at the time of calculation, results are presented in Table 5-5. 

 

 
Isotope 

 
Half Life Origin 

Measured 
Decay energy 

(Kev) 
Notes 

 

137Cs 
 

30yr Anthropogenic:  Fallout from high-
yield thermonuclear weapons tests 661.62 First detectable occurrence 1954, peaks in 1963 

& 1986 (Cambray et al., 1989) 
210Pbun 

 22.3 yr Atmospheric fallout 
Primordial 46.52 Atmospheric from 222 Rn (Radon Gas) 226Ra is 

formed from the 238U decay series. 
234Th 

 24.1 day Primordial 63.29 238U decay  series 
235U 

 7.04 x 108 yr Primordial 185.72 235U decay series 
214Pb 

 26.8 min Primordial 295.22, 351.99 238U / 226Ra decay 
228Ac 

 6.14 hr Primordial 338.40, 911.07 232Th decay series 
212Pb 

 10.6 hr Primordial 238.63, 300.09 232Th decay 
40K 

 1.28 x 109 yr Primordial 1460.75 Primordial 

http://link.springer.com/search?facet-author=%22Constantin+Papastefanou%22
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Table 5-5: Error associated with radionuclide activity measurements. 

 Average Coefficient of variation 
210Pbun 3.61 

226Ra 4.32 
137Cs 14.79 
228Ac 7.23 

40K 3.60 
234Th 11.45 
235U 10.47 

212Pb 1.25 

 

 

5.4.3.  Geochemistry 

Five commonly utilised methods exist for the measurement of geochemical tracers, 

inductively coupled plasma (ICP) atomic absorption spectroscopy (ICP-AAS), ICP optical 

emission spectroscopy (ICP-OES), ICP mass spectroscopy (ICP-MS) and X-ray fluorescence 

(XRF). ICP-AAS limits analysis to one element at a time and is not as sensitive as ICP-OES 

(Fassel and Kniseley, 1974) so was not used in this study. ICP-OES has an extensive record of 

use in published fingerprinting studies; however ICP-OES is often affected by spectral 

overlap requiring the careful examination of resulting spectra.  It is also not as sensitive at 

low element concentrations as ICP-MS due to spectral overlap creating a continuous 

background (Olesik, 1990). ICP-MS has as a result been utilised heavily in sediment 

fingerprinting studies (Collins and Walling, 2007c). ICP-OES however is less expensive, and is 

available at the University of Northampton and for this reason the method was selected for 

this study.  

 

Results obtained by ICP-based methods and energy dispersive X-ray spectrometry have been 

shown to be almost comparable (Alomary et al., 2012). X-ray based methods have the 

disadvantages that samples must be homogenously distributed throughout the cross 

sectional area to be measured and penetration of X-rays into sample material is limited to 

near the surface of sediment particles. They can also exhibit poor detection of elements with 

atomic weights lower than Sodium. These methods are however non-destructive unlike ICP 

based methods (Shackley, 2011) and have been successfully utilised in sediment 

fingerprinting studies (Smith and Blake, 2014). 
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For the preparation of samples in this study, approximately 0.8 g +/- 0.05g of sample was 

weighed into tetraflouromethacrylate (TFM) vessels. Microwave digestion in aqua regia has 

been shown to extract a greater percentage of the total metal content of a sample than 

alternatives, such as aqua regia digestion on a hotplate (Chen and Q Ma, 1999) and 

microwave and hotplate nitric acid digestion (Tighe et al., 2004) . While the method is not as 

effective as microwave digestion with hydrofluoric acid combined with aqua regia it does 

remove the need to use hazardous Hydrofluoric acid which was avoided for health and 

safety reasons. Therefore, a mixture of 2ml 70% analytical reagent grade nitric acid, 6ml 37% 

analytical reagent grade hydrochloric acid and 2ml type 1 ultrapure water was added to each 

tube to form the aqua regia digestion fluid (Chen and Q Ma, 1999). The samples were 

digested by microwave digestion in a CEM Mars 6 digestion unit using the digestion 

procedure outlined in Table 5-6.  

 

Table 5-6: Breakdown of the microwave digestion temperature, power and heating time. 
Stage Temperature (°C) Power (watts) Duration (minutes) 

1 Ramp to 120 1000 8 

2 Hold at 120 1000 3 

3 Ramp to 170 1500 10 

4 Hold at 170 1500 3 

5 Ramp to 180 1500 4 

6 Hold at 180 1500 20 

7 Cool n/a 20 

 

The digested samples were diluted to 50ml in volumetric flasks using Type 1 ultrapure water 

and after a period of settling for ca. 5 minutes, a subsample was decanted into 10ml 

polypropylene centrifuge tubes for analysis. Samples were analysed using a Thermo iCAP 

6500 Duo View ICP-OES. A range of 30 samples randomly selected from a number of 

sampling sites were initially analysed with a 1 mg kg-1 multi-element standard to determine 

the elements of sufficient concentration to be successfully detected, and wavelengths free 

of interference from other elements. Of the usable elements determined (Table 5-7) a range 

of four standards were made up around the concentrations found in the trial samples. The 

standards used were Fisher Assurance SPEX Certi Prep Standards at 1000 mg kg-1 or 10,000 

mg kg-1 made to volume with Type 1 ultrapure water. 
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Table 5-7: The elements and wavelengths used for ICP-OES geochemical tracer analysis. 

Element Wavelength (nm) Element Wavelength (nm) 

Al 396.1 Mn 259.3 

As 193.7 Na 589.5 

Ba 493.4 Nd 406.1 

Ca 317.9 Ni 231.6 

Co 228.6 P 177.4 

Cr 267.7 Pb 220.3 

Cu 327.3 Ti 336.1 

Fe 238.2 V 290.8 

Ga 294.3 Y 371.0 

Gd 335.0 Yb 328.9 

K 766.4 Zn 206.2 

La 412.3 Zr 343.8 

Mg 279.5   

 

During the analysis each sample was measured three times and the average taken as the 

final result (McKinstry et al., 1999). The samples were digested in batches of 40 tubes, of 

each batch one tube contained a blank for the assessment of contamination during the 

digestion procedure. Table 5-8 shows the average contamination present in blank samples 

containing only aqua regia and ultra-pure water for each geochemical tracer analysed. The 

average error recorded for all spikes was 16.6% with a standard deviation of 11.7%. 
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Table 5-8: Average contamination associated with geochemical element measurement determined by blank 
samples. 

Element 

Average 

contamination 

(mg/l) 

Standard 

deviation 

Al 26.45 26.24 

As 0.02 0.16 

Ba 0.62 2.33 

Ca 106.41 106.56 

Co 0.02 0.03 

Cr 3.49 6.70 

Cu 0.45 0.81 

Fe 92.48 96.57 

Ga 0.47 1.08 

Gd -0.07 0.29 

K 14.66 12.99 

La -0.07 0.36 

Mg 5.27 6.25 

Mn 2.34 4.07 

Na 12.35 9.72 

Nd 3.53 17.44 

Ni 1.18 2.50 

P 5.79 8.16 

Pb 0.30 0.96 

Ti -0.60 1.25 

V 0.10 0.33 

Y 0.04 0.06 

Yb 0.01 0.01 

Zn 2.37 1.91 

Zr 0.12 0.18 

 

A certified reference material (CAN-STSD-1) was analysed for two repetitions to determine 

the detection efficiency of the methodology used. Table 5-9 shows both the total 

concentration of elements expected in the reference material and the aqua regia 

extractable fraction compared to the concentrations found during two repetitions of the 

analysis procedure used in this study. 
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Table 5-9: The amount of sediment element concentration recovered by the microwave digestion and ICP 
analysis procedure, determined using a certified reference material (mg kg-1). 

 
Element Quantity measured using 

the analysis procedure of 
this thesis 

Certified 
value 

Aqua regia 
extractable value 

Al 5081.63   

As 17.52 23 17 

Ba 338.80 630  

Ca 8090.46   

Co 7.88 17 14 

Cr 21.36 67 28 

Cu 19.51 36 36 

Fe 14802.27 4700 3500 

Ga 0.62   

Gd 0.48   

K 314.79   

La 3.68 30  

Mg 2846.78   

Mn 3989.60 3950 3740 

Na 67.06   

Nd 27.10 28  

Ni 10.53 24 18 

P 1306.69   

Pb 28.75 35 34 

Ti 92.70 4600  

V 33.09 98 47 

Y 16.53 42  

Yb 1.96 4  

Zn 126.32 178 165 

Zr 1.68 218  
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Analytical error for each element was established using three repeat measurements of six 

sediment samples. The average coefficient of variation was calculated and used as the 

quantification of error, and is shown for each element in Table 5-10. 

 

Table 5-10: Errors associated with the measurement of geochemical tracers. 

Element Average Coefficient of variation (%) Element Average Coefficient of variation (%) 

Al 13.52 Mn 6.85 

As 8.22 Na 26.12 

Ba 11.31 Nd 7.96 

Ca 4.68 Ni 31.53 

Co 3.03 P 3.26 

Cr 20 Pb 20.75 

Cu 9.36 Ti 30.06 

Fe 4.19 V 11.12 

Ga 4.8 Y 8.68 

Gd 6.18 Yb 8.57 

K 20.95 Zn 4.94 

La 21.69 Zr 10.2 

Mg 13.07     

 

 

5.5. Sediment fingerprinting methodology 

The sediment fingerprinting methodology used is outlined in Figure 5-1. The following 

section describes each stage of the procedure, outlining the procedure used and the 

reasoning behind the fingerprinting methodology. Chapter 2 provides a discussion of 

published sediment fingerprinting methodologies, from which this methodology was 

derived. 

The different tracer groups used to fingerprint the sediment were investigated both alone 

and in combinations of two groups. For the remainder of the fingerprinting methodology 

each group is treated separately until the results derived with them are compared in the 

results sections to fulfil Objectives 1, 2 and 3. A list of tracer groups and their abbreviations 

used in future figures are provided in  

Table 5-11. 
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Table 5-11: Tracer groups used and their abbreviations. 

Tracer group Abbreviation 

Mineral magnetics Mag 

Mineral magnetics with lithogenic radionuclides Mag litho 

Mineral magnetics with fallout radionuclides Mag fallout 

Mineral magnetics with geochemistry Mag geochem 

Geochemistry with lithogenic radionuclides Geochem litho 

Geochemistry with fallout radionuclides Geochem fallout 

Geochemistry Geochem 

Lithogenic radionuclides with fallout radionuclides Litho fallout 

All tracer groups combined All 
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Figure 5-1: A Flow diagram of the sediment fingerprinting procedure. 
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5.5.1.  Allocation of source samples 

The sediment source groups used in this study were channel banks, surface agricultural land 

and urban street dusts. These were selected on the basis of their importance as sediment 

sources in UK catchments, as described in Chapter 3. 

Due to sampling and analytical constraints a discrete set of source samples was not acquired 

for every tributary sub-catchment investigated, an issue also highlighted in a recent study by 

Smith and Blake (2014). Instead surface agricultural land samples were pooled into five 

regions, each of which consisted of comparable lithologies and land utilisations (Figure 5-2 

A). Likewise channel banks were split into three regions representing the upstream, middle 

and downstream regions of the study area (Figure 5-2B). When fingerprinting the recently 

deposited overbank sedment samples Figure 4-9 all source samples in the upstream 

catchment were used. This resulted in a total of 8 regions of the Nene basin, where different 

combinations of source samples were used. 

 

 

Figure 5-2: The division of the study area into surface source (A) and channel bank (B) regions for the separation 
of source samples. 

 

The data for each source and sediment sample was corrected for organic enrichment 

(Equation 5-2), particle size SSA (Equation 5-3) and left uncorrected, to fulfil the 

requirements of Objective 3. Many published studies calculate these corrections on the basis 

of the mean organic content and particle size distribution of the source groups compared to 

the mean of the sediment samples, to form a correction factor for each source group e.g. 

A B B 
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Rowan et al. (2012). As it was found that many sediment cores were affected by down-core 

trends in organic matter and particle size distribution, a single correction factor was 

considered to be unsuitable to represent the entire core. For this reason all sediment and 

source samples were given an individual correction factor based upon the methods of Collins 

et al. (1997). For a full discussion of the use of these corrections in published fingerprinting 

studies see chapter 2. 

 

Equation 5-2:  Tracer organic enrichment correction. 

Organic corrected value = T(1/(1-(LOI/100))) 

Where T- measured tracer concentration and LOI= loss on ignition (%). 

 

Equation 5-3: Tracer particle size correction. 

Particle size corrected value = T/SSA. 

Where T= measured concentration value and SSA= specific surface area. 

 

5.5.2.  Mass conservation test and statistical procedure 

The determination of composite fingerprints was based on the published developments in 

sediment fingerprinting outlined in chapter 2. Data for suspended and recently deposited 

sediment were initially screened for conservatism using a mass conservation test as used by 

Wilkinson et al. (2012), which removed tracers which did not fall between the highest and 

lowest medians of the included source groups. It was found that this mass conservation test 

was failed by almost all tracers when fingerprinting historically deposited sediment. For this 

reason the mass conservation test of Collins et al. (1997) was used for these cores. This test 

required sediment tracer concentrations to fall between the highest median + 1 median 

absolute deviation and the lowest median – 1 median absolute deviation of any included 

source group. When over 20% of samples from each sampling location (e.g. Suspended 

sediment in the Weedon 1 sampling site, or slices of the Kingsthorpe floodplain cores) fell 

outside of the median source values, the tracer was judged to violate the assumption that it 

is representative of the sediment sources and was removed from further analysis. Some 

leeway on this requirement was permitted when tracer failed by very small amounts, or the 
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requirement was tightened if tracers failed by exceptionally large amounts. No guidelines for 

this threshold exist in published literature so the 20% value was selected on the basis that 

only the most conservative tracers should pass the test, but acknowledging that variability in 

the natural environment is likely to result in some anomalous samples.  

The optimum composite fingerprint was determined by a two stage statistical procedure 

based upon the methodology used by Collins et al. (2013) and Collins et al. (1997). The 

ability of tracers to discriminate between source groups was initially tested using a Kruskal 

Wallace H test.  

 

The tracers in each group passing the initial Kruskal Wallace test were included in a genetic 

algorithm based linear discriminant analysis (GA-LDA) consisting of an initial variable 

selection step, followed by a linear discriminant analysis. The genetic algorithm uses a fitness 

function to assess the robustness of the model proposed by each individual group of tracers; 

this method has been shown to generate the maximum value from a dataset of tracers 

(Collins et al., 2012).  

 

The analysis was initially programmed to select three tracers and was repeated with the 

addition of one extra tracer until additional tracers did not improve the discriminatory 

efficiency of the fingerprint. A 1% Improvement caused by the addition of a tracer was 

judged to be an appropriate cut-off for the inclusion of additional tracers, as it was found 

that without such a cut-off, fingerprints would often include close to 20 tracers, which is a 

number not encountered in published fingerprinting studies.  

Any fingerprint failing to achieve at least an 80% correct classification of samples into their 

respective source groups was not included in any further analysis. This was done to reduce 

the likelihood that the differences between tracer group provenance predictions were due 

to failure to adequately differentiate between sediment sources. The value of 80% was 

selected as published fingerprinting studies were found to rarely use a fingerprint with a 

lower discriminatory efficiency. 
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5.5.3.  Un-mixing modelling 

The un-mixing model selected for this study was based upon that used by Collins et al., 

(2010). The structure of the model is shown in Equation 5-4.  

Equation 5-4: The structure of the un-mixing model (Collins et al., 2010). 

 

Where Ci = concentration of fingerprint property (i) in time-integrated suspended sediment 

sample; Ps = the optimised percentage contribution from source category (s); Ssi = median 

concentration of fingerprint property (i) in source category (s); Z = particle size correction 

factor for source category (s); O = organic matter content correction factor for source 

category (s); SVsi = weighting representing the within-source variation of fingerprint property 

(i) in source category (s); Wi = tracer discriminatory weighting; n = number of fingerprint 

properties comprising the optimum composite fingerprint; m = number of sediment source 

categories.  

Weightings have been utilised in many recent sediment fingerprinting papers such as, Collins 

et al. (2010) and Collins et al. (2013), although other authors do not use weightings e.g. 

Smith and Blake, (2014). Weightings were utilised in this study as it was found by Collins et 

al. (2010) that the precision of source apportionment was improved by their incorporation. 

Weightings operate by increasing the impact of specific tracers on the un-mixing model 

based on their positive attributes, such as a smaller within source variability in tracer 

concentration, or the ability of tracers to differentiate between sediment sources. 

The weightings applied for within source tracer variability and tracer discriminatory 

efficiency in this study were calculated using Equation 5-5 and Equation 5-6 based on the 

methods used by Collins et al. (2010). 

Equation 5-5: Within source tracer variability weighting. 

Within source tracer variability weighting = 1- (Σn (MAD/Median)/n) 

Where MAD = Median absolute deviation. 

Equation 5-6: Tracer discriminatory efficiency weighting. 
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Tracer discriminatory weighting = Et/Ea 

Where Et= Discriminatory efficiency of each individual tracer and Ea= minimum 

discriminatory efficiency of any used tracer. 

The model was programmed using Microsoft Excel and the Solver add in, a visual basic 

macro ran the model for Monte Carlo 3000 iterations through a range of random source 

values within one median absolute deviation of the measured median. Measurements of 

tracers for sediment samples in the model were assigned a random value within the 

coefficient of variation determined for its measurement error, which can be seen in Table 

5-3, Table 5-5 and Table 5-10. 
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6.  Fingerprinting historically deposited sediment 
 

6.1. Introduction  

This chapter addresses Objectives 1, 2, and 3 of this thesis by conducting a fine sediment 

fingerprinting investigation, using historically deposited sediment in lakes and on 

floodplains. It forms one of two chapters which address these objectives; Chapter 7 follows a 

similar structure to this chapter and investigates the fingerprinting of suspended and 

recently deposited overbank and channel bed sediment, in further fulfilment of Objectives 1, 

2, and 3. 

The results in this chapter are split into three sections. In the first section a sediment 

fingerprinting study was conducted using different fingerprints of three different tracer 

groups. The results obtained using each tracer group were then compared in order to 

determine the differences between their sediment provenance predictions. These 

differences provided an indication of the uncertainty associated with the use of the tracers, 

fulfilling Objective 1 of this thesis. 

In the second section, the differences between the tracer groups’ predictions determined for 

Objective 1, were compared to potential causes of tracer non-conservatism, to fulfil 

Objective 2. The predicted contribution from channel banks made by one tracer group of e.g. 

50% was subtracted from the predicted contribution from a second tracer group of e.g. 70%, 

to quantify the difference between the tracer groups’ predictions, of e.g. 20%. This 

difference was calculated for every slice in each core and for all combinations of tracer 

groups, to produce a table of the differences between the tracer group provenance 

predictions. Pearson correlation coefficients were then calculated between these differences 

and the sediment organic matter content and particle size distribution. Correlation 

coefficients were also calculated for ratio based indicators of alterations to mineral magnetic 

signatures. In this way the probable reasons for the differences between tracer group 

provenance predictions were identified. 

In Section 3 data corrections based on organic enrichment and particle size distribution were 

applied to the tracer groups, when either of these factors had been shown in section 2 to be 

likely causal factors of the differences between tracer group predictions. It was then 

determined if the application of the data corrections reduced the differences between their 

sediment provenance predictions, fulfilling Objective 3. 
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6.2. Sediment tracer concentrations chronology, organic matter content 

and particle size distribution. 

The sediment cores used in this section were retrieved using the methods laid out in 

sections 4.3.2. and 4.3.3. Using the 1963 peak in 137Cs fallout and first detectable occurrence 

of 137Cs at 1958 (Foster, 2006) (Figure 8-1, Figure 8-5), each core was estimated to contain a 

record of sediment accumulated over the previous ~100-150 years.  

Prior to fingerprinting the sediment, down-core plots of loss on ignition (LOI) and specific 

surface area (SSA) were constructed to provide an indication of changes to the sediments’ 

organic content and particle size distribution during its deposition and post-depositional 

storage. LOI (Figure 6-1A) is enriched above the median LOI of surface agricultural (10.44 %) 

and channel bank (7.47 %) source samples in all cores other than Sywell reservoir and most 

of the Kingsthorpe floodplain core (Table 6-1).  All cores show an up-core increase in LOI, 

with the core at Earls Barton showing a particularly large increase, and being composed 

predominantly of organic matter in the uppermost 6 cm of the core. SSA (Figure 6-1B) is 

higher than the maximum sediment source group median of 1.18 m2 g-1 in all cores except 

for the Kingsthorpe floodplain core, indicating a fining of sediment particle size. Most cores 

have a ~50% increase in SSA over the source group medians, although between a depth of 

20 and 54 cm the Earls Barton core has over double the SSA of the source groups. It is 

therefore clear that LOI and SSA is significantly different from the source material in most of 

the cores. 
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Figure 6-1: Down-core profiles of the loss on ignition (LOI, A) and Specific surface area (SSA, B) of the sediment 
cores. 

 

 

 

 

 

 

 

0

10

20

30

40

50

60

70

0 10 20 30 40 50 60 70 80

Lo
ss

 o
n 

ig
ni

tio
n 

(%
) 

Depth (cm) 

(A) LOI Sywell Reservoir

Stanwick lake

Kingsthorpe floodplain

Earls Barton floodplain

Upton floodplain

Stanwick floodplain

0.50

1.00

1.50

2.00

2.50

3.00

0 10 20 30 40 50 60 70 80

Sp
ec

ifi
c 

su
rf

ac
e 

ar
ea

 (m
2  g

-1
) 

Depth (cm) 

(B) SSA Sywell reservoir

Stanwick lake

Kingsthorpe floodplain

Earls Barton floodplain

Upton floodplain

Stanwick floodplain



6: Fingerprinting historically deposited sediment 

 
107 

 

Table 6-1: Median tracer concentrations in sediment source groups reported with median absolute deviations. 

 Surface 

Agriculture 

 

Median 

absolute 

 

Chanel Banks Median absolute 

deviation 

Urban 

dusts 

Median absolute 

deviation 

LOI (%) 10.44 1.23 7.47 1.03 21.34 2.57 
SSA (m2 g-1) 1.18 0.10 1.16 0.08 0.90 0.07 

Xlf (10-6 m3 kg-1) 0.38 0.18 0.22 0.05 3.73 0.45 
Xfd (10-9 m3 kg-1) 21.41 14.19 6.81 3.39 124.75 20.12 

Xarm (10-6 m3 kg-1) 3.67 2.36 1.46 0.66 9.44 0.91 
IRM1T (10-5 m3 kg-1) 4.50 2.18 2.53 0.96 34.11 2.62 

IRM-100 (10-5 m3 kg-1) -3.49 1.85 -1.68 0.74 -25.98 3.08 
HIRM (10-5 m3 kg-1) 0.52 0.18 0.40 0.09 4.57 0.59 

       
226Ra (mBq g-1) 31.25 8.30 34.54 9.94 10.31 2.80 
137Cs (mBq g-1) 2.89 1.24 0.16 0.16 0.75 0.39 
228Ac (mBq g-1) 32.86 6.17 36.89 6.19 15.91 4.71 

40K (mBq g-1) 612.58 84.17 645.74 91.08 388.96 51.66 
234Th (mBq g-1) 20.27 5.55 18.16 4.90 6.79 1.28 
235U (mBq g-1) 2.28 0.96 2.23 0.95 0.93 0.28 

212Pb (mBq g-1) 34.25 6.05 38.40 5.33 19.89 2.18 

       
Al (mg kg-1) 9488.73 1463.34 8841.46 1974.21 11868.20 693.92 

As (mg kg-1) 22.62 9.23 24.95 9.44 17.68 1.64 
Ba (mg kg-1) 59.02 12.61 64.29 15.81 195.50 19.56 

Ca (mg kg-1) 5570.06 1877.22 8284.87 4270.21 35837.93 10581.46 
Co (mg kg-1) 9.46 2.80 10.82 2.52 8.51 1.03 

Cr (mg kg-1) 42.62 17.36 37.49 9.20 74.19 14.51 
Cu (mg kg-1) 21.62 4.20 20.75 4.52 222.47 49.74 

Fe (mg kg-1) 34929.08 11191.21 42631.25 12194.19 40927.50 4052.42 
Ga (mg kg-1) 4.77 2.55 3.13 1.97 5.08 0.74 

Gd (mg kg-1) 2.60 1.15 2.94 1.42 1.12 1.10 
K (mg kg-1) 1343.61 323.03 947.59 229.36 1271.75 197.28 

La (mg kg-1) 15.33 3.85 15.75 4.22 14.95 1.73 
Mg (mg kg-1)) 1708.98 403.85 1776.62 493.32 8917.81 1402.17 

Mn (mg kg-1) 647.86 244.88 608.39 208.75 1765.83 242.99 
Na (mg kg-1) 61.04 22.72 94.92 36.56 299.17 87.08 

Nd (mg kg-1) 28.76 8.12 38.30 6.73 24.95 2.05 
Ni (mg kg-1) 25.93 9.86 24.84 4.00 37.36 4.95 

P (mg kg-1) 1354.41 374.61 1018.04 249.95 1319.66 160.01 
Pb (mg kg-1) 30.98 7.83 26.47 7.18 107.45 17.62 

Ti (mg kg-1) 23.98 10.63 21.61 8.39 79.26 20.57 
V (mg kg-1) 52.19 18.60 53.18 15.06 59.75 3.84 

Y (mg kg-1) 14.15 4.09 17.62 3.99 12.93 1.07 
Yb (mg kg-1) 1.78 0.56 2.29 0.52 1.88 0.14 

Zn (mg kg-1) 85.27 23.06 85.82 12.68 853.82 290.51 
Zr (mg kg-1) 5.84 1.51 7.43 1.54 9.32 1.33 

 

6.3. Statistical determination of composite fingerprints 

The statistical procedure described in Section 5.5.2. was used to identify the composite 

fingerprint for each core and each tracer group. The fingerprint used was the one that was 

best able to discriminate between the channel bank, surface agriculture and urban street 

dust sediment sources. The statistical procedure consisted of an initial mass conservation 

test, followed by a two-step statistical determination of the composite fingerprint. The 

following sections provide a brief reminder of each part of the statistical procedure and 

presents the tracers and fingerprints passing and failing each stage. 

The lithogenic radionuclides, geochemistry, and mineral magnetic tracer groups were used 

to fingerprint the sediment cores alone, in combinations of two groups, and as a final single 
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group consisting of all tracers. The combinations of groups used are shown in Table 6-2, 

along with the abbreviation for each group used in the figures and tables in this chapter.  

Table 6-2: The tracer groups used to fingerprint historically deposited sediment and their abbreviations. 

Tracer group fingerprint Abbreviation 

Mineral magnetics Mag 

Mineral magnetics and lithogenic radionuclides Mag litho 

Mineral magnetics and geochemistry Mag geochem 

Geochemistry and lithogenic radionuclides Geochem litho 

Geochemistry Geochem 

All tracer groups combined. All 

 

A mass conservation test was used to remove any tracers falling outside of the median +/- 

one median absolute deviation of the source groups shown in Table 6-1 (Section 5.5.2. ). The 

tracers failing this test are shown in Table 6-3. In addition to the information shown in Table 

6-3 it was found that a large number of tracers failed the mass conservation test in the 

Stanwick lake core above 19cm depth, and the Upton floodplain core below 28cm depth. For 

this reason the fingerprinting was only conducted on the sections above and below these 

depths, and the results shown only relate to these more conservative sections of the cores. 
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Table 6-3: Tracers failing the mass conservation test for each core and each correction. 

Sywell reservoir  Stanwick Lake  Kingsthorpe floodplain 

U
ncorrected 

O
rganic 

corrected 

Particle size 
corrected 

 

U
ncorrected 

O
rganic 

corrected 

Particle size 
corrected 

 

U
ncorrected 

O
rganic 

corrected 

Particle size 
corrected 

XARM XARM XARM  HIRM IRM-100 Xlf  HIRM HIRM HIRM 
234Th 235U HIRM  234Th HIRM IRM-100  Cu 40K 234Th 
235U Ca 40K  235U 226Ra HIRM  Ga 234Th 235U 
Ca Gd Ba  As 228Ac 40K  Gd 235U Cu 
Gd Ni Ca  Ca 234Th 212Pb  K Cu Ga 
K Ti Co  Co 235U Al  Nd Ga Gd 
Ni  Cr  Cr 212Pb As  P Gd Nd 
Ti  Ga  Fe As Co   K P 
  Gd  Ga Ca Cr   Nd  
  Mn  La Co Fe   P  
  Nd  Mn Cr Ga   Pb  
  Ni  Nd La Gd     
  P  P Mn La     
  Ti  Ti Na Mg     
  Y  V P Mn     
  Yb   Ti Nd     
  Zn    Ni     
  Zr    P     
      Ti     
      V     
      Y     
      Yb     
           

Stanwick floodplain  Upton floodplain  Earls Barton floodplain 

U
ncorrected 

O
rganic 

corrected 

Particle size 
corrected 

 

U
ncorrected 

O
rganic 

corrected 

Particle size 
corrected 

 

U
ncorrected 

O
rganic 

corrected 

Particle size 
corrected 

HIRM IRM-100 SIRM  XARM XARM XARM  Xlf Xlf Xlf 
226Ra 226Ra IRM-100  226Ra 226Ra 226Ra  Xfd Xfd Xfd 
228Ac 228Ac HIRM  228Ac 228Ac 228Ac  XARM XARM XARM 
235U 235U 40K  235U 235U 40K  SIRM SIRM SIRM 
212Pb 212Pb Al  212Pb 212Pb 235U  IRM-100 IRM-100 IRM-100 
Al Cr Co  Al Al Al  HIRM HIRM HIRM 
Cr Cu Cr  As As Ca  228Ac 226Ra 40K 
Cu Gd Cu  Ga Co Fe  234Th 228Ac 234Th 
Fe K Fe  Gd Gd Gd  235U 234Th 235U 
Gd La Gd  K K K  212Pb 235U As 
K Mg K  La La La  Al 212Pb Co 
La Yb La  Mg Mg Mg  Co Al Cr 
Mg  Mg  P Nd P  Cu As Cu 
P  Na  V P   Fe Co Ga 
Ti  Ni  Y V   Ga Fe K 
  P  Yb Y   Gd Ga La 
  Ti  Zr Yb   La Gd Mn 
     Zr   Mn K Nd 
        Na La P 
        Nd Mn Pb 
        P Na Ti 
        Ti Nd V 
        V P Zn 
        Y Ti  
        Yb V  
        Zr Y  
         Yb  
         Zr  
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The two-step statistical procedure was then used to select the optimum composite 

fingerprint for each tracer group at each coring location (Section 5.5.2. ). Firstly a Kruskal–

Wallis H test was used to remove any tracers which did not show a significant difference in 

concentration between at least two of the sediment sources (Table 6-4). Due to the highly 

distinctive urban street dusts group (Table 6-1) it was found that the majority of tracers 

passed this test. 

Table 6-4: Tracers failing the Kruskal–Wallis H test (p=0.05) for each core and each correction. 

Sywell reservoir   Stanwick lake   
Kingsthorpe 
floodplain 

U
ncorrected 

O
rganic corrected 

Particle size 
corrected 

  U
ncorrected 

O
rganic corrected 

Particle size 
corrected 

  U
ncorrected 

O
rganic corrected 

Particle size 
corrected 

 

- Co -  
 

- Fe -  
 

Co Co Co  

 
Fe 

        
La Fe Fe  

 
La 

        
V La Y  

           
V Yb 

 
           

Yb 
  

              
Stanwick floodplain  Upton floodplain  

Earls Barton 
floodplain U

ncorrected 

O
rganic corrected 

Particle size 
corrected 

  U
ncorrected 

O
rganic corrected 

Particle size 
corrected 

  U
ncorrected 

O
rganic corrected 

Particle size 
corrected 

 

Ga As -  
 

- - As  
 

- - Fe  
V Co 

             

The selection of the optimum composite fingerprint was performed using the tracers passing 

the mass conservation test and Kruskal–Wallis H test. A Genetic Algorithm based Linear 

Discriminant Analysis (GA-LDA) was used to identify the optimum composite fingerprint for 

each tracer group in each core. Any composite fingerprint which failed to correctly 

discriminate between 80% of source samples was removed from further analysis, with the 

aim of minimising the uncertainty introduced by source discrimination, rather than tracer 

behaviour. A value of 80% was selected, as a review of published fingerprinting studies 

found that composite fingerprints were rarely used which failed to achieve at least this 

amount of discrimination.  

Table 6-5 shows the composite fingerprints which were formed for each tracer group for 

each core. In the Sywell reservoir and Kingsthorpe floodplain cores a composite fingerprint 

was able to be used for all tracer groups. The LOI and SSA in these two cores was the most 
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comparable to the sediment source samples, providing an indication that some impact of 

alterations to sediment LOI and SSA may be affecting the fingerprinting in other cores, 

where fewer composite fingerprints could be formed (Table 6-1). The Earls Barton and 

Stanwick floodplain cores could be fingerprinted with the fewest tracer groups. The Earls 

Barton core was indicated to have the most LOI and SSA values in comparison to the 

sediment sources, indicating that tracer may be the most heavily altered in these cores. 
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Table 6-5: The composite fingerprints, fingerprint discriminatory power and average goodness of fit of un-mixing 
model outcomes. 

Sywell reservoir           
Uncorrected 

Correctly 
classified 
(%) 

Average 
Goodness 
of Fit   

       Mag 81 0.74 Xlf Xfd SIRM IRM-100 HIRM 
 

   Mag litho 81 0.95 Xlf Xfd 226Ra 40K 212Pb 

    Mag geochem 94 0.92 Xfd Co Fe La Mg P V Yb Zn 
Geochem litho 91 0.94 226Ra Fe La Mg P V Yb Zr 

 Geochem 93 0.92 Cr La Mg P V Yb Zn 

  All 95 0.91 226Ra Xfd Fe La Mg V Yb Zr 

 Organic corrected  
         Geochem 91 0.55 Al Gd Mg Nd P V Yb 

  
            Stanwick lake           
Uncorrected 

Correctly 
classified 
(%) 

Average 
Goodness 
of Fit   

       Mag <80  
     

 

   Mag litho 81 0.75 Xfd XARM SIRM IRM-100 212Pb 

    Mag geochem As ‘All’  
         Geochem litho 88 0.89 40K Al Cu K Mg Y 

   Geochem 88 0.94 Al Ba K Yb Zr 

    All 89 0.68 Xfd Al K Mg Y Zr 

   
            Kingsthorpe floodplain 

       
Uncorrected 

Correctly 
classified 
(%) 

Average 
Goodness 
of Fit   

       Mag 80 0.95 Xlf Xfd XARM 

      Mag litho 81 0.63 Xfd XARM 228Ac 40K 

     Mag geochem 92 0.90 XARM IRM-100 Ca Mn Y 

    Geochem litho 83 0.71 228Ac Ba Ca Cr Ti 

    Geochem 86 0.91 Ba Ca Cr Mg Y Zn 

   All 90 0.77 Xlf 212Pb Ca Cr Ti Yb 

   Mag fallout* 87 0.93 137Cs Ca Cr Mg Y     Geochem 
fallout* 83 0.88 137Cs Xlf Xfd XARM SIRM     
Organic corrected 

        All 90 0.82 Xlf 212Pb Ca Cr Na Ti Y 

  Mag litho 82 0.71 XARM IRM-100 228Ac 212Pb      
Geochem 83 0.91 Ba Ca Cr Y Zn   

  
            Earls Barton floodplain 

       
Uncorrected 

Correctly 
classified 
(%) 

Average 
Goodness of 
Fit   

       Mag <80  
         Mag litho <80  
         Mag geochem <80  
         Geochem litho As "Geochem"  

        Geochem 88 0.91 Ba Ca K Mg Pb Zn 

   All 89 0.88 40K Ba Ca K Mg 

    Particle size corrected           

All 83 0.90 

228Ac 212Pb Al Ba Ca Mg Y 
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Upton floodplain 
        

Uncorrected 
Correctly 
classified 
(%) 

Average 
Goodness of 
Fit   

       Mag <80  
         Mag litho 82 0.75 Xlf Xfd SIRM IRM-100 HIRM 234Th 

   Mag geochem As ‘All’  
         Geochem litho As "Geochem" 

        Geochem 83 0.77 Co Cu Ni Pb Ti 

    All 90 0.55 Xfd Ba Co Cu Pb 

    Organic corrected  
         Mag litho 83 0.75 Xlf Xfd SIRM IRM-100 HIRM 234Th 

   Geochem 81 0.77 Ba Ca Co Cu Pb Ti 

   
Particle size corrected 

     
    

Geochem  83 0.77 
As Co Cu Ti Y 

    
   

     
    

Stanwick floodplain 
        

Uncorrected 
Correctly 
classified 
(%) 

Average 
Goodness 
of Fit   

       Mag <80  
         Mag litho <80  
         Mag geochem As ‘All’  
         Geochem litho 82 0.92 234Th As Ba Co Ni V Yb Zr 

 Geochem <80  
         All 84 0.84 Xfd IRM-100 Ba Ca Co Ni Yb 

  Organic Corrected          
Geochem litho 82 0.76 Al As Ba Ca Co Ni Ti Y 

 
All  0.51 Xlf SIRM IRM-100 Al Ca Na Y 

  
Particle size corrected  

        Geochem litho 83 0.76 226Ra 228Ac 234Th As Ba Mn V Yb Zr 
All 85 0.51 Xlf XARM IRM-100 226Ra Ca Y Zr 

   

*Two additional 137Cs containing tracer groups were included in the top 10 cm of the Kingsthorpe core, the use of this group 
is discussed in section 6.4. 

 

 

 

 

 

 

 

 

 



6: Fingerprinting historically deposited sediment 

 
114 

 

6.4. Quantifying differences between the sediment provenance 

predictions of different tracer groups 

This section compares the sediment provenance predictions made by each of the different 

tracer groups in each of the cores, to contribute to the fulfillment of Objective 1 of this 

thesis.  The provenance predictions are only shown for those tracer groups which produced 

a composite fingerprint which was able to correctly classify >80% of source samples. All 

results shown in this section are uncorrected for particle size distribution and organic matter 

content. To simplify the analysis of results, only the predicted contributions from channel 

banks are discussed in detail, as this was indicated to be the dominant sediment source in 

most cores (Figure 6-2), and its prediction was considered to be representative of the overall 

results of the un-mixing models. This section firstly describes the differences between the 

median Monte Carlo predicted contribution from channel banks in each slice of core, made 

by the different models, before discussing the range of uncertainty indicated by the Monte 

Carlo analysis in each of the models. 

The median predicted contribution from channel banks made by the different tracer groups 

at the base of the Sywell reservoir core ranged from 31% made by ‘All’ tracer group up to 

100% made by mineral magnetic signatures alone (Figure 6-2A). In the middle and upper 

sections of the core, this difference decreased to between a 45% and 95% predicted 

contribution made by the different tracer groups. Most tracer groups show little change in 

predicted sediment provenance through the down-core profile, indicating a consistent trend 

in their predictions, although individual peaks and troughs do not consistently occur in the 

predictions made by all of the tracer groups. 

The Stanwick lake core (Figure 6-2B) has a difference in predictions of up to 100% between 

tracer groups containing mineral magnetic signatures and those containing geochemical 

tracers. The down-core trends in sediment provenance produced by mineral magnetic based 

and geochemistry based tracer groups were also different.  

All of the tracer groups in the Kingsthorpe floodplain core (Figure 6-2C) predict widely 

different contributions of sediment from channel banks, ranging from between a 0% to a 

95% contribution. The largest differences were found between the predictions produced by 

mineral magnetic signatures and geochemical tracers, although the addition of lithogenic 

radionuclides to any tracer group combination resulted in a lower predicted contribution 

from channel banks. In this core two additional tracer groups were used (Mag fallout and 
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Geochem fallout), these contained the fallout radionuclide 137Cs. 137Cs was able to be used 

because there was no indication of additional 137Cs fallout after the peak centered upon 

1963 (Figure 8-5). Results presented by Walling, (2012) also showed that 137Cs fallout after 

the 1970s was negligible in the UK. Therefore, the predictions of these two additional tracer 

groups could be compared in this core. The fingerprints which used fallout radionuclides 

predicted a contribution most similar to mineral magnetic signatures, although differences 

of up to 23% are seen between the predictions of these two groups. As in the Stanwick lake 

core, down-core trends in changing sediment provenance were found to be different in the 

predictions of many tracer groups.  

The predictions of two tracer groups were compared in the Earls Barton core (Figure 6-2D). 

Both fingerprint predictions show a very similar down-core trend, however, the ‘All’ tracer 

group (containing geochemical and lithogenic radionuclides), decreased the predicted 

contributions from channel banks by up to 38%, from the prediction made by the Geochem 

group. 

In the Upton floodplain core (Figure 6-2E) the ‘All’ tracer group and Mag litho group predict 

that almost all sediment originates from channel banks throughout the down-core profile. In 

comparison the Geochem fingerprint predicts a trend of decreasing contributions from 

channel banks, which is up to 89% different to the “All” and Mag litho groups. 

Between a 22% to a 38% difference between predictions were found in the bottom two 

thirds of the Stanwick floodplain core when using the ‘Geochem litho’ group and the ‘All’ 

tracer group to fingerprint the sediment (Figure 6-2F). The difference increased to a 

maximum of a 64 % at the top of the core. As in many of the other cores, the two tracer 

groups predicted different down-core trends.
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Figure 6-2: Down core plots of the median predicted contributions from channel banks derived using the different uncorrected tracer fingerprints and historically deposited sediment.  
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While median tracer group predictions provide a simple way to present fingerprinting results 

and have been used alone for this purpose by authors such as Owens et al. (1999); the use of 

Monte Carlo uncertainty analysis has become the common way to express the range of 

uncertainty associated with un-mixing model predictions. The uncertainty indicated by the 

Monte Carlo analysis when fingerprinting the lake and floodplain cores is shown in Table 6-6. 

The range between the median contributions (shown in Figure 6-2) and the 25th and 75th 

percentile Monte Carlo predictions are shown as an average for each core.  

 The range of uncertainty between the 25th and 75th percentile Monte Carlo predictions was 

found to be between 2.5% and 82.3%, with an average range for all tracer groups at all sites 

of 29.3%. It is clear that the indicated uncertainty between the 25th and 75th percentiles do 

not account for many of the large differences between tracer group median predications 

shown in Figure 6-2. Using a wider range of percentiles, such as between the 5th and 95th 

percentile Monte Carlo results, would be expected to indicate a larger range of uncertainty, 

which may include the full range of medians obtained by different tracer groups. However, a 

proper representation of uncertainty would require error bars of up to 100% in many of the 

cores, to incorporate all of the tracer group median predictions, meaning that no 

determination of sediment provenance could be determined from the modelling. 
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Table 6-6: The median and the 75th and 25th percentile Monte Carlo predicted contributions from channel banks 
of the results shown in Figure 6-2.  

 

Mag Mag 
litho 

Mag 
geochem 

Geochem 
litho Geochem All Mag 

fallout 
Geochem 

fallout 
Sywell Reservoir 

       75th 
percentile 89.0 73.3 73.2 78.0 95.6 82.0 

  
Median 81.8 56.8 64.7 62 84.9 59.4 

  25th 
percentile 56.2 27.6 53.9 44.8 70.6 34.8 

  
Stanwick Lake        
75th percentile 89.6 

 
29.5 31.4 86.4 

  
Median 

 
84.4 

 
16.59 20.42 79.6 

  
25th percentile 79.3 

 
4.5 9.9 73.0 

  
Kingsthorpe 
floodplain        
75th 
percentile 87.5 78.7 59.3 43.6 89.1 66.0 86.5 88.4 

Median 77.7 67 46.9 5.7 31.5 42.1 84.7 85.5 
25th 
percentile 65.9 45.1 29.5 0.06 6.8 16.2 82.1 81.5 

Earls Barton 
floodplain        
75th percentile 

   
73.6 56.0 

  
Median 

    
53.4 31.2 

  
25th percentile 

   
31.9 14.5 

  
Upton floodplain        
75th percentile 101.7 

  
79.9 99.4 

  
Median 

 
100 

  
62.43 98.3 

  
25th percentile 97.2 

  
37.2 96.9 

  
Stanwick floodplain        
75th percentile 

  
67.3 

 
107.3 

  
Median 

   
54.9 

 
92.05 

  
25th percentile 

  
42.1 

 
76.8 
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The results of this section have indicated that had any of the tracer groups been used in 

isolation, a prediction of sediment provenance would have been derived using a composite 

fingerprint able to differentiate between the source groups, and an acceptable goodness of 

fit would have been found in the un-mixing model, indicating the fingerprinting had been 

successfully used. However, the different provenance predictions produced when using 

different tracer groups has shown that the results derived would likely be entirely 

determined by the tracer group chosen for use. As a result, the results derived would be 

unlikely to be a reflection of actual sediment provenance, or a realistic indication of 

historical changes in sediment sources. 

As multiple tracer groups have been used to fingerprint cores in this section, the 

uncertainties associated with tracer selection have been quantified by the fingerprinting 

methodology. However, without an independent means of identifying which tracer group(s) 

best reflect(s) changing sediment provenance, it is not possible to precisely determine the 

dominant sediment sources or historical trends in almost all of the cores investigated. Sywell 

reservoir has the most consistent predictions made by the different tracer groups. The 

predictions made by the different tracer groups show that channel banks have  contributed 

between 50 and 100% of the sediment to the reservoir throughout the ~110 years of 

deposition, meaning that some success can be judged to have been achieved when 

fingerprinting this core. 

 

6.5. The effects of changes to the sediment organic content, particle size 

distribution and chemical alterations of sediment on the tracer group 

provenance predictions. 

This section fulfils Objective 2 of this thesis by investigating the potential reasons for the 

differences between the tracer group provenance predictions observed as part of Objective 

1.  

As changing sediment provenance is represented by the tracer fingerprint predictions, 

comparing individual tracer groups’ provenance predictions to factors which can potentially 

cause tracer non-conservatism such as LOI, would likely provide some indication of the LOI 

of the changing sources of the sediment.  Instead of this, the differences between the 
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predictions of two tracer groups were compared to potential causes of tracer non 

conservatism, as they were considered to be more representative of the error caused by 

tracer behaviour. 

The average difference between tracer group fingerprint predictions in each core slice was 

quantified by subtracting the predicted contribution of one tracer group from the predicted 

contribution of the second tracer group, between the 5th and 95thpercentiles of the 3000 

ranked Monte Carlo results. The average difference between these 2700 Monte Carlo results 

for each slice of core was then taken as a quantitative expression of the differences between 

tracer group predictions. The differences were correlated in a Pearson Correlation analysis 

with LOI, SSA, and ratios which indicate the alteration of mineral magnetic signatures in the 

sediment. These ratios are described in the following sections. 

The following sections examine the results of the correlation analyses identifying the 

impacts of LOI, SSA and also the alterations of magnetic minerals on the differences 

between tracer group predictions. Each of these potential controls on tracer conservatism 

are examined in turn, with a discussion of the result in relation to the published literature, 

and a discussion of the potential specific changes they could be making to individual tracers. 

 

6.5.1.  The organic enrichment of sediment 

The Pearson correlation analysis (Table 6-7) showed that the differences between most 

tracer group predictions in the Kingsthorpe, Upton, and Stanwick floodplain cores and in the 

Sywell reservoir core are significantly correlated with the loss on ignition of the sediment.  In 

the Upton floodplain core and Sywell reservoir core, as LOI increases the predicted 

contribution of sediment from channel banks made by groups containing mineral magnetic 

signatures increases in relation to groups containing geochemical tracers. In the Kingsthorpe 

core, as LOI increases, mineral magnetic signatures predict lower contributions from channel 

banks than geochemical tracers, showing the opposite trend to Upton and Sywell.  

Table 6-1 showed that mineral magnetic signatures are lowest in concentration in channel 

banks, so a dilution of magnetic signatures by organic matter would be expected to cause an 

increase in the predicted contribution of sediment from channel banks. On this basis, it is 

suggested that the increased predicted contribution of sediment from channel banks made 

by mineral magnetic containing tracer groups in Upton and Sywell, when sediment LOI 



6: Fingerprinting historically deposited sediment 

 
123 

 

increases, could be due to the dilution of mineral magnetic signatures by organic matter. 

Published literature has shown that mineral magnetic signatures are not associated with the 

organic fraction of the sediment, as organic matter is only weakly diamagnetic (Smith, 1999; 

Lees, 1999). Therefore this result is what would be expected from mineral magnetic theory. 

The fact that a similar result was not encountered in the other cores analysed suggests that 

other causes of tracer non-conservatism are of more importance and are likely masking the 

impacts of organic matter dilution. In the Kingsthorpe floodplain core there is an increase in 

the predicted contribution of sediment made by geochemical and lithogenic radionuclide 

tracers, in relation to mineral magnetic signatures, when LOI increases. This result is the 

opposite of that expected according to magnetic theory.  An explanation for this may be a 

result of the association of geochemical or radionuclide tracers with the organic fraction. For 

example, calcium is used in most composite fingerprints in this core and is found in high 

concentrations in the channel banks source group in relation to the surface agriculture 

source group. Therefore, an increase in the concentration of Ca, caused by the enrichment 

of organic matter (Figure 6-1), would result in an increased predicted contribution from 

channel banks when the LOI of the sediment increases, masking the effects of the dilution of 

mineral magnetic signatures by organic matter. Although it cannot be shown which tracers 

are associated with organic matter in the Nene using the available data, it has been shown in 

published literature that organic matter can concentrate between 1-10% of dry weight of Co, 

Cu, Fe, Pb, Mn, Mo, Ni, Ag, V, and Zn (Swanson et al., 1966). Charlesworth et al. (2003) 

showed that between 7.7% and 90.6% of Cd, Cu, Ni, Zn and Pb present in urban street dusts 

in Coventry, (a town close to Northampton in the East Midlands, UK) were concentrated 

within the organic fraction of urban street dusts. The potential effects of an increase in 

tracer concentrations associated with organic matter can also be seen on tracer groups not 

containing mineral magnetic signatures, such as the Geochem litho compared to the 

Geochem group in the Kingsthorpe (Table 6-7C) and Sywell cores (Table 6-7A). There exists 

therefore a large potential for the enrichment of geochemical tracers in the cores caused by 

the increased organic matter content of the sediment. 

 

6.5.2.  Changes to sediment particle size 

The specific surface area of the sediment is highly correlated with most differences between 

the tracer groups’ sediment provenance predictions in the Earls Barton, Stanwick and Upton 

floodplain cores (Table 6-7). 



6: Fingerprinting historically deposited sediment 

 
124 

 

In the Earls Barton floodplain core, as the specific surface area (SSA) of the sediment 

increases, the prediction of the ‘All’ tracer group (containing geochemical tracers and 40K) 

decreases in relation to the prediction of the Geochem tracer group (Table 6-7E). 40K has low 

activities in urban street dusts compared to the other sediment sources (Table 6-1). It can 

therefore be identified that any reduction in sediment 40K activity caused by a change in 

sediment SSA would result in a greater predicted contribution from urban street dusts and a 

reduced contribution from the other sediment sources. However, published literature has 

shown 40K to be concentrated within small clay minerals (Tsabaris et al., 2007), suggesting an 

inconsistency between the results found in the Nene and prior knowledge of tracer 

behaviour. An alternative explanation for this result is that Pb and Zn are present in the 

geochemistry fingerprint and not in the ‘All’ tracer fingerprint. Both of these elements were 

shown to be in high concentrations in urban street dusts (Table 6-1), and have also been 

shown to be typically associated with larger particle size fractions in urban soils and 

sediment (Horowitz and Elrick, 1987; Pye et al., 2007). Therefore the selective deposition of 

only fine particles on the floodplain (as was indicated to occur in Figure 6-1), would cause 

the loss of large particles. The loss of Pb and Zn with these large particles would decrease 

the predicted contributions from urban street dusts made by the geochemistry tracer group, 

which would increase the predicted contributed from channel banks.  

The opposite trend to that found in the Earls Barton core was seen in the Stanwick 

floodplain core (Table 6-7F); as SSA increases so does the predicted contribution made by 

the Geochem litho tracer group in relation to the ‘All’ tracer group. Likewise, in the Upton 

floodplain core the geochemistry group predicts increased contributions from channel banks 

in comparison to the ‘All’ tracer group as sediment SSA increases. In both of these cores the 

‘All’ tracer group contains mineral magnetic signatures while the other tracer groups do not. 

In the published literature a positive relationship between geochemical tracers and SSA has 

been shown to commonly occur (Koiter et al., 2013) while the relationships with mineral 

magnetic signatures have been shown to be far more complex (Foster et al., 1998; Oldfield 

et al., 2009). Therefore, a potential interpretation of this result is that an increase in 

sediment SSA is resulting in a linear increase in geochemical tracer concentration in the core, 

changing the sediment provenance prediction. As shown by Foster et al. (1998) and Oldfield 

et al. (2009) magnetic signatures are likely not to follow the same positive linear 

relationship, resulting in a discrepancy in the predictions made by magnetic minerals and 

other tracers. However, it has been shown by Russell et al. (2001) that many traces other 
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than mineral magnetism can exhibit non-linear relationships with SSA; so tracer behaviour in 

reality is likely to be more complex than this generalisation.  

 

6.5.3.  Alterations to mineral magnetic signatures 

This sub-section repeats the Pearson correlation analysis using ratios which indicate the loss 

of specific sized magnetic grains in the same way that SSA and LOI were used. Mineral 

magnetic signatures have been shown to be affected by numerous processes which can 

cause the loss or alteration of specific sized magnetic grains. For example, smaller magnetic 

grains are preferentially dissolved before larger grains (Karlin and Levi, 1983) which would 

cause a reduction in the concentration of those magnetic signatures which incorporate 

measurement of small magnetic grains (Xlf, Xfd and Xarm), in relation to signatures which 

also account for larger grains (SIRM and HIRM) (Anderson and Rippey, 1988). The opposite 

trend of disproportionally low SIRM and HIRM concentrations in relation to Xlf and Xarm 

would be indicative of the loss of larger magnetic grains, through a process such as selective 

transport or deposition. Such a process was suggested as a potential explanation for a 

discrepancy in mineral magnetic signatures between a lake and its upstream floodplain by 

Foster et al. (1996). Therefore, by examining the ratios of mineral magnetic signatures 

indicative of large magnetic grains, compared to signatures indicative of small magnetic 

grains, an indication as to any process causing mineral magnetic non-conservatism can be 

gained (Anderson and Rippey, 1988).  

Whilst this section only directly investigates the non-conservatism of mineral magnetic 

signatures, due to their potential to indicate the loss of specific grain sizes; the diagenesis of 

geochemical tracers has been shown to occur in research such as that presented by Mayer et 

al. (1982). It is also well documented in other research, such as that produced by Burdige 

(1993) that metals in the environment are often associated with the iron oxide fraction of 

soils and sediments. Therefore, the processes causing the dissolution of magnetic iron oxides 

would also be expected to cause the dissolution of the geochemical and lithogenic 

radionuclide tracers associated with the iron oxides fraction of sediment. On this basis 

magnetic minerals were considered as indicators of the processes which could potentially be 

affecting different types of tracer in the sediment. 

In addition to processes of chemical dissolution and selective transport which can alter 

mineral magnetic signatures, the in-growth of bacterially derived magnetite and autogenic 
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Griegite has been shown to alter mineral magnetic signatures in deposited lake sediment 

(Oldfield and Wu, 2000; Oldfield et al., 2003). Bacterially produced magnetite is 

characterised by small stable single domain magnetite grains (< ~0.1μm), which are a 

primary contributor to the Xarm signature of lake sediments (Moskowitzet al., 1993). For 

this reason a value greater than 2 for the ratio of Xarm / Sirm suggests that the bacterial 

magnetite is beginning to dominate the mineral magnetic signature, and is therefore 

overprinting the detrital signature (Foster et al., 2008). The formation of autogenic Greigite, 

an iron sulphide, has been shown to occur in freshwater and slightly brackish lake or 

estuarine sediments. The presence of this mineral is indicated by a Sirm / Xlf ratio in excess 

of 30 (Snowball and Thompson, 1988). As the Xarm / Sirm and Sirm / Xlf ratios are also ratios 

of the loss or gain of large magnetic grains in relation to small magnetic grains, they were 

used as indicators of both the in-growth and dissolution of minerals in lake cores, as well as 

processes of selective deposition of fine particles and dissolution of minerals in floodplain 

cores. 

Figure 6-3A shows that in the source samples there is a strong relationship between Xlf and 

SIRM (Spearman rank p=0.000, r=0.913). Therefore a change in sediment source is unlikely 

to alter the ratio between these two signatures. For this reason this ratio can be confidently 

used as an indicator of the non-conservatism of magnetic signatures. The relationship 

between Xarm and Sirm is also strongly linear for channel bank and surface agricultural 

source samples; however the urban street dust samples do not follow this relationship. 

Therefore, the results derived using this ratio should be carefully interpreted where a large 

proportion of urban sediment is likely to be present.  
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Figure 6-3: The relationships between Xlf and SIRM (A), and Xarm and SIRM (B) in sediment source samples. 

 

The Xarm/ Sirm ratio in the Sywell reservoir core exceeded a value of 2 in the majority of 

core slices, indicating the likely in-growth of bacterial magnetite (Foster et al., 2008) (Table 

6-7 A). Xarm is most sensitive to the presence of bacterially produced stable single domain 

magnetite (Oldfield, 2007), which is an explanation for why this tracer failed the mass 

conservation test (Table 6-3). However, an impact on other magnetic mineral signatures 

would still be expected, as magnetic minerals are being added to the sediment and 
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comparison to other tracer groups. These results indicate an increase in small remanence 

carrying minerals in relation to larger minerals, as would be expected with the in-growth of 

small stable single domain bacterial magnetite. It can be noted that the consistency between 

the predictions of mineral magnetic signatures and other tracers in the Sywell core is greater 

than in most other cores (Figure 6-2A); suggesting that the in-growth of magnetite is having 

less of an impact on fingerprint provenance predictions than the processes causing the 

tracer non-conservatism occurring in other cores for different reasons. 

In the Kingsthorpe floodplain core (Table 6-7 C), twelve of the fifteen differences between 

tracer group predictions were significantly correlated with the Xarm / Sirm ratio, and 

fourteen were significantly correlated with the Sirm / Xlf ratio. Correlation coefficients were 

generally high and ranged from 0.46 to 0.8 and 0.43 to 0.9 respectively, indicating that 

alterations to magnetic minerals are potentially an important process affecting tracers in this 

core. When the Xarm / Sirm ratio increased, the predicted contribution from channel banks 

made by mineral magnetic signatures decreased. The opposite trend was seen with the Sirm 

/ Xlf ratio; when this ratio increased, the predicted contribution made by magnetic minerals 

also increased. These results indicate that when a greater proportion of large remanence 

carrying magnetic grains were present in relation to small grains, mineral magnetic tracers 

predicted a greater contribution of sediment originating from channel banks. 

Due to the low mineral magnetic signatures in the channel bank source group (Table 6-1), an 

increase in the concentration of magnetic minerals in the sediment would cause a reduction 

in the predicted contribution from channel banks, and a decrease in the concentrations of 

magnetic minerals would cause an increased predicted contribution from channel banks. It is 

therefore possible that the dissolution of small magnetic grains in the deposited sediment is 

reducing the magnetic mineral signatures and therefore increasing the predicted 

contributions from channel banks made by mineral magnetic signatures. The dissolution of 

iron oxides in gleyed soil horizons has been previously shown to occur by Dearing et al. 

(1985). The gleying of waterlogged floodplain sediments would result in the loss of the 

mineral magnetic signatures and geochemical and lithogenic radionuclide tracers associated 

with iron oxides, and may be occurring in the Kingsthorpe core. An alternative explanation is 

that the selective transport of only small magnetic minerals to the floodplain is decreasing 

the proportion of large magnetic minerals present, and therefore increasing the predicted 

contribution from channel banks; however the coarse SSA of the sediment in this core 

shown in Table 6-1 suggests that this is not occurring. 
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In the Stanwick floodplain core (Table 6-7 F) the Xarm / Sirm and Sirm / Xlf ratios were 

significantly correlated with the differences between the predictions made by the Geochem 

litho group and the predictions made by the ‘All’ tracer group. The ‘All’ group contained both 

mineral magnetic signatures and geochemical tracers. As in the Kingsthorpe core the Xarm / 

Sirm ratio is strongly and positively correlated with a decreased predicted contribution from 

channel banks made by mineral magnetic signatures. An increased Sirm / Xlf ratio was 

correlated with an increased predicted contribution of sediment from channel banks. As in 

the Kingsthorpe core this suggests that either the removal of larger magnetic grains by 

selective fine particle size deposition or the dissolution of smaller magnetic minerals may be 

occurring, reducing the magnetic signatures when the Sirm / Xlf ratio decreases.  As the 

specific surface area of sediment in this core is increased by ~50% over the sediment source 

samples (Figure 6-1), the process of selective deposition of only small magnetic grains on the 

floodplain is the most probable explanation for the discrepancy between tracer group 

predictions. However, it has been shown that small magnetic grains can contribute a 

disproportionally high amount of the overall magnetic signatures of soils and sediment 

(Dunlop and Argyle, 1997), contradicting this idea. It can however be considered that large 

haematite minerals of between 10-100 μm in diameter have been shown to be formed by 

combustion in urban environments and are major contributors to the magnetic signatures of 

urban material (Sheng-Gao and Shi-Qing, 2008). The loss of these larger minerals would 

therefore be expected to remove much of the highly magnetic minerals of anthropogenic 

origin, and could cause a reduction of magnetic signatures as particle size decreased. 

The magnetic ratios did not prove to be significantly correlated with the differences in 

predictions in the Upton floodplain core (Table 6-7D), despite the large differences between 

predictions of mineral magnetic tracers and geochemical tracers; suggesting that the tracers 

are more affected by the organic enrichment, chemical dissolution and particle size 

alterations than any selective loss of different size magnetic grains. However, all magnetic 

mineral tracers failed the range test in the Earls Barton core and the bottom half of the 

Upton core (which was not included in this section of the analysis). Therefore, there is the 

additional consideration that, in these cores, the loss of all magnetic mineral grain sizes was 

occurring in at least part of the cores. The floodplain in both of these coring locations was 

observed to be heavily waterlogged, with much of each core having a blue tinted gleyed 

appearance, suggesting that the magnetic minerals were significantly affected by 

dissolution. The 100% contribution of sediment from channel banks predicted by magnetic 
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signatures in the Upton core, which is unlikely to be a true reflection of sediment sources in 

the Nene, probably reflects this process (Figure 6-2E). 

Another consideration when using magnetic mineral signatures to fingerprint sediment, not 

previously discussed, is the assumption of linear additivity. Lees (1997) showed that errors of 

up to 2% occur with susceptibility measurements, and up to 16% with remanence 

measurements due to a lack of linear additivity. In the Nene, contrasts in median mineral 

magnetic signatures in the source groups range from 30% (HIRM) up to 214% (Xfd) (Table 

6-1). Therefore significant errors to predictions made using HIRM could be caused through 

non-linear additivity effects, although for other magnetic signatures a 16% error would likely 

be minor in relation to the differences between source group medians. 

The results in this section have suggested that a significant alteration has occurred to 

magnetic minerals in most of the cores examined. It should however be emphasised that 

geochemical and radionuclide tracers are also likely to be subject to alterations caused by 

dissolution and the selective transport of larger or finer mineral size fractions. In Figure 6-2E 

it was shown that when 137Cs was used as a tracer in the Kingsthorpe floodplain core, its 

predictions were closer to those of magnetic minerals than any other tracer group. As 137Cs 

has been shown to be rapidly and strongly sorbed to soil particles (Taylor et al., 2012). 

Therefore, it is likely that this tracer exhibits a greater amount of conservatism than the 

mineral magnetic, geochemical and lithogenic radionuclide tracers. Therefore, it is likely that 

in the Kingsthorpe floodplain cores the magnetic mineral signatures provide a more accurate 

prediction of sediment provenance than the other tracer groups, despite the alterations 

which have been indicated to have affected them.  
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Table 6-7: Pearson correlation coefficients (r) and associated p values for correlations between differences 
between tracer group predictions and loss on ignition (LOI), specific surface area (SSA), and the  Xarm/Sirm and 
Sirm/Xlf ratios. Statistically significant (p<0.05) values are highlighted in green. 

(A) Sywell Reservoir 

    LOI SSA Xarm/Sirm Sirm/Xlf 
Mag -  Mag litho Correlation Coefficient -.640 -.269 .009 -.592 

Sig. (2-tailed) .000 .093 .956 .000 
N 40 40 40 40 

Mag - Mag geochem Correlation Coefficient -.441 -.170 .189 -.491 
Sig. (2-tailed) .004 .295 .244 .001 
N 40 40 40 40 

Mag -  Geochem litho Correlation Coefficient -.087 -.117 -.109 .232 
Sig. (2-tailed) .593 .474 .502 .149 
N 40 40 40 40 

Mag - Geochem Correlation Coefficient .753 .184 -.118 .305 
Sig. (2-tailed) .000 .255 .468 .056 
N 40 40 40 40 

Mag -  All Correlation Coefficient -.594 -.200 .341 -.421 
Sig. (2-tailed) .000 .215 .031 .007 
N 40 40 40 40 

 Mag litho - Mag geochem Correlation Coefficient .209 -.175 .033 -.176 
Sig. (2-tailed) .196 .279 .838 .277 
N 40 40 40 40 

 Mag litho -  Litho geochem Correlation Coefficient -.090 -.389 .132 -.234 
Sig. (2-tailed) .579 .013 .417 .147 
N 40 40 40 40 

 Mag litho - Geochem Correlation Coefficient -.402 -.153 -.075 -.598 
Sig. (2-tailed) .010 .346 .644 .000 
N 40 40 40 40 

 Mag litho -  All Correlation Coefficient .486 .098 -.219 .089 
Sig. (2-tailed) .001 .546 .174 .587 
N 40 40 40 40 

Mag geochem -  Litho geochem Correlation Coefficient .167 -.272 .449 .210 
Sig. (2-tailed) .304 .090 .004 .193 
N 40 40 40 40 

Mag geochem - Geochem Correlation Coefficient -.692 -.219 .002 -.578 
Sig. (2-tailed) .000 .174 .988 .000 
N 40 40 40 40 

Mag geochem -  All Correlation Coefficient -.546 -.261 .360 -.270 
Sig. (2-tailed) .000 .104 .023 .092 
N 40 40 40 40 

 Litho geochem - Geochem Correlation Coefficient .472 -.024 .223 .367 
Sig. (2-tailed) .002 .886 .166 .020 
N 40 40 40 40 

 Litho geochem -  All Correlation Coefficient -.070 -.364 .515 .010 
Sig. (2-tailed) .667 .021 .001 .950 
N 40 40 40 40 

Geochem-  All Correlation Coefficient -.753 -.178 .059 -.519 
Sig. (2-tailed) .000 .272 .716 .001 
N 40 40 40 40 

 

(B) Stanwick lake  

    LOI SSA Xarm/Sirm Sirm/Xlf 
Mag litho - Geochem litho  Correlation Coefficient .389 .358 .309 -.323 
 Sig. (2-tailed) .111 .145 .213 .191 
 N 18 18 18 18 
Mag litho - Geochem  Correlation Coefficient .352 .376 .354 -.337 
 Sig. (2-tailed) .152 .124 .150 .171 
 N 18 18 18 18 
Mag litho - All  Correlation Coefficient .030 -.332 -.024 .399 
 Sig. (2-tailed) .906 .179 .926 .101 
 N 18 18 18 18 
Geochem litho - Geochem  Correlation Coefficient -.247 -.487 -.692 .298 
 Sig. (2-tailed) .324 .040 .001 .229 
 N 18 18 18 18 
Geochem litho - All  Correlation Coefficient .352 .153 -.003 -.162 
 Sig. (2-tailed) .152 .543 .990 .521 
 N 18 18 18 18 
Geochem - All  Correlation Coefficient .265 .371 .207 -.311 
 Sig. (2-tailed) .287 .130 .409 .210 
  N 18 18 18 18 
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(C) Kingsthorpe floodplain 

    LOI SSA Xarm/Sirm Sirm/Xlf 
Mag - Mag litho Correlation Coefficient .571 -.156 -.648 .797 
 Sig. (2-tailed) .002 .447 .000 .000 
 N 26 26 26 26 
Mag - Mag geochem Correlation Coefficient .545 -.087 -.796 .940 
 Sig. (2-tailed) .004 .673 .000 .000 
 N 26 26 26 26 
Mag - Geochem litho Correlation Coefficient -.062 -.082 .227 -.298 
 Sig. (2-tailed) .764 .690 .264 .139 
 N 26 26 26 26 
Mag - Geochem Correlation Coefficient -.354 -.097 .350 -.559 
 Sig. (2-tailed) .076 .636 .080 .003 
 N 26 26 26 26 
Mag - All Correlation Coefficient -.582 .264 .468 -.657 
 Sig. (2-tailed) .002 .192 .016 .000 
 N 26 26 26 26 
Mag litho - Mag geochem Correlation Coefficient .289 -.028 -.620 .783 
 Sig. (2-tailed) .152 .892 .001 .000 
 N 26 26 26 26 
Mag litho - Geochem litho Correlation Coefficient -.247 -.022 .460 -.567 
 Sig. (2-tailed) .223 .917 .018 .003 
 N 26 26 26 26 
Mag litho - Geochem Correlation Coefficient -.447 .027 .515 -.723 
 Sig. (2-tailed) .022 .897 .007 .000 
 N 26 26 26 26 
Mag litho - All Correlation Coefficient -.564 .250 .529 -.718 
 Sig. (2-tailed) .003 .218 .005 .000 
 N 26 26 26 26 
Mag geochem - Geochem litho Correlation Coefficient -.446 .083 .715 -.887 
 Sig. (2-tailed) .022 .685 .000 .000 
 N 26 26 26 26 
Mag geochem - Geochem Correlation Coefficient -.574 .074 .718 -.895 
 Sig. (2-tailed) .002 .721 .000 .000 
 N 26 26 26 26 
Mag geochem - All Correlation Coefficient -.531 .191 .648 -.851 
 Sig. (2-tailed) .005 .349 .000 .000 
 N 26 26 26 26 
Geochem litho - Geochem Correlation Coefficient -.591 .066 .252 -.432 
 Sig. (2-tailed) .001 .750 .214 .027 
 N 26 26 26 26 
Geochem litho - All Correlation Coefficient -.637 .321 .405 -.559 
 Sig. (2-tailed) .000 .110 .040 .003 
 N 26 26 26 26 
Geochem - All Correlation Coefficient -.652 .354 .468 -.602 
 Sig. (2-tailed) .000 .076 .016 .001 
  N 26 26 26 26 

 

(D) Upton floodplain 

    LOI SSA Xarm/Sirm Sirm/Xlf 
Mag  - Mag litho Correlation Coefficient .019 -.019 -.101 -.002 
 Sig. (2-tailed) .949 .949 .730 .994 
 N 14 14 14 14 
Mag  - Geochem Correlation Coefficient .871 -.571 -.240 -.081 
 Sig. (2-tailed) .000 .033 .409 .782 
 N 14 14 14 14 
Mag  - All Correlation Coefficient .415 -.355 -.198 .141 
 Sig. (2-tailed) .140 .212 .497 .631 
 N 14 14 14 14 
Mag litho  - Geochem Correlation Coefficient .871 -.571 -.240 -.081 
 Sig. (2-tailed) .000 .033 .409 .782 
 N 14 14 14 14 
Mag litho  - All Correlation Coefficient .362 -.358 -.277 .198 
 Sig. (2-tailed) .203 .209 .337 .497 
 N 14 14 14 14 
Geochem  - All Correlation Coefficient -.878 .573 .253 .068 
 Sig. (2-tailed) .000 .032 .383 .817 
  N 14 14 14 14 
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(E) Earls Barton floodplain (an Xarm measurement was unavailable for this core due to equipment failure) 

    LOI SSA 
All - Geochem Correlation Coefficient .239 -.809 
 Sig. (2-tailed) .173 .000 
  N 34 34 

 

(F) Stanwick floodplain 

    LOI SSA Xarm/Sirm Sirm/Xlf 
Geochem litho - All  Correlation Coefficient -.790 .876 .783 -.812 
 Sig. (2-tailed) .000 .000 .000 .000 
  N 31 31 31 31 

 

 

6.6. The effectiveness of simple organic enrichment and particle size 

corrections  

This section contributes towards Objective 3 of this thesis by investigating the effects of 

organic matter and particle size data corrections on the consistency between tracer group 

fingerprinting predictions.  

Section 6.5 showed that changes to the organic content of sediment were likely to be a 

controlling factor in the differences between tracer group provenance predictions in the 

Sywell reservoir, Kingsthorpe floodplain, Upton floodplain and Stanwick floodplain cores. 

Therefore, an organic enrichment data correction would be expected to improve the 

consistency between tracer fingerprint predictions in these cores. 

Changes to the specific surface area (SSA) of the sediment were shown to be a potential 

controlling factor on the differences between tracer group predictions in the Sywell 

reservoir, Upton floodplain, Stanwick floodplain and Earls Barton floodplain cores. 

Therefore, a particle size data correction would also be expected to improve the consistency 

between tracer group predictions in these cores. 

This section uses the simple SSA and LOI corrections described in Section 5.5 to determine 

the extent to which they reduce the differences between the provenance predictions of the 

tracer group fingerprints. The corrections were applied only to those cores where LOI and 

SSA corrections were indicated to be of potential benefit in Section 6.5.   Plots of the median 
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predicted contributions of sediment from channel banks derived using the different 

fingerprints before and after corrections are shown in Figure 6-4. 

 

Sywell Reservoir (Figure 6-4A) 

It was indicated in Section 6.5 that an organic enrichment correction would potentially be of 

benefit in this core. On this basis an organic correction was applied to the geochemistry 

tracer group. The correction caused very little impact on the predictions of this tracer group. 

An exception to this is an anomalous period of results occurring between 25cm and 35cm, 

which resulted in a prediction of 0% of sediment originating from channel banks. An 

examination of the tracer concentrations in this core showed that Gd was the cause of this 

anomalous period, suggesting a period of non-conservatism of this tracer. It is therefore 

apparent that this correction has had very little beneficial effect on this tracer group. A 

composite fingerprint able to correctly classify >80% of source samples could not be 

established in order to test the impact of the organic correction on magnetic minerals, 

indicating a loss of discriminatory power caused by the correction. A potential problem with 

tracer use is therefore highlighted, as tracer discriminatory power may be derived from 

differences in the organic content or particle size distribution of the source groups. Despite 

this failure of magnetic minerals to achieve 80% discrimination, the organic correction was 

applied to the mineral magnetic tracer group, on the basis that organic matter is only weakly 

diamagnetic (Smith, 1999; Lees, 1999) and therefore a robust justification for the use of this 

correction exists. The correction had a minimal impact on the provenance prediction of 

magnetic minerals, with an average of a less than 1% change occurring. This therefore 

indicates that the processes of tracer non-conservatism causing large differences between 

the predictions of tracer groups in this core are causing much bigger alterations to the 

tracers than the dilution of mineral magnetic signatures by organic matter. 

 

Stanwick lake (Figure 6-4B) 

An organic correction was applied to the magnetic Mag litho fingerprint in the Stanwick lake 

core. Although organic matter was not indicated to be a potentially causal factor of the 

differences between tracer group predictions in Section 6.5, organic matter has been shown 

to be only weakly diamagnetic providing a robust justification for the use of this correction. 

The correction had very little impact on the prediction made, changing it by an average of 

5.8%. This highlights that, as in the Sywell reservoir core, the dilution of magnetic minerals 
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by organic matter in the sediment has a minor impact on the fingerprinting results derived 

using mineral magnetic tracers.   

 

Upton floodplain (Figure 6-4C) 

Both an organic enrichment correction and a particle size correction were indicated in 

Section 6.5 to be of potential benefit to the fingerprinting of sediment in the Upton 

floodplain core. The fingerprinting in this core was characterised in Figure 6-2E by a very 

large difference in the predictions made by tracer groups containing mineral magnetic 

signatures and groups containing geochemical tracers, indicating a large potential for 

improvement by the corrections. 

In the Upton core an organic correction did not change the prediction made by the Mag litho 

fingerprint that 100% of the sediment originated from channel banks.  The organic 

correction increased the predicted contribution made by geochemical tracers by up to 56% 

in the uppermost half of the core, bringing the estimate closer to that made by the Mag litho 

group. Therefore an organic enrichment correction may be of some benefit to the 

geochemical tracers.  

The particle size correction had little impact on the geochemical tracer group; it also resulted 

in a failure of the Mag litho group to achieve 80% discrimination after the mass conservation 

test and discriminant analysis. It therefore appears that a particle size correction is of little 

benefit when fingerprinting sediment in this core. 

Stanwick floodplain (Figure 6-4D) 

In Section 6.5 both the organic enrichment and particle size corrections were indicated to be 

of potential benefit when fingerprinting the Stanwick floodplain core. When the corrections 

were applied, both corrections were shown to result in a large change to the tracer groups’ 

predictions.  The particle size corrected ‘All’ fingerprint and the uncorrected Geochem litho 

fingerprint produced the most comparable predictions in the top half of the core. The 

uncorrected Geochem litho and organic corrected ‘All’ fingerprints predict very similar 

contribution from channel banks in the bottom half of the core. It therefore appears that the 

corrections can be of benefit in different parts of the core. Although without an independent 

source of sediment provenance information, if this conclusion is correct cannot be 

ascertained. 
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Kingsthorpe floodplain (Figure 6-4E and Figure 6-4F) 

Section 6.5 indicated that an organic correction was likely to be of potential benefit towards 

improving the agreement between the tracer group fingerprinting predictions in the 

Kingsthorpe floodplain core. 

The organic matter data correction was applied to two composite fingerprints containing 

magnetic mineral tracers, which were the Mag litho and ‘All’ groups; the predictions of these 

groups was compared to the geochemistry group (with and without an organic correction). 

The provenance predictions of the geochemistry and ‘All’ tracer fingerprints were in close 

agreement above a depth of 34cm in their uncorrected state, as a result the organic 

correction applied to either group resulted in a larger difference between their provenance 

predictions in this section of the core. Below 34cm the two uncorrected tracer groups 

become less in agreement. Applying the organic correction to either tracer groups in this 

section of the core was shown to bring their provenance predictions closer together, 

suggesting that the correction is may be of some benefit.  However, due to the different 

trend observed in the top 34 cm of the core, if the correction was applied to the entire core 

its overall effect would be detrimental. 

When an organic correction was applied to the Mag litho group it had very little impact on 

its sediment provenance prediction, even though the dilution of magnetic signatures has 

been shown to be an important process in the published literature (Lees, 1999). The results 

in this core therefore indicate that, as in the Sywell and Stanwick lake cores, dilution effects 

have a relatively minor impact on the sediment fingerprinting results, compared to other 

sources of tracer non-conservatism, and therefore the organic correction (which assumes 

dilution by organic matter) has little impact. The organic correction, when applied to the 

Geochem group brings it closer to the prediction of the uncorrected Mag litho group, which 

as in the comparison with the ‘All’ group suggests that the correction may be of some 

benefit. 

Earls Barton floodplain (Figure 6-4G) 

A particle size correction was indicated to be potentially of benefit in the Earls Barton 

floodplain core in Section 6.5. When this correction was applied to the ‘All’ tracer group its 

prediction decreased to a 0% contribution from channel banks throughout most of the 

down-core profile. This result appears unrealistic when considering the importance of 

channel banks, suggested by many tracer groups in the other cores, indicating that the 
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correction is detrimental to the fingerprinting. It was found a reduction in the number of 

tracers able to pass the mass conservation test, and a loss of tracer discriminatory efficiency 

occurred when a particle size correction was applied to the Geochem litho group, which 

meant the correction could not be tested.
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Figure 6-4: The effects of the organic and particle size corrections on the median predicted contributions from channel banks in the sediment cores.
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In this section it was found that the organic correction resulted in little effect on the 

predictions of mineral magnetic tracers. It appeared to be potentially of benefit in the 

Stanwick, Upton and Kingsthorpe floodplain cores when applied to fingerprints containing 

geochemical tracers. It was however difficult to determine if the correction was genuinely of 

benefit without an independent measurement of sediment provenance. 

The particle size correction appeared to improve the predictions of the ‘All’ tracer group in 

the top 10cm of the Upton floodplain core. In the Earls Barton core the correction appeared 

to have a detrimental effect on the ‘All’ tracer group. And in the Stanwick floodplain core it 

was found to be difficult to determine if the particle size correction was of benefit. 

It can therefore be concluded that the use of corrections was problematic, despite the fact 

that they were only used when the results related to Objective 2 indicated them to be of 

potential benefit.  The loss of specific magnetic mineral fractions provides a potential 

explanation for the complex outcomes of the corrections. The dissolution of iron oxides 

suggested to be occurring in the Kingsthorpe and Stanwick floodplain cores indicates 

changes to tracers unrelated to particle size and organic enrichment of the sediment. It is 

also likely that the corrections do not represent the true relationships between tracers and 

organic matter and particle size. For example the particle size correction assumes a linear 

relationship between SSA and tracers and corrects accordingly (Koiter et al., 2013). Foster et 

al. (1998) and Oldfield et al. (2009) showed that the relationship between particle size and 

mineral magnetic signatures was more complex than a linear relationship. Therefore, the 

correction would not be expected to correct adequately for the effects of changing sediment 

particle size on magnetic minerals. 

The organic enrichment correction assumes that tracers are not associated with the organic 

fraction of the sediment (Lees, 1999). While this assumption has been shown to apply to 

mineral signatures, other tracers have been shown to readily associate with organic matter. 

An example of this is the proposed association of geochemical tracers with organic matter in 

the Kingsthorpe floodplain core, the effects of which would be made worse by the 

correction.  

 



7: Fingerprinting suspended and recently deposited overbank and channel bed sediment. 

 
143 

 

 

7. Fingerprinting suspended and recently deposited overbank 
and channel bed sediment. 

 

7.1. Introduction 

This chapter addresses Objectives 1, 2 and 3 of this thesis. The previous chapter (Chapter 6) 

addressed these objectives when fingerprinting historically deposited sediment. This chapter 

continues the investigation of these objectives by fingerprinting suspended and recently 

deposited overbank and channel bed sediment (hereafter referred to as ‘river sediment’). 

The chapter is structured into three sections each based upon investigating one of the 

objectives.  

In the first section (7.2) ( Objective 1) a fine sediment fingerprinting investigation was 

conducted using the different fingerprints of mineral magnetic, geochemical, fallout 

radionuclide and lithogenic radionuclide tracers listed in Table 5-11. The section first 

explores the ability of tracers to successfully pass each stage of the statistical composite 

fingerprint determination procedure (outlined in section 5.5.2. ). Un-mixing models were 

then run for all of the river sediment samples using composite fingerprints composed of the 

different tracer groups outlined in Table 5-11. The sediment provenance predictions made 

by the different tracer groups were compared, to determine the percentage differences 

between their predictions, and the differences between their predicted monthly trends in 

changing sediment provenance.  

In the second section (7.3) (Objective 2) the differences between the provenance predictions 

of the fingerprints were compared to the organic content and particle size distribution of the 

sediment samples in order to determine if these factors are potentially causes of the 

differences observed. The investigation of Objective 2 is then continued by examining the 

uncertainty associated with within-source variability in tracer concentrations and the size of 

the contrasts in tracer concentration between source groups.  

The final section (7.4) addresses Objective 3 by applying data corrections for the sediment 

organic content and particle size distribution to the tracer signatures. It was determined if 

the corrections increased the percentage of samples passing the mass conservation test for 

each tracer and if they improved the discriminatory efficiency of the tracers. The section 
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concludes by determining if there was an improved consistency between tracer group 

sediment provenance predictions when the tracer signatures were corrected. 

 

7.2. The differences between tracer group provenance predictions 

This section addresses Objective 1 of this thesis, by conducting a fine sediment fingerprinting 

investigation using multiple combinations of different tracer groups, and quantifying the 

differences between their sediment provenance predictions. The results in this section all 

utilise data which are uncorrected for organic content or particle size distribution. The ability 

of tracers to pass the mass conservation test and discriminate between sediment sources is 

a key part of tracer use. Therefore, this section begins by describing the behaviour of each 

tracer used during the mass conservation test and statistical determination of composite 

fingerprints (outlined in Section 5.5.2. ). 

 

7.2.1.  Mass conservation test 

A mass conservation test was used to identify any tracer that might have been altered 

significantly during sediment transport (Wilkinson et al., 2012).  The test operated by 

identifying any tracer in each sediment sample which fell outside of the median values of the 

included source groups (Table 7-1). These tracers were determined to have failed the test. 

Figure 7-1 shows the percentage of the total number of river sediment samples collected 

where each tracer passed the mass conservation test. The results showed that most mineral 

magnetic signatures (1A) and radionuclide tracers (1B) pass this test for the majority of 

sediment samples. However, many geochemical tracers (1C) appear to perform poorly. 
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Figure 7-1: The percentage of river sediment samples passing the mass conservation test for each tracer. 

 

A comparison was made between the proportion of samples passing the mass conservation 

test and the largest inter- source contrasts in tracer concentration (maximum median tracer 

concentration in any source group – minimum median tracer concentration in any source 

group). This comparison was made to determine if the results of the mass conservation test 

were a function of the properties of the source group tracer concentrations, rather than 

being an equal representation of tracer non-conservatism, for all tracers. The results of this 

comparison, shown in Figure 7-2, indicated that the ability of tracers to pass the mass 

conservation test was primarily a function of the inter-source group contrasts in tracer 

concentration. As many of the geochemical tracers exhibited small contrasts in 

concentration between the source groups, this explains their observed poor performance in 

the test (Figure 7-1).  A linear relationship was observed for most of the tracers, however, 

0

20

40

60

80

100

Xlf Xfd XARM SIRM IRM-100 HIRM

Pe
rc

en
ta

ge
 o

f s
am

pl
es

  

Tracer 

(A) 

0

20

40

60

80

100

Pb-210 (un) Ra-226 Cs-137 Ac-228 K-40 Th-234 U-235 Pb-212

Pe
rc

en
ta

ge
 o

f s
am

pl
es

 

Tracer 

(B) 

0

20

40

60

80

100

Al As Ba Ca Co Cr Cu Fe Ga Gd K La Mg Mn Na Nd Ni P Pb Ti V Y Yb Zn Zr

Pe
rc

en
ta

ge
 o

f s
am

pl
es

  

Tracer 

(C) 

Overbank sediment Suspended sediment Channel bed sediment



7: Fingerprinting suspended and recently deposited overbank and channel bed sediment. 

 
146 

 

Ga, Gd, Ti, Mg, Cu, HIRM and 210Pbun did not follow this linear relationship, indicating that 

for these 7 tracers more sediment samples failed the range test than would be expected by 

the inter-source group contrasts in tracer concentration. These seven tracers may therefore 

be more non-conservative in the environment than others used. Potential reasons for their 

non-conservatism can be speculated upon, for example P and Cu are found in high 

concentrations in sediments close to sewage treatment effluent releases, and HIRM has 

been shown to be significantly affected by non-linear additivity effects (Lees, 1997).  

 

Figure 7-2:  The relationship between the largest inter-source contrasts in median tracer concentrations and the 
proportion of river sediment samples passing the mass conservation test. 
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most other source groupings showed similar patterns to that of Table 7-1. It was found that 

most tracers were significantly different from both of the other source groups, so usually 

passed this test. 

Table 7-1: Median and median absolute deviation tracer concentrations in source groups. Colours correspond to 
the results of a Kruskal Wallace H-test, green = significantly different (p<0.05), from both other source groups, 
yellow = significantly different from one other source group, red = not significantly different from either other 
source. 

 
Surface 

Agricultural 
 

Median 
absolute 

 

Channel 
Banks 

Median 
absolute 

 

Urban dusts 
Median 
absolute 

 LOI (%) 10.44 1.23 7.47 1.03 21.34 2.57 

SSA (m2 g-1) 1.18 0.10 1.16 0.08 0.90 0.07 
Xlf (10-6 m3 kg-1) 0.38 0.18 0.22 0.05 3.73 0.45 

Xfd (10-9 m3 kg-1) 21.41 14.19 6.81 3.39 124.75 20.12 
Xarm (10-6 m3 kg-1) 3.67 2.36 1.46 0.66 9.44 0.91 

IRM1T (10-5 m3 kg-1) 4.50 2.18 2.53 0.96 34.11 2.62 
IRM-100 (10-5 m3 kg-1) -3.49 1.85 -1.68 0.74 -25.98 3.08 

HIRM (10-5 m3 kg-1) 0.52 0.18 0.40 0.09 4.57 0.59 
       

210Pbun (mBq g-1) -1.26 9.30 -8.44 9.68 101.62 30.15 
226Ra (mBq g-1) 31.25 8.30 34.54 9.94 10.31 2.80 
137Cs (mBq g-1) 2.89 1.24 0.16 0.16 0.75 0.39 
228Ac (mBq g-1) 32.86 6.17 36.89 6.19 15.91 4.71 

40K (mBq g-1) 612.58 84.17 645.74 91.08 388.96 51.66 
234Th (mBq g-1) 20.27 5.55 18.16 4.90 6.79 1.28 
235U (mBq g-1) 2.28 0.96 2.23 0.95 0.93 0.28 

212Pb (mBq g-1) 34.25 6.05 38.40 5.33 19.89 2.18 

       
Al (mg kg-1) 9488.73 1463.34 8841.46 1974.21 11868.20 693.92 

As (mg kg-1) 22.62 9.23 24.95 9.44 17.68 1.64 
Ba (mg kg-1) 59.02 12.61 64.29 15.81 195.50 19.56 

Ca (mg kg-1) 5570.06 1877.22 8284.87 4270.21 35837.93 10581.46 
Co (mg kg-1) 9.46 2.80 10.82 2.52 8.51 1.03 

Cr (mg kg-1) 42.62 17.36 37.49 9.20 74.19 14.51 
Cu (mg kg-1) 21.62 4.20 20.75 4.52 222.47 49.74 

Fe (mg kg-1) 34929.08 11191.21 42631.25 12194.19 40927.50 4052.42 
Ga (mg kg-1) 4.77 2.55 3.13 1.97 5.08 0.74 

Gd (mg kg-1) 2.60 1.15 2.94 1.42 1.12 1.10 
K (mg kg-1) 1343.61 323.03 947.59 229.36 1271.75 197.28 

La (mg kg-1) 15.33 3.85 15.75 4.22 14.95 1.73 
Mg (mg kg-1)) 1708.98 403.85 1776.62 493.32 8917.81 1402.17 

Mn (mg kg-1) 647.86 244.88 608.39 208.75 1765.83 242.99 
Na (mg kg-1) 61.04 22.72 94.92 36.56 299.17 87.08 

Nd (mg kg-1) 28.76 8.12 38.30 6.73 24.95 2.05 
Ni (mg kg-1) 25.93 9.86 24.84 4.00 37.36 4.95 

P (mg kg-1) 1354.41 374.61 1018.04 249.95 1319.66 160.01 
Pb (mg kg-1) 30.98 7.83 26.47 7.18 107.45 17.62 

Ti (mg kg-1) 23.98 10.63 21.61 8.39 79.26 20.57 
V (mg kg-1) 52.19 18.60 53.18 15.06 59.75 3.84 

Y (mg kg-1) 14.15 4.09 17.62 3.99 12.93 1.07 
Yb (mg kg-1) 1.78 0.56 2.29 0.52 1.88 0.14 

Zn (mg kg-1) 85.27 23.06 85.82 12.68 853.82 290.51 
Zr (mg kg-1) 5.84 1.51 7.43 1.54 9.32 1.33 
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7.2.3.  Discriminant analysis 

The discriminatory efficiency of individual tracers 

The final part of the statistical composite fingerprint determination procedure was the use 

of a linear discriminant analysis to identify the optimum composite fingerprint for each 

tracer group in each sediment sample. To determine the usefulness of tracers for 

discriminating between the three potential sediment source groups, a linear discriminant 

analysis was used to calculate the percentage of source samples correctly classified into their 

respective source group by each individual tracer (discriminatory efficiency). The 

discriminatory efficiency of each individual tracer has been used as a weighting in un-mixing 

models by authors such as Collins et al. (2010a), and is used as a weighting in this thesis 

(Equation 5-6). The efficiency of each tracer was summarised in Figure 7-3 as an average and 

standard deviation, consisting of the eight regions of the Nene basin where different 

combinations of the source samples were used to fingerprint the sediment (Figure 5-2). A 

33.3% discriminatory efficiency would be expected for each tracer if no differences in tracer 

concentrations existed between the three source groups. This value is exceeded for all 

tracers, indicating their potential for source discrimination (Figure 7-7). The average 

improvement in discriminatory efficiency over the expected 33.3% is 18.3% (Standard 

deviation 8.7). The highest discriminatory efficiencies are exhibited by 210Pbun, Ba, Ca Mg and 

Zr, followed by mineral magnetic signatures. Rare earth elements have some of the lowest 

efficiencies, as do Co and Ni. 

 

Figure 7-3: The average discriminatory efficiency of tracers used in this study when discriminating between 
channel banks, surface agricultural sources and urban street dusts (note Y axis starts at 33%). 
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dusts are seldom used as a sediment source in published fingerprinting investigations, which 

often are performed in rural catchments (e.g. Collins et al. 1997), unlike the Nene basin. 

Therefore, the discriminatory efficiency of the tracers when differentiating between channel 

banks and surface agriculture was calculated, to provide a result more applicable to many 

published fingerprinting studies. 

Removing urban street dusts from the discriminant analysis reduces the improvement of 

discriminatory efficiency over the expected value of 50% to 7.2% (Figure 7-4). 137Cs, K, Na 

and Zr have the highest discriminatory efficiencies with a ca. 15% improvement over the 

expected 50% efficiency. Clear differentiation between urban street dusts and the other 

sediment sources is therefore likely to be more successful than the discrimination between 

channel banks and surface agriculture. 

The standard deviation error bars in Figure 7-3 and Figure 7-4  indicate a high degree of 

variability in the discriminatory efficiencies of each individual tracer in the different regions 

of the Nene, with an average coefficient of variation of 14.7% (when urban street dusts are 

included as a sediment source). This value is especially high when considering that, on 

average, tracers can each only improve on the expected discriminatory efficiency by 18.3%. 

 

Figure 7-4: The average discriminatory efficiency of tracers used in this study when discriminating between 
channel banks and surface agricultural sources. 

 

The determination of composite fingerprints of tracer groups 

Determination of the optimum composite fingerprint of tracers, to use in the un-mixing 

modelling, was done using the tracers passing the mass conservation test and Kruskal–Wallis 

H test. A genetic algorithm based multiple linear discriminant analysis (GA-LDA) was used to 
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was used for each of the combinations of tracer groups shown in Table 5-11 and for each 

river sediment sampling location shown in Figure 4-9, with the exception of channel bed 

sediment, where fingerprinting was only conducted for the seven sampling sites which also 

contained a suspended sediment trap. Where repeat sediment samples were collected in a 

sampling location, such as the monthly suspended sediment samples, these were all 

fingerprinted with the same composite fingerprint. 

 To minimise the uncertainty associated with the discriminatory power of the composite 

fingerprints on the sediment provenance predictions, only the fingerprints identified by the 

GA-LDA which could correctly classify in excess of 80% of source samples were judged to 

have passed this stage of the procedure, and were used in the un-mixing modelling. The 

tracer groups able and not able to form an adequate composite fingerprint are described 

later in this section in Figure 7-5. 

 

7.2.4.  Goodness of fit 

Goodness of fit (GOF) is commonly used in published fingerprinting studies to judge how 

well un-mixing model predictions match the input data, and is therefore a means of judging 

the reliability of model results (Haddadchi et al. 2013). For highly correlated tracers GOF is 

likely to be close to 100% and problems with equifinality of goodness of fit have been 

highlighted by Beven, (2003). However, it provides an indication of whether or not the 

tracers used in a composite fingerprint are in reasonable agreement as to the outcome being 

predicted by the un-mixing model. It can also identify the influence of anomalous heavily 

altered tracers in a fingerprint which are skewing the sediment provenance predictions. On 

this basis any model with an average GOF falling below 80% is judged to be potentially 

unreliable and was not used for further analysis. As with the discriminatory efficiency, no 

published guidelines exist for what is an acceptable model GOF; as a result a value of 80% 

was chosen to ensure only the un-mixing models able to produce a goodness of fit which 

would be deemed acceptable in most published fingerprinting studies were used for further 

analysis in this chapter. 

Figure 7-5 shows the results of the discriminant analysis and goodness of fit test. The ability 

to form an adequate composite fingerprint appeared primarily determined by the sampling 

location, as very few adequate composite fingerprints were produced in the Weedon 2 and 

Knuston sites. Most models run were found to have a goodness of fit exceeding 80%. 
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Figure 7-5: The ability of tracer groups to form a composite fingerprint able to correctly classify >80% of source 
samples and produce a goodness of fit in excess of 80% in an un-mixing model (when the Mag geochem group is 
highlighted blue its fingerprint is identical to the ‘All’ group). 
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7.2.5.  Sediment provenance predictions 

The following parts of this section compare the sediment provenance predictions made by 

the different fingerprints of the tracer groups, to determine if the same sediment 

provenance result was obtained with any of the tracer groups used (Objective 1).  The tracer 

groups are first compared to determine the size of the differences between their 

predictions; they are then compared to determine if the trends in changing sediment 

provenance over the study period are consistent. 

To provide context to the following results, Figure 7-6 shows an amalgamated probability 

density function, composed of the predicted provenance of all sediment samples in the 

Nene, obtained with all tracer group fingerprints. It was found that the un-mixing models 

predicted that channel banks are the dominant sediment source, while surface agricultural 

sources are much less important. The contributions of sediment from urban street dusts are 

much more consistently predicted by all tracer groups and in all sediment samples than 

channel banks or surface agriculture, with over 50% of model results predicting that 

between 0% and 10% of the sediment originates from street dusts.  

 

Figure 7-6: Composite probability density function of sediment source contributions to all contemporary 
sediment samples, produced with all tracer group combinations. 

 

0

5

10

15

20

25

0 0-10 10.-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

Pe
rc

en
ta

ge
 o

f t
ot

al
 M

on
te

 
Ca

rlo
 it

er
at

io
ns

 

Predicted contribution (%) 

Channel Banks Surface agricultural land

0

10

20

30

40

50

60

0 0-10 10.-20 20-30 30-40 40-50 50-60 60-70 70-80 80-90 90-100

Pe
rc

en
ta

ge
 o

f t
ot

al
 M

on
te

 
Ca

rlo
 it

er
at

io
ns

 

Predicted contribution (%) 

Urban street dusts



7: Fingerprinting suspended and recently deposited overbank and channel bed sediment. 

 
154 

 

Percentage differences between tracer group provenance predictions 

This sub-section quantifies the differences between the tracer group sediment provenance 

predictions. The fingerprinting provenance predictions were only used for the tracer groups 

that formed a composite fingerprint able to correctly classify over 80% of source samples 

into their respective groups and produce a goodness of fit in excess of 80% (Figure 7-5). To 

simplify the analysis of results only the predicted contributions from channel banks are 

discussed, as this was determined to be the dominant sediment source in the Nene (Figure 

7-6), and was considered representative of the overall un-mixing model result.  

The absolute difference between the predictions from two tracer group fingerprints, for 

each of the sediment samples, was calculated by subtracting the predicted contribution 

made by one tracer group, of e.g. 50%, from the predicted contribution of a second tracer 

group, of e.g. 70%, to produce the difference between the tracer group predictions, of e.g. 

20%. This was done for each of the 2700 results between the 5th and 95th percentile ranked 

3000 Monte Carlo iterations for each sample, to account for close to the full range of 

uncertainty predicted by the un-mixing model. The mean difference between the 2700 

Monte Carlo results was used to quantify the differences between fingerprint predictions for 

each sample. The mean difference between two tracer groups in all of the sediment samples 

was then calculated to represent the average difference between the tracer groups’ 

predictions. 

Highly variable differences were found between the predictions of the tracer groups when 

fingerprinting overbank sediment (Figure 7-7); the lowest average difference of 15.3% was 

found between the prediction made by the Mag group compared to the prediction made by 

the Mag geochem group. The largest average difference of 39.4% was found when the 

predictions made by the Mag geochem group were compared to the predictions of the 

Geochem litho group. The overall average difference between the predictions of tracer 

groups was 26.4%. The large error bars suggest a large amount of spatial variability 

associated with the differences between tracer group predictions. 
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Figure 7-7: The mean absolute difference between tracer group predictions of contributions from channel banks to overbank sediment. 
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Figure 7-8 shows the mean differences between the predictions of each tracer group and 

every other tracer group when fingerprinting overbank, suspended and channel bed 

sediment. The mean difference between the predictions of all tracer groups in all sediment 

samples was 24.1% with a standard deviation of 0.12%. Little difference was observed in 

Figure 7-8 between the results for each individual tracer group compared to other tracer 

groups.  

When the average difference between one tracer group and all others is compared in 

overbank, suspended, and channel bed sediment a mean difference of 1.41% is found 

between the 3 sampling locations, indicating that sediment sampling location has little effect 

on the consistency of provenance predictions. This similar average difference indicates that 

tracer conservatism is not primarily affected by processes occurring during the deposition of 

suspended sediment onto channel beds or riparian zones, as selective deposition of specific 

particle size fractions would be expected to alter tracer concentrations (Koiter et al., 2013). 

It also suggests that during the period of sediment storage on channel beds, few post-

depositional alterations to the sediment are occurring. Short residence times of the 

sediment are a potential explanation, as processes such as the chemical alterations likely to 

have affected the historically deposited sediment in Chapter 6 have limited time to occur. 

The size of the differences between the tracer group predictions in the Nene are higher than 

most of the comparisons made by Nosrati et al. (2011) and Evrard et al. (2013). However, 

some of the large differences between fingerprint predictions in the studies reviewed in 

Section 2.2, such as that by Fu et al. (2006) had differences between tracer group properties 

that exceeded those found in the Nene, suggesting that the results found in the Nene could 

be experienced in other catchments where the discriminating power of source signatures 

was relatively poor. 
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Figure 7-8: Mean differences between the predicted contribution of sediment from channel banks made by each 
tracer group in comparison all other tracer groups in overbank, suspended and channel bed sediment samples. 

 

7.2.6.  Trends in monthly sediment provenance 
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catchment responses to different climatic conditions or changes to land utilisation (Foster et 
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Figure 7-9 shows median predicted contributions from channel banks to suspended 
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increasing contribution from channel banks over the duration of the sampling period. 
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different trends, such as geochemical tracers predicting a decreasing contribution from 
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The trends in provenance predictions are often inconsistent between the tracer groups, 

meaning that changes in sediment provenance predictions are unlikely to be an accurate 

representation of changing sediment sources when a tracer group is used in isolation. An 

additional consideration is that many of the lines in Figure 7-9 overlap, meaning that in 

different months of sampling, different tracer groups can predict contributions from channel 

banks either above or below each other. It therefore appears that the processes causing 

tracer non-conservatism change in different months of sampling. 
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Figure 7-9: The monthly median predicted contributions from channel banks to suspended sediment, derived using different tracer groups. 
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Whilst mean and median predictions (used in Figure 7-9) are often used to represent data in 

published fingerprinting studies, the Monte Carlo analysis provides additional representation 

of the range of uncertainty associated with the predicted source contributions. 

Table 7-2 shows the mean percentage point distance of the 25th – 75th percentile Monte 

Carlo predictions from the median produced by each tracer group fingerprint at each 

sampling site. The range of uncertainty between the 25th and 75th percentiles is between 

4.87% and 53.4%. For most samples the uncertainty exceeds the differences between some 

tracer group medians seen in Figure 7-9, suggesting that much of the difference between 

tracer group medians is accounted for by the Monte Carlo analysis.  However some tracer 

groups, such as in the October – December sampling period at Weedon 1 (Figure 7-9A), 

predict contributions from channel banks with up to a 100% difference, indicating that this 

uncertainty was not accounted for by the Monte Carlo modelling procedure. Many studies 

express the Monte Carlo derived uncertainty between the 5th and 95th percentile results 

because this would incorporate more of the different tracer group medians into the 

predictions of each fingerprint. However, the uncertainty in most models would have to 

cover a range close to 100% to fully account for all of the median values derived using the 

different tracer groups in Figure 7-9, meaning no determination of sediment provenance 

could be derived from any modelling result. 
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Table 7-2: The mean percentage point distance of the 25th and 75th percentile Monte Carlo predictions from the 
median prediction, for each tracer group fingerprint at each suspended sediment sampling location. 

 T1 
(%) 

T2 
(%) 

Dodford 
(%) 

Heyford 
(%) 

Kislingbury 
(%) 

Northampton 
(%) 

Wellingborough 
(%) 

All        
75th percentile 73.7 80.5 44.8 86.9 85.7 57.9 44.0 

Median 65.9 74.4 34.1 79.3 80.6 52.3 31.9 

25th percentile 54.8 65.6 21.8 67.9 73.5 44.5 20.7 

Mag        

75th percentile 68.2 79.0 79.6   77.0 38.0 

Median 53.0 64.6 63.1   65.7 23.7 

25th percentile 36.7 50.8 43.2   53.6 10.2 

Mag litho        

75th percentile 98.0  71.3 98.3 87.1 76.8  

Median 83.9  54.8 91.9 73.1 53.0  

25th percentile 61.6  34.9 72.5 29.4 23.8  

Mag fallout        

75th percentile 70.8 78.3 60.3 85.2 57.4 58.6 61.4 

Median 64.9 73.6 50.9 80.1 49.8 51.5 56.8 

25th percentile 56.1 66.6 38.3 72.7 39.7 43.9 51.2 

Mag geochem        

75th percentile 82.3 89.1 49.0 95.8 75.5 85.2  

Median 68.9 72.9 37.4 94.8 61.5 80.4  

25th percentile 54.7 57.9 23.4 90.9 43.4 69.6  

Geochem litho        

75th percentile 78.6  43.5 90.1  79.5  

Median 59.9  32.5 86.5  64.3  

25th percentile 39.2  22.1 77.3  40.2  

Geochem fallout        

75th percentile 66.9 56.9 20.7 70.0  50.4 34.4 

Median 60.5 49.1 13.9 65.1  43.6 16.6 

25th percentile 51.2 38.0 8.9 58.1  35.5 0.1 

Geochem        

75th percentile 54.3  30.8  65.3 89.4 39.7 

Median 23.8  18.7  46.2 82.7 8.6 

25th percentile 0.9  5.5  27.3 58.5 -4.6 

Litho Fallout        

75th percentile   31.6  33.4 12.8  

Median   23.8  22.0 6.6  

25th percentile   14.1  5.0 0.0  
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7.3. The effects of changes to the sediment organic matter content,  

particle size distribution and within-source variability on the differences 

between tracer group fingerprinting predictions. 

Having established that some large differences between tracer group sediment provenance 

predictions occur in the Nene basin, in fulfillment of Objective 1; Objective 2 requires the 

investigation of the potential causes of these differences.  

The potential causes of tracer non-conservatism which could result in changes to tracer 

provenance predictions were reviewed in the published research discussed in chapter 2. The 

effects of changes to the organic matter content or particle size distribution of the sediment 

were indicated to be the most important reasons for non-conservatism. It was also 

suggested that the way in which source sample data was used in un-mixing models was an 

additional source of uncertainty, indicating that there is potential for errors caused by 

sediment source tracer concentrations. On this basis these two factors are explored in this 

section. 

In Chapter 6, which explored uncertainty when fingerprinting historical sediment, the effects 

of post-depositional alterations to the sediment were also investigated. Due to the short 

time (months) between sediment transport and the collection of the river sediment samples 

these processes were not investigated for the river sediment.  

 

7.3.1.  Changes to the organic content and particle size of the sediment 

Changes to sediment particle size distribution and organic matter content are two of the 

most commonly cited reasons for tracer non-conservatism (Koiter et al., 2013). An 

examination of the SSA and LOI of the sediment samples, compared to the source samples, 

was initially conducted in Figure 7-10 to determine if any differences were present. It was 

found that, while the SSA of the sediment was comparable to the source samples, the LOI of 

the sediment was higher than the majority of channel bank and surface agricultural sources.  
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Figure 7-10: The SSA and LOI of suspended, channel bed and overbank sediment and sediment source samples. 

 

To determine the potential impacts of LOI and SSA on the observed differences between 

tracer group fingerprint predictions, Pearson correlation coefficients were calculated 

between the differences in predicted contributions from channel banks and the calculated 

SSA and LOI of the sediment samples. The differences between tracer group predictions 

were calculated as the mean tracer 1 – tracer 2 difference between the 5th and 95th 

percentile Monte Carlo predictions. This is different to the absolute differences used to 

produce Figure 7-7 and Figure 7-8, as it was judged necessary to account for the fact that in 

Figure 7-9 one tracer group could predict a contribution higher or lower than another group 

on different months, and this variation could be a result of changes to sediment LOI and SSA. 

Table 7-3A shows that of the 36 differences between tracer group predictions calculated for 

the overbank sediment samples, only 4 and 5 of these differences were significantly 

correlated with LOI and SSA respectively. This small number of significant correlations and 

the low correlation coefficients ranging from 0.35 to 0.66 indicate that SSA and LOI do not 

account for the majority of observed differences between tracer group predictions.  



7: Fingerprinting suspended and recently deposited overbank and channel bed sediment. 

 
167 

 

 

When the correlation analysis was performed for the fingerprinting at each suspended 

sediment sampling location, it was found that in only the Heyford (Table 7-3E) and 

Northampton (Table 7-3G) sites were more than two significant correlations found. These 

significant correlations were with LOI at both sites, and have moderately high correlation 

coefficients. These results indicate that, as with the overbank sediment fingerprinting, 

changes to the particle size and organic content of the sediment are unlikely to account for 

the majority of the observed differences between tracer group fingerprint predictions. 

Although, in the Heyford and Northampton suspended sediment sampling sites some effects 

of LOI are suggested to be occurring. 

These results greatly contrast with the results found when performing this correlation 

analysis for the historically deposited sediment in Section 6.5, where strong correlations 

were found between differences in tracer group predictions and both LOI and SSA in many 

cores.  The LOI in both the river sediment and the sediment cores was between 10% and -

20% for most samples. The SSA in sediment cores was between 1.3 m2 g1 and 2.5 m2 g1  in all 

cores apart from the Kingsthorpe floodplain core (Figure 6-1), exceeding the values found in 

most of the sediment source samples. In the river sediment samples the SSA remained 

comparable to the sediment source samples (Figure 7-10), explaining why SSA was likely to 

have comparably little impact on the river sediment fingerprinting.  

An examination of the LOI of historical cores (Figure 6-1) compared to the river sediment 

samples (Figure 7-10), shows that values of between 10% and 20% were found in most of 

the cores and most of the river sediment samples. This produces a surprising result as LOI 

appeared to have a strong effect on the historical fingerprinting. The growth of autogenic 

vegetation on the floodplain is a potential explanation for this result, as tracer 

concentrations in autogenic matter are likely to be significantly different to the tracer 

concentrations of the sediment source samples. It is not possible to compare these findings 

with results in the published literature as no comparable studies to this have been 

performed; instead it is more common practice to speculate on the possible relationship 

between LOI, SSA and tracer concentrations prior to fingerprinting sediment sources. 
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Table 7-3: Pearson correlation analysis between percentage point difference between tracer groups and sample 
SSA and LOI in the monthly sampling period for all suspended sediment samples. Only statistically significant 
(p<0.05) results are displayed. 

A, Overbank sediment (36 potential correlations) 

 LOI   SSA   

 Sig. (2-tailed) Correlation 
coefficient N Sig. (2-

tailed) 
Correlation 
coefficient N 

Mag - Mag geochem 0.08 -.352 25 0.02 -.457 25 
Mag - Geochem litho 0.01 .659 16 0.03 .543 16 

Mag litho - All 0.11 -.328 25 0.02 -.462 25 
Mag Fallout - Geochem 

litho    0.04 .448 21 

Geochem litho - All 0.05 -.472 18 0.02 -.560 18 

 

B, Weedon 1 (21 potential correlations in each column) 

Correlations LOI   SSA   

 
Sig. 

(2-tailed) 
Correlation 
coefficient N Sig. 

(2-tailed) 
Correlation 
coefficient N 

Mag Litho-Geochem 0.00 -.958 7 0.03 -.813 7 
Mag geochem-Geochem 

Litho 0.04 .636 11 - - - 

 

C, Weedon 2 (6 potential correlations in each column) 

Correlations LOI   SSA   

 Sig. (2-tailed) Correlation 
coefficient N Sig. (2-tailed) Correlation 

coefficient N 

Mag Fallout-All 0.04 -.571 13 - - - 

 

D, Dodford (21 potential correlations in each column) 

Correlations LOI   SSA   

 Sig. (2-tailed) Correlation 
coefficient N Sig. (2-tailed) Correlation 

coefficient N 

Mag Litho-Mag Geochem 0.03 -.691 10 0.02 .718 10 

 

E, Heyford (15 potential correlations in each column) 

 LOI   SSA   

 Sig. (2-tailed) Correlation 
coefficient N Sig. (2-tailed) Correlation 

coefficient N 

Mag Fallout-Mag Geochem 0.05 -.707 8 - - - 
Mag Fallout-Geochem 

Fallout 0.00 .906 11 - - - 

Mag Geochem-Geochem 
Fallout 0.04 .724 8 - - - 

Mag Geochem-All 0.05 .715 8 - - - 
Geochem Fallout-All 0.03 -.672 10 - - - 

 

F Kislingbury 

No significant correlations found 
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G, Northampton (36 potential correlations in each column) 

Correlations LOI   SSA   

 Sig. (2-tailed) Correlation 
coefficient N Sig. (2-tailed) Correlation 

coefficient N 

Mag-Mag Geochem 0.00 -.840 11 - - - 
Mag Fallout-Litho Fallout 0.05 -.674 9 - - - 
Mag Geochem-Geochem 

Fallout 0.05 .632 10 - - - 

Geochem Fallout-Litho 
Fallout 0.02 -.746 9 - - - 

Geochem-Litho Fallout 0.02 -.746 9 - - - 
Litho Fallout-All 0.02 .798 8 - - - 

 

H, Wellingborough  

No significant correlations found 

 

7.3.2.  The potential uncertainties associated with catchment and tracer 

concentration heterogeneity 

It has been suggested in the previous sub-section, as part of the fulfilment of Objective 2, 

that the commonly cited reasons for tracer non-conservatism of organic enrichment and 

changes to sediment particle size were unlikely to account for most of the observed 

differences between the tracer groups predictions found for Objective 1. This sub-section 

continues to address Objective 2 by investigating the potential impacts of heterogeneity and 

complexity in the catchment. Including, the within-source variability of tracer 

concentrations, and the potential effects of sediment inputs from only small proportions of 

each source group. The implications of a high variability of tracer concentrations within the 

source groups were also considered in terms of the representativeness of the sediment 

source sampling. 

The section begins by examining the differences between tracer group provenance 

predictions when fingerprinting urban street dusts. The fingerprinting of street dusts was 

done to determine if a greater contrast in tracer concentrations between sediment sources 

and low within- source variability improves the consistency of fingerprinting predictions. 

The potential effects of within-source variability in tracer concentrations on the results of 

the sediment fingerprinting were then examined.  Twenty five random sub-distributions of 

tracer concentrations were produced from within the 5th and 95th percentile range of the 

tracer concentrations found in each source group. A sediment sample was fingerprinted 

using each of these 25 distributions. In this way, the potential uncertainty occurring if the 
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actual sediment sources in the environment had a different range of tracer concentrations 

from the collected source samples could be determined. 

The relationship between the within-source variability in tracer concentration and the size of 

the contrasts in tracer concentration between source groups, on the uncertainty potentially 

present in fingerprinting results was then quantified. This allowed for the assessment of if 

within-source variability in tracer concentrations was sufficient to cause the differences 

between tracer group predictions observed as part of Objective 1.  

 

7.3.2.1. The impacts of a low within-source variability in tracer concentrations and a high 

contrast in tracer concentration between source groups on the differences between tracer 

group predictions. 

If a large amount of spatial variability in erosion and sediment delivery to the river occurred 

in a catchment, it could potentially result in only a small proportion of the collected 

sediment source samples actually being from areas which contribute sediment to the river. If 

this occurred when a large amount of variability in tracer concentrations was present in a 

source group, a different distribution of tracer concentrations would be found in the 

collected source samples to that of the sediment’s actual sources. Therefore this would 

result in a change to model sediment provenance predictions, as the sediment source data 

no longer reflects the actual sediment sources. This sub-section explores the potential for 

this to be occurring and affecting the fingerprinting predictions of different tracer groups 

observed for Objective 1. 

The potential for error associated with the heterogeneity of sediment source tracer 

concentrations in the Nene can be seen by examining Figure 7-3, which shows that the 

discriminatory efficiency of each tracer varied significantly between the different 

fingerprinting locations used in this study. This finding suggests that either a high spatial 

variability in tracer discriminatory efficiency exists, or that the source sampling was 

insufficient to fully represent the sediment sources in the regions. Either of these 

explanations highlights the potential for regional variability in tracer concentration and 

sediment delivery to introduce uncertainty into the sediment fingerprinting. 

It can also be determined, by examining Table 7-1, that small contrasts in median source 

group tracer concentrations exist between channel bank and surface agricultural sediment 

sources, and were exploited in the discriminant analysis to form the composite fingerprints. 
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An examination of the within source tracer concentration coefficients of variation (COV) 

(Table 7-4), shows an average COV of 32.8% in the channel bank and surface agriculture 

source groups, indicating a significant amount of variability in tracer concentration, even 

within the middle 50% of source samples.  There is, therefore, clear potential for the loss of 

the basis for source discrimination, as the COV of many tracer concentrations are often 

larger than the differences in tracer concentrations exploited to form the composite 

fingerprints.  The effects of this will be most pronounced if the source samples used for 

modelling are not fully representative of the actual sources of the sediment in a given 

environment.  

Table 7-4: Coefficients of variation of tracer concentrations in source groups, calculated as (median absolute 
deviation/median)*100). 

  Surface agriculture COV (%) Channel banks COV (%) Urban street dusts COV (%) 
LOI (%) 11.78 13.79 12.04 

SSA 8.47 6.90 7.78 
Xlf 47.37 22.73 12.06 
Xfd 66.28 49.78 16.13 

Xarm 64.31 45.21 9.64 
IRM1T 48.44 37.94 7.68 
IRM-100 53.01 44.05 11.86 
HIRM 34.62 22.50 12.91 

       
210Pbun  -  - 29.67 
2226Ra 26.56 28.78 27.16 
137Cs 42.91 100.00 52.00 
228Ac 18.78 16.78 29.60 

40K 13.74 14.10 13.28 
234Th 27.38 26.98 18.85 
235U 42.11 42.60 30.11 

212Pb 17.66 13.88 10.96 
       

Al 15.42 22.33 5.85 
As 40.80 37.84 9.28 
Ba 21.37 24.59 10.01 
Ca 33.70 51.54 29.53 
Co 29.60 23.29 12.10 
Cr 40.73 24.54 19.56 
Cu 19.43 21.78 22.36 
Fe 32.04 28.60 9.90 
Ga 53.46 62.94 14.57 
Gd 44.23 48.30 98.21 
K 24.04 24.20 15.51 
La 25.11 26.79 11.57 
Mg 23.63 27.77 15.72 
Mn 37.80 34.31 13.76 
Na 37.22 38.52 29.11 
Nd 28.23 17.57 8.22 
Ni 38.03 16.10 13.25 
P 27.66 24.55 12.13 

Pb 25.27 27.13 16.40 
Ti 44.33 38.82 25.95 
V 35.64 28.32 6.43 
Y 28.90 22.64 8.28 

Yb 31.46 22.71 7.45 
Zn 27.04 14.78 34.02 
Zr 25.86 20.73 14.27 
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Field based observations of the localised erosion of small areas of channel bank can be seen 

in a study by Henshaw et al. (2013), who were unable to reliably identify spatial controls on 

channel bank erosion using factors such as livestock stocking density or channel bank 

composition. Instead erosion was thought to occur in “process-intensity domains” controlled 

by the hydrology of the river. This means that it is unlikely that the entire range of collected 

sediment sources used in the fingerprinting are actually contributing sediment during each 

period of sediment sampling. For surface sediment sources, an examination of modelled 

rates of erosion in catchments such as that presented by Mutowo & Chikodzi, (2013), 

indicated that intense soil erosion is predicted to occur in only a small proportion of the 

overall catchment. Sediment delivery can also be considered as a potential major factor 

causing localised sediment inputs. Fryirs (2013) highlights the importance of 

“(Dis)connectivity” in river catchments; it was argued that dis-connectivity could result in 

effective catchment areas greatly reduced in size, in terms of the sediment delivery to the 

river channel. The effective catchment areas would also be expected to vary according to the 

magnitude of individual rainfall events and, over time, as the landscape within catchments 

changes. This represents a potential explanation for the high temporal variability in 

differences between provenance predictions observed in Figure 7-9.  Another consideration 

is that, in lowland catchments such as the Nene with a lack of gulley erosion providing 

connectivity to channels, linear features such as roads and field drains may be of particular 

importance in delivering sediment to rivers. For example, Boardman (2013) highlights the 

importance of roads in rural catchments at increasing connectivity, and Chapman et al. 

(2003) highlights the importance of sub-surface drainage. Both of these routes of transport 

may result in highly localised sediment delivery from a small proportion of the surface 

agriculture sediment source.   

It was shown in Table 7-1 that there were larger differences between the median 

concentrations of most tracers in urban street dusts compared to the other sediment 

sources, than between channel banks and surface agricultural sources (Table 7-1). It was also 

shown that the within source variability in most tracer concentrations was lowest in urban 

street dusts (Table 7-4). Both of these factors indicate that there is less potential for 

uncertainty to be introduced into the fingerprinting by regional variations in tracer 

concentration when fingerprinting urban street dusts. To test this assumption, a comparison 

was made between the average differences between the tracer group predictions of channel 

banks and the average differences between the tracer group predictions of urban street 

dusts, using the samples of recently deposited overbank sediment.  
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The results shown in Figure 7-11 indicate that average differences between most tracer 

group predictions range from 8.1 to 11.4% when predicting contributions from urban street 

dusts, indicating a reduced uncertainty from the average 24.1% difference when predicting 

contributions from channel banks.  This result indicates that there is clearly a positive impact 

on the reliability of sediment fingerprinting when a robust difference between sediment 

source tracer concentrations is present.  

However, it can also be noted that the Litho fallout group is the one tracer group where the 

consistency with other tracer group fingerprinting predictions is not greatly improved when 

predicting contributions from urban street dusts. A potential explanation for this is the non-

conservatism of the tracers in this group. For example Table 7-1 shows that 210Pbun is in high 

concentrations in urban street dusts, providing good discrimination from the other source 

groups. However, Figure 7-2 indicates that fewer samples pass the mass conservation test 

than would be expected for this tracer, suggesting its possible non-conservative behaviour. 

 

Figure 7-11: Average differences between the predictions of each tracer group and all other tracer groups, when 
predicting contributions of from channel banks and urban street dusts to overbank deposited sediment. 

 

7.3.2.2 The potential uncertainty associated with within-source variability in tracer 

concentrations when fingerprinting contributions of sediment from channel banks.  

The results in the Nene so far have indicated that small inter-source contrasts in tracer 

concentrations and high within source tracer concentration variability are potentially major 

causes of uncertainty in the un-mixing modelling in the Nene. In this sub-section the 

potential size of the uncertainty that could have been caused by this effect, and contribute 

to the differences observed between fingerprinting predictions derived for Objective 1 

(Figure 7-7; Figure 7-8) is explored. To do this an additional stage was incorporated into the 
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fingerprinting procedure outlined in Section 5.5 based upon the methods of Motha et al. 

(2003). Firstly the range between the 5th and 95th percentile tracer concentrations was 

calculated for each tracer in each source group. From this range, 25 randomly generated 

source tracer distributions were produced using the same procedure as Motha et al. (2003), 

to simulate the selective delivery of sediment from only a small proportion of the source 

samples. This would produce source groups with a smaller range of tracer concentrations 

present in each source group. The un-mixing model was run using each of these random 

distributions for 1000 Monte Carlo iterations. 

The 25 random source distributions were used to fingerprint an individual sediment sample 

from the Northampton suspended sediment sampling site, collected between June and July 

2012. This sample was selected on the basis that a composite fingerprint able to 

differentiate between 80% of source samples could be developed for every tracer group for 

the Northampton sampling site, and this sample was selected at random from the months of 

sampling available which had a GOF above 80% for all tracer group un-mixing models. 

It was found that large differences in provenance predictions could be produced in the 

results of the 25 different randomly generated source tracer distributions when using a 

single composite fingerprint of tracers (Figure 7-12). The median contributions produced by 

the distributions ranged from 30% to 90%, indicating that the fingerprint used in this 

example is potentially very susceptible to effects of within-source tracer concentration 

variability.  
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Figure 7-12: Probability density functions (PDF) of the first 12 randomly generated source tracer distributions, 
displayed alongside the original median and MAD distribution PDF and a composite PDF of all 25 random source 
tracer distributions. Results are for the “All” tracer group and predicted contribution from channel banks. 

 

When a composite PDF composed of the 25 random source distributions were created for 

each of the tracer groups used to fingerprint this sediment sample (Figure 7-13), the end 

result was often very different to those produced using the median and median absolute 

deviation of each tracer group, indicating that a large potential for deviation in provenance 

prediction due to the tracer concentrations of the source samples exists. The selective 

delivery of sediment from only part of a source group must also be considered likely to 

produce the same magnitude of uncertainty, as the tracer concentrations of the actual 

sediment sources would likely be different to the collected source samples if the localised 

delivery of sediment to the river occurred. 
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Figure 7-13: Composite PDFs of 25 randomly generated source tracer distributions in comparison to the PDFs 
generated using the median and MAD source groups. 

 

A final composite PDF of the results of the random 25 random distributions of source group 

tracer concentrations of all the different tracer group fingerprints was produced (Figure 

7-14). This composite PDF provided a representation of the potential uncertainty associated 

with source tracer concentration variability and the uncertainty associated with tracer 

selection when fingerprinting this sediment sample. The PDF indicates that the large 

uncertainty associated with the fingerprinting of this sample means that no conclusion as to 

sediment provenance can be reached. As the contrasts in tracer concentrations between 

channel banks and surface agriculture were found to be small in all parts of the Nene basin, 

it is highly likely that this amount of uncertainty is potentially present in all of the sediment 

samples which were fingerprinted. 
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Figure 7-14: Composite probability density function of 25 randomly generated source tracer distributions of the 
nine tracer groups. 

 

7.3.2.3 The relationship between inter-source contrasts in tracer concentration, within 
source tracer concentration variability and the uncertainty associated with un-mixing 
modeling. 

 

This section has so far indicated that within-source variability in tracer concentrations is a 

major source of uncertainty, which could potentially have caused the differences in tracer 

group provenance predictions observed when investigating Objective 1 (Section 7.2).  

Therefore, for a fingerprinting study to have a reasonable probability of making a 

provenance prediction which is not masked by a large amount of uncertainty, the within-

source variability must be minimised and the contrasts in source tracer concentrations must 

be maximised. As part of the fulfillment of Objective 2, the relationship was determined 

between the contrasts in source group median tracer concentrations and within-source 

variability of tracer concentrations and the uncertainty that can potentially occur in un-

mixing model predictions, based upon the methods used by Small et al. (2002). This allowed 

for the possible uncertainty caused in the fingerprinting performed as part of Objective 1 to 

be quantified, and compared to the observed differences in tracer group sediment 

provenance predictions. To calculate this relationship, un-mixing models were run using a 

range of differences between the median tracer concentrations of two source groups and 

with a range of within-source tracer concentration coefficients of variation. Table 7-5 shows 

the differences between source group median tracer concentrations and the different mean 

within-source coefficient variations for the models run. The ratio of the percentage 

difference between median tracer concentrations in source groups and the average within 
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source tracer concentration coefficient of variation (%) (hereafter referred to as the tracer 

variability ratio) was used to quantify the differences between tracer concentrations. This 

ratio, in essence, represents the differences in tracer concentrations between source groups 

divided by the variability in tracer concentrations within the source groups. 

Table 7-5: The un-mixing models run to determine the impact of source tracer concentrations on the variability 
inherent in un-mixing model predictions. 

Model number 

Percentage difference 
between median tracer 
concentrations in source 

groups 

Mean within source 
coefficient of variation 

(%) 

Ratio of the percentage 
difference between median 

tracer concentrations in source 
groups / average within source 

coefficient of variation (%) 

1 5 5 1.00 
2 5 10 0.50 
3 5 25 0.20 
4 5 50 0.10 
5 5 75 0.07 
6 10 10 1.00 
7 10 25 0.40 
8 10 50 0.20 
9 10 75 0.13 

10 20 10 2.00 
11 20 25 0.80 
12 20 50 0.40 
13 20 75 0.27 
14 40 10 4.00 
15 40 25 1.60 
16 40 50 0.80 
17 40 75 0.53 
18 60 10 6.00 
19 60 25 2.40 
20 60 50 1.20 
21 60 75 0.80 
22 80 10 8.00 
23 80 25 3.20 
24 80 50 1.60 
25 80 75 1.07 

 

The un-mixing models were run for 3000 Monte Carlo iterations and the percentage point 

difference between the 5th and 95th percentile ranked results was extracted to provide a 

value close to the maximum potential range of variability for the predictions of each of the 

un-mixing models. This gives a value representing the uncertainty that could be produced by 

regional variability in sediment source concentrations and sediment inputs, or the 

insufficient representation of sediment sources in the source sampling. 

The tracer variability ratio was calculated and plotted against the differences between the 

5th and 95th percentile Monte Carlo predictions (Figure 7-15). This was done for composite 

fingerprints containing 3, 5, 7 and 9 tracers, to determine the additional effects of the 

number of tracers used in the composite fingerprints. The fingerprints used to fulfil 
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Objective 1 in Section 7.2 contained between 3 and 11 tracers. 76% of fingerprints used 

contained 4 to 7 tracers; therefore the results shown in this section for “5 tracers” are the 

most applicable to the fingerprinting performed in Section 7.2.  

When using 5 tracers the results in Figure 7-15 show that when the source tracer variability 

ratio was lower than 1, the potential uncertainty associated with model predictions steeply 

increased. When the ratio is 1 the model uncertainty is 27%. This uncertainty decreases to 

15% at a ratio of 2 and continues to decrease to 5% at a ratio of 8. When more tracers are 

used in the composite fingerprint the maximum uncertainty is also reduced. However, the 

reduction in uncertainty approximately halves with every extra 2 tracers added to the 

fingerprint.  

It is therefore recommended that for a fingerprint to have a reasonable probability of 

producing meaningful provenance predictions, which are not subject to a large error 

associated with within–source variability, the tracer concentration variability ratio should be 

greater than 1. It was also shown that the model uncertainty was reduced by using larger 

composite fingerprints; therefore it can be recommended that the maximum number of 

tracers possible should be used in composite fingerprints. Model GOF was observed to 

decrease as more tracers were added to the fingerprints, but maximum uncertainty 

decreased. Common recommendations for tracer selection suggest minimising the number 

of tracers in a fingerprint to reduce problems of equifinality (Beven, 2003) and to use GOF as 

a quantification of model reliability (Haddadchi et al., 2013). As Section 7.2.5 showed that 

GOF cannot represent the accuracy of model predictions, because different models all with a 

GOF above 80% can predict a very different sediment provenance, it is recommended that 

larger composite fingerprints are used at the detriment of GOF.  Two reasons can be 

provided for this recommendation; first to reduce the uncertainty associated with the tracer 

variability ratio and, secondly, to minimise the potential impacts of the non-conservatism of 

individual tracers. The results shown in Figure 7-15 particularly highlight that fingerprints of 

only 3 tracers inherently have a large amount of uncertainty associated with their results 

and should be avoided.
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Figure 7-15: The ratio of the percentage difference between the median tracer concentrations of source groups / average tracer coefficient of variation in source groups compared to the 
difference between  5th - 95th percentile Monte Carlo predictions (%). 
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Because the relationship between the tracer variability ratio and the potential uncertainty in 

un-mixing models has been quantified, the potential uncertainty associated with the tracer 

variability ratio of the tracers used to fulfil Objective 1 can be calculated. In this way it could 

be determined if the tracer variability ratio can account for the differences between tracer 

group predictions observed as part of Objective 1 in Figure 7-7, Figure 7-8 and Figure 7-9; 

this will contribute to fulfilment of Objective 2. 

Figure 7-16 shows the tracer variability ratio for each tracer used in this study when 

comparing tracers in channel banks to those in surface agriculture. The ratio is below 1 for 

most tracers and only Xlf, Xfd, Xarm, irm-100, 137Cs, K and Nd exceed this. The maximum 

ratio is 1.3 for 137Cs. The average ratio of 0.6 suggests from Figure 7-15  that a potential 

uncertainty of ~ 35% would be expected when 5- 7 tracers were used. The mean difference 

between tracer group provenance predictions of 24% when fingerprinting contributions 

from channel banks as part of Objective 1 is less than the potential uncertainty of ~35% 

suggested by Figure 7-15. It should also be noted that the 35% uncertainty could be doubled 

when comparing two tracer groups each with a 35% uncertainty.   The lower uncertainty 

found between the tracer group predictions than is expected, according to the tracer 

variability ratio, suggests that the errors caused by regional variability were reduced by a 

range of sediment inputs more characteristic of source samples used. When comparing 

tracer concentrations in channel banks and urban street dusts, the ratio exceeds 1 for the 

majority of tracers (Figure 7-16). The average ratio of 2.3 suggests close to a 14% uncertainty 

would be expected to be associated with tracer variability; falling close to the average 

differences of 8.1 to 11.4% between the predicted contributions of sediment from urban 

street dusts, made by the different tracer groups (Figure 7-11). 
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Figure 7-16: The ratio of the percentage difference between the median tracer concentrations of source groups / average tracer coefficient of variation in source groups (tracer variability 
ratio) for the tracers in all source samples in the Nene basin. 
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7.3.2.3 The effects of using larger composite fingerprints 

The result in Figure 7-15 indicated that using larger composite fingerprints can have a 

beneficial effect at reducing the uncertainty associated with the tracer variability ratio. This 

sub-section determines if the beneficial effect of larger composite fingerprints of tracers can 

be seen when fingerprinting the sediment samples with the different tracer groups used to 

fulfil Objective 1.  The fingerprinting of suspended sediment from the Northampton 

sampling site was repeated using the largest composite fingerprints of tracers which could 

be generated for each tracer group, and the differences between all of the tracer groups’ 

predictions were compared to those found when using the original composite fingerprints 

which contained fewer tracers. This was done to investigate if the potential conclusions 

derived in the previous sub-section are likely to be valid, contributing to the fulfilment of 

Objective 2. 

Figure 7-17 shows composite PDFs for each sediment sample generated using the different 

tracer groups. The result obtained with large composite fingerprints is compared to the 

original result which was derived as part of section 7.2. The results show that most of the 

PDFs retain the same general shape when the larger fingerprint is used; however there is an 

increase in the height of the largest peaks for most samples and a narrowing of the base of 

the peaks.  It is therefore apparent that for the majority of samples, using the larger 

composite fingerprints narrows the range of uncertainty present, allowing a more precise 

determination of sediment provenance. However, it is clear from this result that a large 

amount of uncertainty still remains. Figure 7-15 indicated that fingerprints of more tracers 

do not remove all of the potential uncertainty; therefore differences between tracer group 

fingerprinting predictions would still be expected. Therefore, selecting for tracers with the 

highest tracer variability ratio possible remains a key recommendation of this chapter. 

 

 

 

 



7: Fingerprinting suspended and recently deposited overbank and channel bed sediment. 

 
184 

 

 



7: Fingerprinting suspended and recently deposited overbank and channel bed sediment. 

 
185 

 

 



7: Fingerprinting suspended and recently deposited overbank and channel bed sediment. 

 
186 

 

 



7: Fingerprinting suspended and recently deposited overbank and channel bed sediment. 

 
187 

 

 

Figure 7-17: A comparison of composite PDFs of predicted contributions from channel banks derived using the different tracer groups when large composite fingerprints and the shorter 
original composite fingerprints are used.
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7.4. Corrections for organic content and particle size distribution 

Objective 3 of this thesis requires an assessment of the effectiveness of corrections for the 

organic matter content and particle size distribution of the sediment to tracer signatures. It 

was shown in Section 7.3, as part of the fulfilment of Objective 2, that the differences 

between the predictions of the various tracer groups were not significantly correlated with 

the LOI and SSA of the sediment. For this reason corrections were not applied to the 

composite fingerprints used in fulfilment of Objective 1 to see if they would make the 

predictions of any tracer group closer to another. Instead, the fingerprinting methodology 

(Section 5.5) was repeated from the beginning using tracer signatures which were corrected 

for organic matter and particle size. By doing this, if any of the discriminatory efficiency of 

the tracers used to form the composite fingerprints was a result of differences to the organic 

content and particle size distribution  of the source groups, this would be accounted for by 

the correction. The organic matter and particle size corrections were applied using the 

methods described in section 5.5.3.  

This section is structured into two parts. The first investigates the effects of the corrections 

on the statistical composite fingerprint determination procedure. Firstly, the mass 

conservation test was repeated for the corrected data, to determine if corrections increase 

the percentage of sediment samples passing the test. The linear discriminant analysis was 

then repeated for each tracer, to determine if the corrections increased or decreased the 

ability of the tracers to discriminate between sediment sources. Finally the genetic algorithm 

linear discriminant analysis was repeated with the corrected data to determine if a greater 

number of composite fingerprints, could sucessfully categorise >80% of source samples. 

In the second part of this section the mean diffrences between tracer group sediment 

provenance predictions were compared for the fingerprints of the uncorrected and 

corrected tracer signatures. In this way it was determined if the different tracer groups 

predicted a more consistant sediment provenance when the corrections were used. 
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7.4.1.  Statisitcal composite fingerprint determination 

The mass conservation test 

The mass conservation test used with uncorrected data in Section 7.2.1. was repeated with 

the source and sediment tracer signatures which were corrected using LOI and SSA. The 

results of the test shown in Figure 7-18 indicate that the corrections caused little change in 

the percentage of sediment samples passing the test for most tracers. More than a 5% 

increase in the percentage of samples passing the range test was found in 15 of the 39 

tracers when at least one correction was applied. However, for 19 of the 39 tracers, at least 

one of the corrections reduced the percentage of samples which passed the mass 

conservation test. It therefore must be concluded that the corrections mostly cause only a 

small reduction in the ability of tracers to pass the mass conservation test. 
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Figure 7-18: The percentage of river sediment samples where tracers pass the mass conservation test with and without data corrections. 
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Discriminant analysis 

The linear discriminant analysis performed on the uncorrected tracer signature data in 

Figure 7-3 was repeated on the tracer signature data whch had been corrected using LOI and 

SSA. The increase of decrease in the percentage of sediment samples which can be correctly 

classified by each tracer are shown in this part of the section.  

An organic matter correction had little impact (<+2%) on the mean discriminatory efficiency 

of magnetic mineral tracers, whereas particle size corrections increase the discriminatory 

efficiency of each tracer by between 0.5 and 4% (Figure 7-19).  

 

Figure 7-19: The percentage point change in the discriminatory efficiency of mineral magnetic signatures after 
the application of corrections. 

 
 
In the case of radionuclides (Figure 7-20) an organic correction reduced the discriminatory 

efficiency of the tracers by 0-5%. A greater reduction of between 3-15% was found when a  

particle size correction was applied to the data. The fallout radionuclides 210Pbun and 137Cs 

are impacted by corrections less than lithogenic radionuclides.  
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Figure 7-20: The percentage point change in the discriminatory efficiency of lithogenic and fallout radionuclides 
after the application of corrections. 

 

Geochemical tracers (Figure 7-21) showed varying responses to corrections. The 

discriminatory efficiency of Al, La, Y and Yb increased by ~10% when a particle size 

correction was applied. The efficiency of As, Ga, Gd, Nd was reduced when any correction 

was applied.  

It was observed that for almost all tracers an organic correction resulted in a smaller change 

in discriminatory efficiency than particle size correction did. Therefore this result indicates 

that the discriminatory efficiency of many tracers may in part be derived from differences in 

the particle size distribution of the three source groups. The implication of this is that any 

changes in particle size affecting the sediment would cause a loss in some of the basis for 

source discrimination, and therefore would cause an incorrect sediment provenance 

prediction. Therefore the corrected particle size data might be expected to cause some 

benefit to the consistency between tracer group predictions. 

The standard deviation error bars in Figure 7-19, Figure 7-20 and Figure 7-21 are often larger 

than the average change in discriminatory efficiency affecting the tracers after correction, 

which indicates that a large amount of spatial variability is encountered in the change in 

discriminatory efficiency which occurs when corrections for organic matter or particle size 

are applied. Therefore, an additional source of the uncertainty associated with the regional 

variability in tracer concentrations discussed in Section 7.3.2. may have been introduced to 

the modelling by the use of the corrections. Should the corrections be applied when tracers 
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are not related to organic matter or particle size in the sediment sources, the introduced 

uncertainty would be greatly increased. 
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Figure 7-21: The percentage point change in the discriminatory efficiency of geochemical tracers after the application of corrections. 
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The final part of the statistical procedure to determine composite fingerprints for each 

tracer group was the genetic algorithm linear discriminant analysis. This section repeats the 

analysis which was originally used in Figure 7-5, on the organic corrected and particle size 

corrected tracer signatures.  

The results shown in Figure 7-22 indicate that overall 15% fewer composite fingerprints 

could successfully discriminate between >80% of source samples when an organic correction 

was applied to the tracer signatures, and 20% fewer composite fingerprints could be used 

when a particle size correction was applied to the tracer signatures. 

An organic correction increased the number of usable composite fingerprints for the mineral 

magnetic signature tracer group by 33.3%. For all other corrections, on all other tracer 

groups, the correction resulted in fewer composite fingerprints which could discriminate 

between 80% of source samples. This result therefore indicates a detrimental effect of 

corrections when forming composite fingerprints. 
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Figure 7-22: The results of the GA-DFA analysis for uncorrected and corrected tracer signatures in 
contemporary sediment sampling sites, where the “Mag geochem” group is blue this indicates that it is 
identical to the ‘All’ group. 
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7.4.2.  The differences between corrected and uncorrected tracer group 

provenance predictions 

To conclude this section and complete the targets of Objective 3, un-mixing models were run 

for all of the tracer groups and sediment samples analysed as part of Objective 1 in Section 

7.2. In this analysis the models were run using the tracer signature data which had been 

corrected for organic matter and particle size. The differences between tracer provenance 

predictions of the different tracer groups were quantified using the methods laid out in 

Section 7.2, and it was determined if the differences between tracer group predictions were 

smaller when using the corrected data. 

Figure 7-23 shows the mean difference between the prediction of each tracer group and 

every other tracer group in the overbank, suspended and channel bed sediment samples. 

The mean overall difference between every tracer group produced using uncorrected tracer 

signatures was 24.1% (standard deviation 2.9%); using organic enrichment corrected 

signatures was 24.3% (standard deviation 2.1%); and using particle size corrected signatures 

was 30.1% (standard deviation 3.9). This indicates little effect caused by the organic 

correction, and a 6% increase in the mean differences when a particle size correction was 

applied. 

Some variability exists in the effects of the corrections in the three river sediment sampling 

locations. For example, the mineral magnetic signature particle size correction decreases the 

mean differences when an organic correction is applied in the overbank sediment samples, 

but increases it in the channel bank samples. As a result no clear trends of greater or lesser 

impacts of corrections on any specific tracer groups can be determined. 

Figure 7-24 shows the effects of the corrections on the tracer variability ratio, which was 

discussed in Section 7.3.2.  The average variability ratio of all of the tracers was 0.59 for the 

uncorrected signatures, 0.57 for the organic corrected signatures and 0.60 for the particle 

size corrected signatures. It is therefore apparent that the corrections had little overall effect 

on the average tracer variability ratio.  The increased differences between the predictions 

tracer groups that are particle size corrected are therefore likely to be a result of the 

correction being inappropriately used, rather than it causing a greater amount of within-

source variability in tracer concentrations. 
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Figure 7-23: The mean differences between the sediment provenance prediction of each tracer group and all other tracer groups, with and without corrections, with standard deviation 
error bars. 

 

 

0

10

20

30

40

50

60

70

80

90

100

Mag Mag litho Mag fallout Mag geochem Geochem litho Geochem fallout Geochem Litho fallout All

Av
er

ag
e 

pe
rc

en
ta

ge
 p

oi
nt

 d
iff

er
en

ce
 

Tracer 

(C) Channel bed sediment Uncorrected

Organic corrected

Particle size corrected



7: Fingerprinting suspended and recently deposited overbank and channel bed sediment.  

200 
 

 

Figure 7-24: The effect of organic matter and particle size corrections on the tracer variability ratio.
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8. Fine sediment dynamics in the Nene river basin. 
 

8.1. Introduction 

The results of this chapter are structured around a simplified sediment budget outline 

fulfilling Objective 4 of this thesis. The following sections present the results of each part of 

the sediment budget, and discuss them in the context of the sediment dynamics and 

processes found in other published fine sediment investigations.  

The sediment budget consisted of the following components: sediment yield, floodplain 

sediment accumulation, channel bed sediment storage, sediment provenance. The results of 

each section were finally used to produce a sediment budget which aims to cover the past 

100-150 years. The methods used to produce these results are described in Chapter 4 and 

Chapter 5. 

 

8.2. Sediment Yield 

8.2.1.  Palaeolimnological reconstruction 

137Cs and 210Pbun were used to calculate the relationship between age and depth in the 

reservoir in a master sediment core (Figure 8-1). The peak in 137Cs at 22cm was tentatively 

identified as the year of maximum fallout in 1963, and the initial occurrence of 137Cs at 29cm 

was determined to be the year of the first detectable fallout at 1958, as it is now unlikely 

that the first occurrence will be easily identifiable in lake sediment sequences (Foster, 2006). 
210Pbun dating was performed using the ‘c-crs’ model as the basal date of the reservoir 

sediments at 1906 was known (Appleby, 2001).  There is some discrepancy between the 
137Cs peak and the ‘c-crs’ estimated date at 1963, although the 1958 initial occurrence of 
137Cs appears to be consistent with the ‘c-crs’ predictions. The 4 values above 30 mBq g-1 at 

17-30 cm depth are high and follow an unusual trend in comparison to other lake profiles. 

They may be indicating delayed inputs of 137Cs from the catchment associated with a change 

in sediment source, providing an explanation for the discrepancy between the two dating 

methods at the 1963 peak (Walling and He, 1992).  
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Figure 8-1: Depth-age curve calculated from the ‘c-crs’ model, and down-core variations in 137Cs activity in Sywell 
reservoir. 

Assuming that the ‘c-crs’ model represents changes in accumulation through time, it is 

possible to use it to calculate changes in sediment accumulation rate (Figure 8-2). Prior to 

the late 1940s the accumulation rate ranges from 0.03 to 0.09 g cm-2 yr-1. At the ‘c-crs’ 

predicted year of 1948 the sediment accumulation rate increases to a baseline of between 

0.11 and 0.16 g cm-2 yr-1 with a number of large peaks in excess of 0.2 g cm-2 yr-1. On this 

basis a change in catchment sediment dynamics appears to have occurred at ~1948. This is 

entirely consistent with the findings of Rose et al. (2011) in a study of over 200 European 

lakes, where most lakes and reservoirs of the Sywell type (lake type 3121[small deep 

lowland lakes] of Rose et al. 2011) showed significant increases in sediment accumulation 

after 1950. Average sediment yield was therefore calculated for the period prior to 1948 and 

post 1948. 

 

Figure 8-2: The down-core trend in sediment accumulation rate in Sywell reservoir. 

The chronology determined for the master core (marked “1” in Figure 8-3) was transferred 

to the other cores using a core correlation using low frequency magnetic susceptibility, 

measured using a Bartington MS2 magnetic susceptibility meter with a MS2C core logging 
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sensor. In this way the 1948 change in sediment accumulation rate was determined for all of 

the cores. 

 

The depth of sediment was reasonably uniform in each of the 6 cores where sediment was 

found, and for this reason, the mean and standard deviation of the sediment depth across 

the entire sedimentation limit was calculated as 0.34m (Figure 8-2). The margin of error of 

the estimated depth of sediment was produced as an upper limit (mean + 1 standard 

deviation), and lower limit (mean – 1 standard deviation). The sedimentation limit was 

identified at the -3.9 m isobath in Figure 8-3 as no sediment was found in the core retrieved 

from shallower water. The depth of the sediment (+/- the upper and lower sediment depth 

estimates) and dry density of the sediment was multiplied by the area of the sedimentation 

limit, to determine the mass of sediment accumulated in the reservoir.  

 

Figure 8-3: Bathymetric map, coring locations and depth of sediment in collected cores in Sywell reservoir. 

 

Using the mass of sediment accumulated, the time of sediment accumulation (105 years), 

and the catchment area (8.7 km2), the sediment yield for the catchment was determined for 

the pre ~1948 and post ~1948 periods. The sediment yield was calculated as the total yield 

with no subtraction of the quantities of organic material in the sediment. The average 

organic content calculated by loss on ignition in the core pre 1948 is 8% and post 1948 is 9%.  

1 
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The sediment yield prior to the increase in sediment accumulation rate at 1948 was 

calculated at 7 t km-2 yr-1 +/- 3 t km-2 yr-1, post 1948 this increased to 13 t.km-2 yr-1 +/- 3 t km-

2 yr-1, with an upper limit estimate of 16 t km-2 yr-1 and lower limit estimate of 10 t km-2 yr-1.  

Sediment yields are discussed in the context of contemporary monitoring and other 

published UK data in the conclusions to the following section. 

 

8.2.2.  Sediment yield determined from turbidity and stage measurements 

Daily sediment yield was calculated for the two tributary catchments at Dodford and 

Northampton, using flow values derived from Environment Agency stage monitoring and 

suspended sediment concentration (SSC) derived from turbidity measurement.  

The monitoring period (September 2011 - August 2013 at Dodford; February 2012 -August 

2013 at Northampton), was characterised by a period of drought during 2011 until April 

2012 where a high flow event occurs. There is a moderately high flow in July and a series of 

large flood events in November and December 2012 (Figure 8-4). 

Using the turbidity – SSC relationship (Figure 4-12) and the stage derived flow measurement, 

daily suspended sediment load was calculated for both sites and is shown in Figure 8-4. 

The monitoring at the Northampton site began recording in February 2012, 5 months after 

the site at Dodford. As there were no high flow events during this time the average low flow 

sediment concentration (4 mg l-1) found in the calibration samples was combined with the 

flow data to produce a record of sediment movement for Northampton during this 5 month 

period, which produced a comparable duration dataset for both sites. 

Both sites have the largest peaks in suspended sediment load at the end of November and 

December 2012 (Figure 8-4), which also corresponds to the largest peaks in flow. The high 

flow events account for the majority of sediment movement; resulting in 95% of sediment 

moving in 17.7% of time at Dodford and 95% of sediment moving in 12.8% of time at 

Dodford. 
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Figure 8-4: Daily flow and daily suspended sediment yield at the Northampton and Dodford sampling sites. 
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Using the daily sediment transport data, annual sediment yields were calculated using the 

area of each tributary catchment (Dodford: 105km2, Northampton: 161km2) and the 

duration of the monitoring (years). The calculated suspended sediment yields were: 

Dodford (Whilton arm):  13 t km2 yr-1 

Northampton (Brampton arm): 19 t km2 yr-1 

Sediment yields are presented without correction for organic content. The average organic 

content of the suspended sediment was determined using low temperature loss on ignition, 

with the sediment acquired using the time-integrated suspended sediment traps. The 

organic content was calculated at 15.6% for Northampton and 17.9% for Dodford. 

Sediment yields in UK catchments have been shown to range from 1 to 286 t km-2 yr-1 

(Walling et al., 2007). The Nene represents a lowland agricultural catchment with a total 

area of between 1000 and 10,000 km2, where a sediment yield of between 28 and 51 t km-2 

yr-1 would be expected from a review of UK sediment yield data published by Walling et al. 

(2007). The sediment yields calculated in the Nene basin of 13 t km-2 yr-1 (Dodford), 19 t km-2 

yr-1 (Northampton), and 13 t km-2 yr-1 (Sywell reservoir; 1948-2010), are all substantially 

lower than this average for lowland UK agricultural catchments. The pre 1940s sediment 

yield calculated for Sywell reservoir of 7 t km-2 yr-1 is comparable to the sediment yield found 

for lowland catchments with limited anthropogenic impact, although it should be 

emphasised that only one study in the River Churnet catchment provided this estimate 

(Walling and Webb, 2007).  

 It can therefore be concluded that the increase in sediment yields attributed to 

intensification of agricultural practices in most lowland UK catchments by Foster et al. 

(2011), occurred in the Nene, with an approximate doubling of sediment yield, although the 

yield remains low in comparison to other UK catchments.  

A previous fine sediment investigation conducted by Wilmott and Collins, (1981) measured 

the sediment yield of the Nene to be between 5 t km2 yr-1 and 10 t km-2 yr-1. A rating curve 

methodology was used to produce this measurement. The sediment yield of 13-19 t km-2 yr-1 

calculated in this thesis is considered to be in reasonable agreement with the value derived 

by Wilmott and Collins, (1981). Tye et al. (2013) revised the sediment yield calculated by 

Wilmott and Collins, (1981) to a lower value of 6.24 t km-2 yr-1 after the use of landscape 
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evolution modelling, based upon the CAESAR model developed by Coulthard and Van De 

Wiel (2006). The results of this thesis suggest that this modelling approach failed to fully 

account for the entire sediment yield of the Nene. It is likely that the model failed to account 

for the large amount of sediment originating from channel banks, which was suggested by 

the sediment fingerprinting results presented later in this chapter. These results highlight 

the importance of field-based validation of modelling results. 

 

8.3. Floodplain sediment accumulation 

Using the four floodplain cores the dates of the largest peak in 137Cs fallout (usually 

attributed to 1963) and the first occurrence of 137Cs (usually attributed to 1958) (Foster, 

2006), were determined using down-core plots of 137Cs activity (Figure 8-5) and are listed in 

Table 8-1. The depth of these date markers were combined with the cross sectional area and 

dry density of the sediment cores to produce a floodplain sediment accumulation rate (t km2 

yr-1) between 1958 and 1963 and during the post 1963 period. 

 

Figure 8-5: Down-core plot of floodplain core 137Cs activity.  

The reconstructed accumulation rates (Table 8-1) show that between 1958 and 1963 the 

accumulation rates ranged from 13,796 t km-2 yr-1 to 20,726 t km-2 yr-1. After 1963 the 

accumulation rates have been reduced by between 65% and 93% of this rate to a range of 

between 924 and 7,175 t km-2 yr-1, indicating a reduction in accumulation rate in all sampling 

locations. 
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Table 8-1: Floodplain sediment accumulation rates in the Nene basin from 1958 to 1963 and post 1963. 

Core 

Depth of the 
1963 137Cs peak 

(m) 

Depth of the 
1958 first 

occurrence of 
137Cs (m) 

Accumulation rate 1959 – 1963 
(t km-2 yr-1) 

Accumulation rate post 
1963 (t km-2 yr-1) 

Percentage 
change 

Upton 0.22 0.32 17,440 3,400 -80% 
Kingsthorpe 0.3 0.38 20,726 7,175 -65% 
Earls Barton 0.14 0.26 13,796 924 -93% 

Stanwick 0.16 0.22 14,998 3,581 -76% 

 

In published studies post 1963 137Cs derived floodplain sediment accumulation rates in the 

UK have been shown to be highly variable. A review by Gruszowski, (2003) shows that post 

1963 UK accumulation rates range from between 0 and 16,000 t km-2 yr-1 with a mean 

accumulation rate of 4,062 t k-2 yr1.  The value of 924 t km2 yr-1 found in the Earls Barton 

core is one of the lowest values found in the UK, only the River Stour, Dorset (800 t km-2 yr-1) 

(Walling and He 1997b), River Teviot (900 t km-2 yr-1)(Owens et al., 1999a), Dorset Stour, 

Spetisbury (400 t km2 yr-1) (Walling and He, 1999b), Smisby (900 t km-2 yr-1)(Walling et al 

2002), Warwickshire Avon (900 t km-2 yr-1) (Walling and He 1999a) and areas of the River 

Ouse and Tweed (~0 t km-2 yr-1)(Walling et al 1999b) have been calculated to have lower 

accumulation rates (Gruszowski, 2003). The highest rate of 7,175  t km-2 yr-1 found at 

Kingsthorpe is in excess of most sites in the UK with only the Lower River Ouse (9,500 t km2 

yr-1) (Owens et al 1999b), River Ouse (9,500 t km-2 yr-1) (Walling and He 1999a), River Severn 

at  Atcham (12,200 t km-2 yr-1) (Walling and He 1999a), River Severn at Tewkesbury (8,600 t 

km-2 yr-1) (Walling and He 1999a), and River Usk (8,800 t km-2 yr-1) (Walling and He 1999a) 

exceeding this.  The accumulation rates at Upton and Stanwick appear close to the mean 

value found in other UK rivers.  

Between 1958 and 1963 accumulation rates in the Nene ranged from 13,700 t k m-2 yr-1 to 

20,700 t km-2 yr-1 which are substantially higher than the 920 to 7,175 t km-2 yr-1 estimated 

to occur post 1963. The observed reductions in accumulation rates of between 63 and 93%, 

suggest increased dis-connectivity between the river and its floodplain. A comparable 

reduction in floodplain accumulation rate was observed in 24 of the 39 UK catchments cited 

by Gruszowski, (2003). Although in catchments such as the Ouse and Tweed in the UK 

accumulation rates have remained constant over the previous 100 - 150 years (Walling et al., 

2003). The modification to the river channel as part of flood defences and the presence of 

locks are a potential explanation for these observed reductions in accumulation rate. For 

example, the Earls Barton floodplain core is closest to flood defences protecting the 

downstream area of Northampton and, as a result, has the largest reduction in accumulation 
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rate. In contrast the Kingsthorpe core is situated upstream of flood defences in an area in 

which flood waters can be temporarily detained, resulting in its higher sediment 

accumulation rates.  

 

8.4. Channel bed sediment storage 

Using the channel bed sediment re-suspension method described in Section 4.4.4. , a trend 

of decreasing sediment storage on channel beds was observed over the study period (Figure 

8-6). The highest quantities of stored sediment were found in the dry months of June 2011, 

September 2011 and January 2012.  After the floods in April 2012 –February 2013 a 

reduction in the quantities of stored sediment was found, the reduction was at its greatest 

between the January 2012 and June 2012 sampling periods, representing the first high flow 

after the period of drought during 2011 and early 2012. A further reduction in stored 

sediment was observed after the high flows occurring between November and January 2013, 

after which only a negligible quantity of fine sediment remained stored within the gravel 

substrate. 

A much greater quantity of stored sediment is present on the beds of tributaries 1, 2, 4 and 

12 than on the beds of the other sampling sites. Tributary 12 is located downstream of 

Sywell reservoir, It is possible that buffering of high flows by the reservoir is resulting in 

channel aggradation, which could be leading to the excessive sedimentation observed (Wohl 

and Rathburn, 2003). Tributaries 1, 2, and 4 are headwater tributaries located in the 

westernmost part of the Nene basin, these catchments are characterised by high altitude 

and steeply sloped terrain in comparison to the other sampling sites.  
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Figure 8-6: Quantities of sediment stored on the channel beds at the sediment sampling locations (tonnes per kilometer square of channel bed)(see Figure 4-9 for sampling locations).
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The quantities of sediment stored on the beds of other investigated UK rivers were shown to 

vary from below 230 t km-2 to over 5,000 t km-2, in a review of published studies by 

Gruszowski (2003).  The quantities of sediment found in the Nene vary over the study 

period; in June 2011 the average quantity of sediment stored was 2440 t km-2 and the 

highest quantity found at any sampling location was 12,200 t km-2. The average is therefore 

higher than was found in most UK rivers with the exception of the River Ouse / Ure (2910 t 

km-2) (Walling et al., 1998) and the river Piddle (>5,000 t km-2) (Walling and Amos 1999). In 

February 2013 the average quantity of stored sediment in the Nene was reduced to 150 t 

km-2, which is lower than any of the average recorded values for UK rivers, the lowest of 

which was 230 t km-2 found in the River Exe (Lambert and Walling 1986; 1988); although 

values in the region of 100 t km-2 were found after flood events in the river Piddle (Walling 

and Amos, 1999). From these results and the high amount of spatial variability of channel 

bed sediment storage it can be determined that channel bed storage in the Nene is highly 

variable, both spatially and temporally and seems to be at a minimum after lengthy very wet 

periods and highest after extended dry periods, such as was found by Walling and Amos, 

(1999) in the river Piddle. 

The percentage of the annual sediment yield of a river stored on channel beds at any one 

time has been used to represent the importance of channel bed sediment storage in a 

sediment budget (Collins and Walling, 2007). An estimate of the percentage of the total 

annual suspended sediment yields stored on the channel beds were calculated in the 

Dodford and Northampton tributaries. Firstly, the mean quantity of sediment stored at every 

sampling location, during each sampling period, was calculated using the result shown in 

Figure 8-6. Then the total area of the channel bed in each of the two tributary catchments 

was calculated using Ordnance Survey (2009) Mastermap surface water vector data. Areas 

were calculated at 0.301 km-2 for the Northampton tributary, and 0.134 km-2 for the Dodford 

tributary. The average quantities of stored sediment were multiplied by the areas of channel 

bed to produce the total quantity sediment stored, which was calculated as a proportion of 

the total annual sediment yields for each site(calculated using the stage and turbidly 

monitoring). The site at Northampton has the highest proportions at 28.2%, 23.7% and 

24.7% in June 2011, September 2011 and January 2012 respectively (Figure 8-7). The 

Dodford site has 12.5%, 10.5% and 10.9% stored over the same time period. 
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Figure 8-7: The estimated percentage of the annual suspended sediment yield stored on the channel beds of the 
Dodford and Northampton tributaries (Error bars were calculated using the mean + 1 standard deviation and the 
mean – 1 standard deviation). 

Typically in UK catchments between 2% and 10% of a river’s total annual suspended 

sediment yield resides on the channel bed at any time (López-Tarazón et al., 2012). However 

this value can be larger, such as between 8% and 57% in the lowland groundwater fed Rivers 

Frome and Piddle (Collins and Walling, 2007). The proportions found in the Nene were a 

maximum of 12.5% (Dodford; Figure 8-7A) and 28.2% (Northampton; Figure 8-7B) in June 

2011. This indicates that after the prolonged period of drought during 2011 and early 2012 

the percentage of the sediment yield residing on channel beds is high in relation to other UK 

catchments, and is more comparable to the Frome and Piddle, which suffer from excess 

channel bed sedimentation (Collins and Walling, 2007). After the high flows in April 2012 the 

proportion of the sediment yield stored is reduced by approximately 50%, and after the 

floods in November and December 2012 only a negligible amount (<1%) of the total 

sediment yield remains.  
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In the River Piddle the influence of groundwater at maintaining low flows during periods of 

drought was highlighted as a major cause of the excessive channel bed sedimentation 

(Waling and Amos, 1999). Although the Nene, with a primarily clay geology, cannot be 

considered a particularly permeable catchment. It is likely that the influence of groundwater 

is also an important factor causing the sedimentation observed during the low flow sampling 

periods of June and September 2011 as well as in January 2012, as little rain fell during the 

period (a mean of 14.8mm per month; measured at the Northampton, Moulton Park 

climatological station, Met Office rainfall station number 160109) to provide energy for the 

erosion of channel bank material, or delivery of eroded surface material to the river channel. 

The flushing of sediment from channel bed storage during storm events in the Nene is 

comparable to what has been observed in other lowland catchments (Waling and Amos, 

1999; Collins and Walling, 2007b). The first major storm of the study period in April 2012 

reduced the quantities of stored sediment on the channel beds. This reduction did not 

continue during the moderately high flows that occurred between June 2011 and September 

2011; instead, it took the very large floods of November and December 2012 to remove the 

remaining stored sediment. The pattern of sediment removal seen here may represent the 

flushing of easily mobilised sediment mantling the channel bed surface in the first high flow 

event in April 2012, after the period of drought, and the much larger floods in November 

2012 being required to flush sediment stored more deeply within the pore spaces between 

gravel particles on the channel beds (Lisle and Hilton, 1992).  

These results therefore indicate that rather than the accumulation and redistribution of 

sediment on channel beds occurring during the waning periods of a flood, as shown by Lisle 

and Hilton (1992), the mechanism of channel bed sediment accumulation in the Nene 

appears to occur during low flows, and its removal occurs during the periods of high flow, as 

shown by Waling and Amos (1999), Collins and Walling (2007b), Walling et al. (1999b) and 

Asselman (1999).  

The channel bed sediment storage results discussed indicate the importance of frequent 

high flow events in the Nene to limit the mantling of channel beds with sediment, and the 

less frequent occurrence of very high magnitude events able to flush the more deeply stored 

sediment from the channel beds. It is clear that without regular high flows the Nene can be 

affected by excessive channel bed sedimentation just as groundwater fed chalk streams, 

which are characterised by an absence of episodic flows, have been shown to be affected by 

excessive channel bed sedimentation (Collins and Walling, 2007). 
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8.5. Sediment provenance 

The sediment fingerprinting methodology which produced the results discussed in Chapters 

6 and 7 were used to provide an estimate of the sediment provenance of the suspended 

sediment samples and Sywell reservoir core. As historical sediment fingerprinting was 

determined in Chapter 6 to have a large amount of uncertainty associated with its use, 

conclusions were only made for Sywell reservoir where a reasonable amount of agreement 

in the provenance predictions made by all of the tracer groups was found. For the 

suspended sediment fingerprinting, conclusions were derived assuming that the 24% 

potential error identified in Chapter 7 was present in the predictions of channel bank and 

surface agriculture. The smaller uncertainty of 8% to 11% found to be associated with the 

predicted contributions of urban street dusts allowed for more precise conclusions to be 

drawn regarding sediment inputs of this sediment source. 

Having identified that a change in sediment yield has occurred in Sywell reservoir after 

approximately 1948, the fingerprinting was used to establish if this was accompanied by a 

change in sediment provenance, which would indicate the impacts of changing land 

utilisation in the catchment.  The results in Figure 8-8showed that very little changes in 

sediment provenance have occurred throughout the down-core profile. Channel banks are 

predicted to be the dominant source of sediment, typically contributing between 55% and 

85% of sediment inputs. Urban street dusts are a very minor sediment source with a 

maximum of 7% inputs, which would be expected as the catchment is primarily agricultural 

land with only 2 small villages located within or at the margins of the catchment. It can 

therefore be concluded that the change in sediment yield was likely to be the result of a 

proportional increase in sediment inputs from all of the sediment source groups, perhaps 

driven by post Second World War agricultural intensification as reported elsewhere in the 

UK (e.g. Foster and Walling, 1994; Foster et al. 2011).
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Figure 8-8: Down-core trends in the predicted contributions from channel banks, surface agriculture and urban street dusts in Sywell reservoir. Error bars are the average 25th and 75th 
Monte Carlo results for each tracer group used to fingerprint the sediment. 
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The fingerprinted suspended sediment samples also indicated that channel banks are the 

dominant sediment source in all sites apart from the highly urbanised catchment upstream 

of the Wellingborough sampling site (Figure 8-9G), and the rural catchment upstream of the 

Dodford sampling site, where surface sources dominate (Figure 8-9C). A trend of increasing 

contributions from channel banks was observed in all of the sampling sites apart from 

Kislingbury (Figure 8-9E) and Wellingborough (Figure 8-9G). Just as was found in Sywell 

reservoir, urban street dusts generally contribute less than 10% of the sediment sampled, 

apart from in the urbanised Wellingborough and Northampton catchments, where they 

contribute a maximum of 30% and 45% of the sediment respectively.  
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Figure 8-9: Predicted provenance of suspended sediment in eight major tributaries of the River Nene (Sampling 
locations are given in Figure 4-9) 
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minimising channel bed sedimentation. Channel banks are in direct hydraulic contact with 
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the river, so any eroded material would immediately enter channel bed storage, especially in 

the absence of high flows to transport the sediment downstream. 

Rates of channel bank erosion in the published literature have been shown to increase after 

periods of sub-aerial preparation, such as freeze thaw in the winter months (Couper, 2003), 

waterlogging over sustained wet periods  (Simon et al., 2000) and desiccation during dry 

periods (Dietrich and Gallinatti, 1991). Most suspended sediment sampling sites show that 

the percentage contribution from channel banks in the Nene increases throughout the study 

period, indicating that desiccation during the period of drought was unlikely to have resulted 

in a large increase in the rates of channel bank erosion. This explains the result found that 

most sediment in the initial April 2012 flood of the study period originated from channel bed 

storage, rather than from the erosion of channel banks during the high flow event. The 

results in the Nene instead indicate an increase in the rates of channel bank erosion after a 

period of prolonged wetness, suggesting that instead of desiccation, prolonged waterlogging 

is an important means of sub-aerial preparation in the Nene (see Lawler, 1995). However, 

the accumulation of sediment on channel beds observed during periods of low flow (Figure 

8-7) also highlights the importance of the erosion of channel banks during periods of low 

flow to overall water quality. Signal Crayfish have been shown to be in localised high 

populations in the Nene basin and have been shown to potentially accelerate rates of 

channel bank erosion (Harvey et al., 2011). Records obtained by the Environment Agency 

(Personal Communication, October 10, 2013) show that Signal Crayfish are found in high 

populations in tributaries 2 and 9 in Figure 8-6 which correspond to the Weedon 1 and 

Northampton suspended sediment sampling sites in Figure 8-9. Both of these sites are 

characterised by a high amount of channel bed sedimentation and a high contribution of 

sediment from channel banks, suggesting a potential role of crayfish at accelerating channel 

bank erosion. There are also unconfirmed reports of crayfish populations in the Weedon (T2) 

sampling site, which would provide an explanation for the high contributions of sediment 

from channel banks, and high quantities of channel bed sediment storage in this site. While 

signal crayfish were not directly investigated as part of this project, their potential role as 

bio-engineers could form the basis for future research.   

 Sub-surface land drainage has been also speculated to be a major source of sediment in the 

Nene basin (Tye et al., 2013). During the collection of samples subsurface drainage was 

observed in localised areas of the Nene basin, especially within the Sywell reservoir 

catchment. Therefore a potential explanation exists for the increased sediment yields, which 
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as a result of drainage could originate from both topsoil and subsurface sources, explaining 

the relatively consistent down-core sediment provenance (Chapman, 2001). Robinson and 

Armstrong (1988) showed that agricultural drainage was installed in the East Midlands 

region to alleviate surface water problems. The installation of drainage occurred primarily 

from policies enacted in 1940 to increase wartime food production, and continued until the 

peak rate of installation in the mid-1970s. From these dates it is possible that the increase in 

sediment accumulation in Sywell, estimated to occur at 1948 (Figure 8-2) is a result of the 

installation of field drainage. Field drainage is also a potential explanation for the high 

contribution of sediment originating from channel banks (sub-surface sources) in the present 

day suspended sediment samples (Figure 8-9). 

The decreased importance of surface agricultural sources during the high flow events in the 

latter stages of the sampling period represents an unusual trend as the greater connectivity 

provided by increased surface runoff during storms would be expected to increase the 

effective catchment area and the delivery of surface derived sediment to the river (Fryirs, 

2013). It is therefore evident that the increase in the rate of channel bank erosion is of 

greater magnitude than the increased rate of sediment erosion and delivery from surface 

sources during flood events.  

The observed low sediment yields found, and low contributions of sediment from surface 

agricultural sources compared to other UK catchments, suggests both a combination of low 

erosion rates and limited connectivity with the river channel. When conducting the sampling 

it was observed that wide grass buffer strips and well-vegetated riparian zones often 

separated cultivated land from river channels throughout almost the entire Nene basin. 

Riparian fencing was also present between most areas of pasture and the river channel, 

limiting the potential for poaching.  These land management practices provide an 

explanation for the limited connectivity of surface sediment sources with the river, and 

therefore the small amount of sediment reaching the river. 

Slaymaker (2003) showed that rates of soil erosion in UK catchments range from 10 – 300 t 

km-2 yr-1. According to Evans (1990), the soil associations present in the Nene catchment are 

classified as ranging from low to very low erosion risk compared to other UK catchments, so 

it is likely to be at the lower end of this range. Evans (1988) and Evans (1993) indicated that 

rates of soil erosion in nearby Cambridgeshire, which has clayey and medium loam soil, such 

as in the Nene, are in the region of 36 t km-2 yr-1. The estimate was produced using aerial 
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photography performed on an annual basis, combined with the field validation of areas 

which appeared to be eroding or contained erosional/depositional features too small to 

identify from the aerial photographs. Therefore evidence of the low erosion rates in the East 

Midland region of the UK has been shown in the published literature. 

 

A rough estimation of the proportion of the ~36 t km-2 yr-1 of soil erosion indicated by Evans 

(1988) and Evans (1993) which is being sequestered during its transport to the river channel 

was produced for the Nene. The proportion of the highest recorded annual sediment yield 

(19 t km2 yr-1) (Figure 8-4) which was estimated to originate from surface agriculture in the 

sediment fingerprinting (~30%) (Figure 7-6) was calculated. This produced a value of 5.7 t 

km2 yr-1 of sediment entering the river from surface agricultural sources. This represents 

only 14% of the ~36 t km-2 yr-1 of soil erosion expected to be occurring; indicating that in 

excess of 86% of eroded soil is being sequestered before reaching the river channel. In 

comparison Walling et al. (2006) report 51% and 31% is sequestered in the Pang and 

Lambourn catchments, Berkshire UK; and Walling et al. (2002) report between 14.2% and 

25.7% in the Rosemaund catchment in Herefordshire and the Smisby catchment in 

Derbyshire respectively. Therefore the Nene represents a river with very limited connectivity 

between surface sediment sources and the river. However, Parsons (2012) highlights the 

problems of using unmeasured variables for the calculation of the sediment delivery ratio. 

Therefore the figure of 86% can only be considered a qualitative indicator that a high 

proportion of sediment is sequestered within the catchment, and not part of the overall 

constructed sediment budget.  

 

Street dusts were predicted to contribute up to 10% of the sediment in the rural Weedon 1, 

Weedon 2, Dodford, Heyford and Knuston sediment traps and bed sediment sampling sites. 

Although this categorises them as a minor sediment source, it does indicate the possible role 

of roads as a means of connectivity between surface agriculture and the river channel as was 

indicated by Gruszowski (2003) and Boardman, (2013). However, the low contributions of 

sediment originating from the surface agriculture source group suggest that connectivity via 

roads is relatively unimportant in the Nene, when compared to the catchments highlighted 

by Boardman, (2013). For example Gascuel-Odoux et al. (2011) showed that 14% of the 

agricultural land connected to the Moulinet stream in north-western France is also 

connected via roads. Due to the observed limited surface – river channel connectivity in the 

Nene basin, roads are potentially one of the few routes by which eroded material can reach 
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the river. There is an indication that road dusts contribute more sediment in the dry initial 

months of the sampling period than during the periods of high flow in its latter stages. With 

the absence of high intensity rainfall for erosion and sediment transport at this time, 

material on roads is one of the few sources of sediment that could be transported. However, 

it is also possible that a ‘first flush’ effect may be depleting finite stores of road dusts during 

sustained high flow periods (Deletic, 1998).  

Carter et al. (2003) found that 19–22% of sediment inputs were from street dusts in the 

highly urbanised river Aire.  In the urbanised Northampton and Wellingborough sampling 

sites urban street dusts are predicted to contribute between 2-40% of the suspended 

sediment at Northampton and 10-30% at Wellingborough, which are greater proportional 

inputs compared to the Aire. Annual sediment yields for urban areas are typically cited in the 

region of 0.4 to 5 t km-2 yr−1 (Taylor and Owens, 2009). When considering a sediment yield 19 

t km-2 yr−1 calculated for the Northampton tributary, the average 17% contribution from 

urban street dusts represents a sediment yield of ~3 t km-2 yr−1 from the urban areas. 

However, as urban areas only cover approximately 12 % of the catchment upstream and 

including Northampton, these results suggest a higher sediment yield for the urban areas in 

the Nene than the average for UK catchments indicated by Taylor and Owens (2009). 
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8.5.1.  A sediment budget for the Nene river basin 

This paper has described the sediment dynamics in the Nene river basin and as a result a 

partial sediment budget can be produced, and is shown in Figure 8-10. 

 

Figure 8-10: A partial sediment budget for the Nene river basin. 

 

Parsons (2012) laid out the requirement that any sediment budget provides an indication of 

a timescale for which it is valid. Table 8-2 shows the timescales for which each part of the 

sediment budget is valid. The estimate of sediment yield of ~13 t km-2 yr-1 has been indicated 

by the Palaeolimnological reconstruction in Sywell reservoir to be valid since the 1940s, prior 

to which a sediment yield of 7 t km-2 yr-1 was likely to be typical of the Nene basin. Sediment 

sources also appear to have been fairly consistent throughout the entire 105 year down-core 

profile of Sywell reservoir, with the exception of urban street dusts, which became a more 

important sediment source slightly prior to 137Cs peak identified for 1963. The estimates of 

floodplain deposition are only valid from 1963 onwards; between 1958 and 1963 rates of 
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accumulation were substantially higher at between 13,796 t km-2 yr-1 and 20,726 t km-2 yr-1. 

The contemporary monitoring of sediment yield, channel bed sediment storage and 

suspended sediment provenance can only be considered as valid for up to the previous 23 

months. However, it is expected that the information derived will be representative of the 

sediment dynamics in the Nene basin until the time a significant change in catchment 

morphology, climate or land utilisation occurs.  

 

Table 8-2: The timescales for which each component of the sediment budget are valid. 

Method Purpose 

Time period 
for which the 

estimate is 
valid 

Historical 
reconstruction 

    

Reservoir 
sediment coring 

Sediment yield 
reconstruction and 
historical sediment 
fingerprinting 

105 years 

Floodplain coring 
Floodplain sediment 
accumulation rate 
reconstruction 

Post 1963 

      
Contemporary 
monitoring 

    

Stage and turbidity 
monitoring 

Quantification of 
sediment yield 23 months 

Time integrated 
suspended 
sediment traps 

Sediment fingerprinting of 
suspended sediment 18 months 

Channel bed re-
suspension 

Quantification of channel 
bed sediment storage, 
fingerprinting of channel 
bed sediment 

20 months 

 

From a management standpoint the mitigation of fine sediment pressures in the Nene would 

be best achieved by the stabilisation of channel banks to reduce the overall sediment yield, 

re-connecting the river with its floodplain to increase the proportion of sediment yield 

accumulated on floodplains back to the 1958 – 1963 rate, and the removal of any obstacles 

to episodic high flows, able to flush fine sediment from channel beds. Urban street dusts 

also have been shown to contribute sediment so represent a potential target for mitigation 

measures. 
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9. Conclusions and evaluation 
 

9.1. Chapter outline 

This chapter summarises the findings of this thesis within the context of fluvial 

geomorphology. The key findings of this thesis are first summarised in the context of 

previously published research. The research design of the thesis is then critically examined, 

and issues of experimental design, scaling, and the importance of the validation results are 

explored. Finally the remaining gaps in research are highlighted and suggestions for future 

research to fill these gaps are explored. 

 

9.2. Key findings 

This section summarises the key findings of the thesis which relate to the two Aims laid out 

in Section 1.3. The key findings are first outlined and explained before the contribution of 

each finding to geomorphological research is explained. 

 

9.2.1.  Aim 1: Fingerprinting the sources of fine sediment 

Aim 1 of this thesis required a fine sediment fingerprinting investigation to be conducted in 

the Nene basin, UK. The results relating to this aim were presented in two sections; a 

historical sediment fingerprinting study, and a study fingerprinting suspended and recently 

deposited sediment. Three research objectives were met for both of these sections. 

 

Key finding 

 

Large differences can be present between the sediment provenance predictions made by 

different tracer groups when fingerprinting suspended and recently deposited sediment. 

 

Explanation 

When fingerprinting river sediment, the predicted contributions of sediment from channel 

banks made by the nine different combinations of tracer groups were an average of 24.1% 
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different. The average difference between tracer group predictions was smaller when 

fingerprinting contributions from urban street dusts at ~8-11%. 

 

Contribution to geomorphological research 

If the fingerprinting results found for the Nene are comparable to other basins worldwide, 

the average ~24% difference between predictions of different tracer groups is a potentially 

large source of uncertainty associated with the findings of other fingerprinting studies. A 

review of sediment fingerprinting results in the UK by Walling et al. (2007) showed that the 

median predicted contribution of sediment from surface agriculture is between is 85-95%. 

Therefore a ~24% uncertainty due to tracer selection is unlikely to change the dominant 

sediment source identified in most fingerprinting studies; although, it does have the 

implication that sediment fingerprinting can only be used as a semi-quantitative tool. 

However, this study has indicated that uncertainties associated with individual tracer groups 

in specific sediment samples can be as high as 100%, which would produce a more uncertain 

result than a simple visual survey of a catchment. 

 

The aim to use sediment fingerprinting as a management tool has been a common part of 

many sediment fingerprinting studies. For example, a study that uses sediment 

fingerprinting to determine the impact of fine sediment mitigation measures was conducted 

by Collins et al. (2010), who investigated sediment provenance before and after riparian 

fencing was installed in catchments in the south west UK . Differences in sediment 

contributions from channel banks before and after the installation of fences were 

statistically significant for only the rivers Fal and Plym, out of 12 investigated catchments. In 

the River Fal the difference between contributions from channel banks before and after 

fence installation was less than 10%; in the Plym it was greater than 50%. This thesis has 

indicated that if Collins et al. had conducted their study in the Nene, then to be reasonably 

certain that a reduction in contributions from a sediment source would be identified, 

regardless of the tracer group selected, a greater than the 24% difference between the 

predicted contribution from channel banks before and after remediation would need to be 

identified. Therefore, future methodologies investigating changes in sediment provenance 

must be aware of the potential uncertainty associated with tracer use which may mask the 

genuine sediment provenance. 
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Key finding 

 

Changes to sediment organic matter content, particle size distribution and chemical 

alterations to historically deposited sediment can totally mask the signatures of sediment 

provenance present. 

 

Explanation 

When fingerprinting the sediment cores it was found that the differences between the 

predictions made by the different tracer groups were smallest in Sywell reservoir. The 

predicted contribution of sediment from channel banks made by the different tracer groups 

in this core ranged from 45% to 95%, and the down-core trend in changing sediment 

provenance was consistent between most of the tracer groups. In the other cores the 

differences between tracer group provenance predictions were very large. Differences in 

predictions were as high as 95% in the Kingsthorpe floodplain core, 64% in the Stanwick 

floodplain core, 100% in the Stanwick lake core and 89% in the Upton floodplain core. It was 

also found that the down-core trends in predicted sediment provenance were different for 

almost all tracer groups in these cores. 

 

It was found that the organic content of the sediment was significantly correlated with an 

increase in the differences between tracer group predictions in the Sywell reservoir, as well 

as the Kingsthorpe, Upton and Stanwick floodplain cores. The particle size of the sediment 

was indicated to be significantly correlated with the differences between most tracer group 

predictions in the Upton, Earls Barton and Stanwick floodplain cores. An additional 

correlation analysis was performed using the differences between tracer group predictions 

and the Xarm / Sirm and Sirm / Xlf ratios in the sediment cores; to gain an indication of the 

effects of the in-growth of magnetic minerals, the selective deposition of specific grain sizes 

and the chemical dissolution of minerals. The in-growth of bacterial magnetite was indicated 

to be affecting magnetic signatures in Sywell reservoir.  The dissolution of magnetic minerals 

was suggested to be a potential causal factor in the differences between tracer group 

predictions in the Upton, Earls Barton and Kingsthorpe floodplain cores. Due to this, it was 

also suggested that the dissolution of geochemical and lithogenic radionuclide tracers 

associated with the iron oxide and easily mobilised fractions of sediment would also be likely 

to have occurred. In the Earls Barton and Stanwick floodplain cores the effects of the 

selective deposition of only fine particle size fractions on the mineral magnetic signatures 
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was confirmed by a reduction in the proportion of the magnetic signatures, accounting for 

large grain sizes being correlated with a difference in tracer group predictions. 

 

Contribution to geomorphological research 

The ability to identify trends of changing sediment provenance is a common objective of 

published fingerprinting studies conducted using historically deposited sediment. A study 

which used sediment fingerprinting in a historical context was Owens et al. (1999), who 

investigated the floodplains of the River Ouse catchment, UK. The study used a combination 

of mineral magnetic signatures and geochemistry to fingerprint contributions from surface 

and sub-surface sediment sources. As a result of tracer non-conservatism observed in the 

Nene, the results presented by Owens et al. (1999) or other similar historical studies could 

potentially have been found at almost any point on the 0-100% contribution scale, 

depending on the tracer group the author had selected, and the preservation of tracer 

signatures at the point of sampling. Overall the results of this thesis suggest that historical 

tracer use should be treated with a large amount of caution, although as Sywell reservoir 

shows, there is potential for historical sediment fingerprinting to become a useful tool. 

Similar uncertainties to that found when using sediment fingerprinting are also likely to be 

present in historical sediment provenance studies which use tracers outside of a 

fingerprinting framework. For example, Foster et al. (2012) used mineral magnetic 

signatures as indicators of changing historical sources of sediment in the Karoo Badlands, 

South Africa.  This is a similar approach to how tracers are used in many publications such as 

Oldfield et al. (2003). Given the significant correlations found between indicators of the 

alteration of mineral magnetic signatures and differences in tracer group predictions in the 

Nene, it is possible that changes in mineral magnetic signatures could be representative of 

changing chemical conditions at the point of sampling, or variability in the processes 

associated with erosion, sediment transport or sediment delivery, rather than a genuine 

change in sediment provenance. Therefore, the reliability of inferred sediment provenance 

data using tracers, as with sediment fingerprinting, requires the use of different tracer types 

to confirm that temporal trends are not due to tracer non-conservatism.  
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Key finding 

 

Within source variability in tracer concentrations can be the largest source of uncertainty 

present in a sediment fingerprinting investigation. 

 

Explanation 

The reduced average uncertainty associated with the fingerprinting of urban street dusts 

(8%- 11%) suggested that sediment sources with significant contrasts between tracer groups 

are more accurately fingerprinted by almost all tracer groups. It was determined that the 

potential uncertainty present in the fingerprinting due to tracer variability could be 

explained using a ratio of the contrast between source group median tracer concentrations 

and the average within-source variability in tracer concentrations. Because the average 

number of tracers used in the composite fingerprints in this thesis was ~5, the ratio was used 

to calculate the approximate uncertainty present in the un-mixing models, assuming this 

number of tracers were used. When this ratio was below 1 the possible range of uncertainty 

steeply increased with a decreasing ratio. When the ratio was 1, the potential uncertainty in 

the un-mixing model was 27%, this decreased to 15% at a ratio of 2 and continued to 

decrease to 5% at a ratio of 8. When more tracers are used in the composite fingerprint, the 

potential uncertainty in the un-mixing models was reduced. However, the reduction in 

uncertainty approximately halves with every extra 2 tracers added to the fingerprint. 

 

 

Contribution to geomorphological research 

The implication of this finding is that published results, such as by Collins et al. (2010) and 

Carter et al. (2003), who fingerprinted contributions from distinctive road verge and urban 

street dust sources, are likely to be a reliable representation of sediment provenance. It is 

also suggested from this result,that in catchments with larger contrasts in tracer 

concentrations between ‘natural’ source groups, such as channel banks and surface sources, 

the potential uncertainty associated with tracer selection would be lower than was found in 

the Nene. Collins and Walling, (2002) identify the requirement that the tracers used in 

fingerprinting studies be selected based upon their ability to successfully differentiate 

between sediment source groups. Their requirement is highly supported by this key finding 

of the thesis. 
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At present, few published sediment fingerprinting investigations have quantified the 

potential uncertainties associated with within-source variability in tracer concentrations 

outside of the research conducted by Small et al. (2010). However, the potential for this 

uncertainty to be present has been recognised. For example, Haddadchi et al. (2013) showed 

that different un-mixing models could produce very different sediment provenance 

predictions with the same input data. The categorisation and use of the sediment source 

tracer concentrations was a key difference between different un-mixing model approaches 

used and one of the potential reasons for the differences in model predictions. Collins et al. 

(2010a) applied weightings to prioritise for tracers with the greatest contrasts in 

concentrations between source groups and lowest within-source variability. This thesis 

indicated the importance of these factors at reducing model uncertainty. However, it should 

be emphasised that these weightings were used in this thesis, and large differences were still 

found between tracer group predictions. Therefore further research is needed into the 

development of novel tracers to reduce the uncertainties associated with tracer variability. 

This finding especially highlights the under recognised work of Small et al. (2002). This paper 

highlights that many fingerprinting papers consist of limited field campaigns and an under 

representation of variability in source groups. The paper also highlights a minimum number 

of sediment source samples is required to categorise each source group based upon the 

local variability in tracer properties. The findings of this thesis highly support this finding and 

highlight the consideration of source group variability as an important requirement for 

future fingerprinting research.  

 

Key finding 

 

The commonly cited reasons for uncertainty in sediment fingerprinting investigations of 

changes to the sediment’s organic matter content and particle size distribution was not 

the most important cause of uncertainty when fingerprinting suspended and recently 

deposited sediment in the Nene basin. 

 

Explanation 

There was little indication that changes to the organic content of river sediment was a cause 

of the differences between tracer group predictions, although some small effects may have 

been present when fingerprinting samples from the Northampton and Heyford suspended 
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sediment sampling sites. No evidence of effects of changing SSA on the differences between 

tracer group predictions was found for the river sediment fingerprinting, which was 

explained by the comparable particle size of the sediment and source samples. 

 

 

Contribution to geomorphological research 

Recent reviews of sediment fingerprinting literature by Walling (2013), Koiter et al. (2013) 

and D’Haen et al. (2012) highlight a need to understand the effects of changes to the organic 

matter content and particle size of sediment on tracers and sediment fingerprinting results. 

These reviews identify that much sediment fingerprinting research is aimed at 

understanding organic matter and particle size effects, and accounting for them in un-mixing 

models. The findings of this thesis have indicated that variations in sediment organic matter 

content and particle size distribution are not the probable causal factors of uncertainty when 

fingerprinting river sediment in the Nene. As a result the findings of this thesis support a 

careful examination of the assumption of particle size and organic effects on a catchment 

specific basis. Further implications of this finding are discussed as part of the following key 

finding. 

 

Key finding 

 

Simple organic enrichment and particle size corrections did not improve the consistency 

between different tracer group fingerprinting predictions in the Nene basin. 

 

Explanation 

When fingerprinting river sediment 15% fewer composite fingerprints able successfully 

categorise >80% of source samples were produced after an organic content data correction 

was used; and 20% fewer after a particle size correction was used. When the un-mixing 

models were run, no significant reduction in the average differences between tracer group 

predictions was found. The mean overall difference between every tracer group prediction 

produced using uncorrected tracer signatures was 24.1% (standard deviation 2.9%), using 

organic matter corrected tracer concentrations was 24.3% (standard deviation 2.1%), and 

using particle size corrected tracer concentrations was 30.1% (standard deviation 3.9). 
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Therefore the organic correction appeared to have little effect and the particle size 

correction appeared to increase the differences between tracer group predictions. 

 

Particle size and organic matter data corrections were applied to tracer signatures in the 

sediment cores when the differences between tracer groups were indicated to be potentially 

caused by the differences in the organic matter content, or particle size distribution, of the 

sediment (Objective 2). It was found that the organic matter correction resulted in little 

effect on the predictions of mineral magnetic signatures in any of the sediment cores. The 

correction appeared to be potentially of some benefit in the Stanwick, Upton and 

Kingsthorpe floodplain cores when applied to fingerprints containing geochemical tracers. It 

was, however, difficult to determine if the correction was genuinely of benefit without an 

independent measurement of sediment provenance for verification. 

 

 

Contribution to geomorphological research 

The failure of simple data corrections to produce a clear benefit to the consistency between 

tracer group predictions in this thesis suggests that the routine use of data corrections may 

not be beneficial, even when differences exist between the organic content and particle size 

of source and sediment samples. Additionally, the particle size correction was shown to 

increase the average differences between tracer group predictions. The implications of this 

finding are wide reaching if the results found in the Nene are also applicable to 

fingerprinting performed in other catchments.  For example, published works based on the 

methodology of Collins et al. (1997) and similar methodologies where organic enrichment 

and particle size corrections are used, could be subject to additional uncertainty introduced 

from the unnecessary use of corrections. The possibility for this was highlighted in a recent 

review by Koiter et al. (2013), as the use of such corrections is often included as a routine 

part of fingerprinting methodologies, and the unnecessary use of untested correction factors 

would result in inappropriate manipulation of soil and sediment property data and incorrect 

sediment provenance results. Smith and Blake (2014) recommend against the use of simple 

data corrections as it was shown in this study that corrections could result in large changes 

to source contribution estimates that cannot be justified. Given this key finding of the thesis 

it can be concluded that in the Nene basin large changes introduced to fingerprinting by 

corrections are also unlikely to be justifiable.  
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Key finding 

 

Without an independent source of data with which to validate fingerprinting results, 

conclusions as to tracer behaviour and modelling accuracy can be considered greatly 

uncertain.  

 

Explanation 

The absence of an independent source of sediment provenance information with which to 

determine the most accurate tracer group predictions resulted in only qualitative 

conclusions being produced as to the causes of tracer non-conservatism and fingerprinting 

accuracy. It was also observed that without a source of independent sediment provenance 

information with which to verify the results of simple data corrections, it was difficult to 

determine their effects were positive, or detrimental to accuracy. 

 

Contribution to geomorphological research 

Almost no published sediment fingerprinting studies attempt to validate the results of 

sediment fingerprinting investigations. The reasons for this are the time consuming nature of 

alternative methods of quantifying sediment inputs to lakes and rivers. For the purpose of 

data validation in future research, the use of tracers can be combined with a separate proxy 

for changing sediment dynamics, to provide robustness to conclusions, such as the 210Pbun 

dating methods which were used alongside mineral magnetic signatures by Foster et al. 

(2012). However, the impacts of alterations to specific tracer groups, alterations caused by 

organic matter and particle size as well as tracer variability have been identified as difficult 

to validate from within a conventional sediment fingerprinting framework. The issues of 

sampling design and experimental approaches are discussed in detail in Section 9.3 and the 

potential for further research to overcome this limitation is explored in Section 9.4. These 

sections continue to discuss issues arising from this key finding. 
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9.4.2.  Aim 2: Fine sediment dynamics in the Nene river basin 

 

Key finding 

 

The sediment yield of the Nene river basin is low in comparison to other UK lowland 

agricultural catchments.  

 

Explanation 

A sediment yield of 13 t km-2 yr-1 was calculated for the Whilton arm of the Nene at Dodford 

and 19 t km-2 yr-1 for the Brampton arm at Northampton, using the monitoring of stage and 

turbidity over a ~18 month time period. A sediment yield of 13 t km-2 yr-1 was calculated at 

Sywell reservoir. The sediment yield at Sywell was shown to have increased from 7 t km-2 yr-1 

since a change in sediment accumulation rate occurred in approximately 1948. In 

comparison to other lowland agricultural UK catchments, where a sediment yield of 

between 28 t km-2 yr-1  and 51 t km-2 yr-1  is typical (Walling et al., 2007), the sediment yield of 

the Nene was found to be low. 

 

Contribution to geomorphological research 

The change in catchment sediment dynamics observed at ~1948 is consistent with the 

findings of Rose et al. (2011) who in a study of over 200 European lakes, where most lakes 

and reservoirs of the Sywell type (lake type 3121[small deep lowland lakes]) had a significant 

increase in sediment accumulation after 1950. Therefore, the finding that sediment yield in a 

catchment typical of the East Midlands, UK is comparable to other UK catchments, can be 

presented. 

 

It can also be concluded from the low sediment yield that the increase in sediment yields 

attributed to intensification of agricultural practices in most lowland UK catchments by 

Foster et al., (2011) occurred in the Nene, although the sediment yield remained low in 

comparison to other UK catchments. The observed low sediment yields found, and low 

contributions of sediment from surface agricultural sources, suggests both a combination of 

low erosion rates of agricultural land and limited connectivity with the river channel. When 

conducting the sampling, it was observed that wide grass buffer strips and well-vegetated 
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riparian zones often separated cultivated land from river channels throughout almost the 

entire Nene basin. Riparian fencing was also present between most areas of pasture and the 

river channel, limiting the potential for poaching.  These land management practices have 

the potential to indicate management practices which may potentially be of benefit in other 

UK catchments. These findings also provide a previously unknown insight into sediment 

dynamics in the East Midlands region of the UK. 

 

Key finding 

 

Channel banks are the dominant sediment source in the Nene river basin. 

 

Explanation 

Historical changes in Sediment provenance were determined by fingerprinting the Sywell 

reservoir core using the methods used to fulfil Objective 1 in Chapter 6. It was determined 

that channel banks were the dominant sediment source, contributing between 55% and 85% 

of sediment inputs. Surface agriculture was a minor source (20-30%) and inputs from street 

dusts were small (<7%). Very little change in sediment provenance was found throughout 

the down-core profile.  

The provenance of suspended sediment in the Nene was determined at eight sampling 

locations. It was found that approximately 60-100% of sediment originated from channel 

banks, 0-30% of sediment originated from surface agriculture and 0-20% of sediment 

originated from urban street dusts. In comparison to other UK catchments, such a high 

contribution from channel banks is highly unusual. Contributions of sediment from channel 

banks typically range from 5 -15% of the annual sediment yield in UK catchments (Walling et 

al., 2007). Channel banks are the dominant sediment source in only two catchments 

previously investigated in the UK, the river Aire (55% contribution) and Worm brook (55% 

contribution) (Walling and Collins, 2005). It is therefore clear that, as the figure of 55% is 

exceeded in the majority of sediment samples, the Nene is a highly unusual catchment in 

comparison to others investigated in the UK 
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Contribution to geomorphological research 

Channel banks were shown to be the dominant sediment source in the Nene, which 

contributed an atypically high proportion of sediment compared to other UK catchments 

(Walling et al., 2007). There is therefore the implication that a proper understanding of the 

processes of channel bank erosion in the Nene is essential for the understanding of sediment 

dynamics in comparable catchments in the East Midlands and worldwide. Parsons (2012) 

highlights that in geomorphological research far less attention is given to methods of 

measuring channel bank erosion than hillslope processes. Research by Couper and Maddock 

(2001) and Lawler et al. (1999) are two exceptions to this lack of attention and identify the 

sub-aerial preparation and fluvial erosion taking place in the investigated river catchments. 

The results of this thesis suggest that the relative importance of channel bank erosion to the 

overall sediment yield was shown to be greatest during periods of sustained high flows, 

indicating the water logging of channel banks accelerated erosion. The presence of sub-

surface field drainage and the weakening of channel banks by Signal Crayfish were also 

speculated to be contributing factors to the high quantities of sub-surface sediment found in 

the Nene. This finding highlights the importance of the work reviewed by Harvey et al. 

(2011) which examines the role of biogenic factors on sediment dynamics. There is therefore 

considerable scope for the further investigation of channel bank processes, in catchments 

comparable to the Nene.  

Another implication of this finding was demonstrated when Tye et al. (2013) attempted to 

use landscape evolution modelling in the Nene basin based upon the CAESAR model 

developed by Coulthard and Van De Wiel (2006). The sediment yield estimated was lower 

than the measured sediment yields produced in this thesis, and possibly results from an 

inability of the model to account for the high inputs of sediment from channel banks. The 

results of this thesis therefore highlight the importance of the consideration of channel 

banks as a potentially dominant sediment source in river catchments. 

The final implication of this key finding is based upon sediment fingerprinting. Collins et al. 

(2010a) used the prior information that channel banks had not previously been shown to 

contribute more than 55% of sediment in UK catchments to constrain un-mixing model 

predictions. Had this constraint been used when fingerprinting sediment in the Nene, the 

results would not have shown the full contribution of sediment originating from channel 

banks; therefore, it is recommended that such constraints are used with caution.  
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Key finding 

 

Sediment accumulates on the channel beds of the Nene basin during periods of drought 

and low flow before being flushed out during high flow events.  

 

Explanation 

It was found that between 150 t km-2 and 12,200 t km-2 of sediment was stored on the 

channel beds of the different sampling locations over the study period. This equated to a 

quantity of sediment of between 1-28% of the Nene’s annual sediment yield. In comparison 

to other UK catchments the quantities of stored channel bed sediment in the Nene ranged 

from very high to very low. In June 2011 after a period of drought the average quantity of 

sediment stored was 2,440 t km-2, which was higher than most UK Rivers. After high flows in 

April 2012 to January 2013 the average quantity of stored sediment in the Nene was 

reduced to 150 t km-2, which was lower than any average recorded value for any of the cited 

UK rivers.  Typically in UK catchments between 2% and 10% of a river’s total annual 

suspended sediment yield resides on the channel bed at any time (López-Tarazón et al., 

2012), therefore the value of 28% is higher than would be expected. It was found that this 

sediment accumulated during periods of low flow causing excessive channel bed 

sedimentation, such as has been found in groundwater fed chalk streams (Walling and 

Amos, 1999). The results indicated the importance of frequent high flow events in the Nene, 

to limit the mantling of channel beds with sediment, and the less frequent occurrence of 

very high magnitude events able to flush the more deeply stored sediment from the channel 

beds.  

 

 

Contribution to geomorphological research 

Channel bed sedimentation has been identified as a major cause of the degradation of 

aquatic habitats, especially in groundwater fed lowland catchments. The absence of episodic 

flow regimes to flush out stored sediment has been identified as the cause of this 

sedimentation (Collins and Walling, 2007b). This key finding of the thesis identifies that in 

the lowland catchment of the Nene the presence of an episodic flow regime is essential for 

the flushing of temporarily stored sediment from channel beds. The accumulation and 
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redistribution of sediment on channel beds has been shown to occur during the waning 

periods of a flood, where sediment is winnowed from riffles and deposited in pools mantling 

the underlying substrate (Lisle and Hilton, 1992). In opposition to this Walling et al. (1999b) 

and Assleman (1999) showed that fine channel bed deposits accumulated during low flows 

and subsequently discharged during the opening periods of high flows. This key finding has 

successfully identified that in the Nene River Basin fine sediment accumulated during a 

period of low flows, and a series of high flow events were required to flush out all of the 

stored sediment. 

 

9.3. Study evaluation  

9.3.1.  Research design 

A field experiment in geomorphology has previously been defined as a set of measurements 

conducted under controlled field conditions to formalise some general principal about the 

evolution of landforms (Slaymaker, 1982). Church (1984) laid out six criteria for a set of field 

based observations to be labelled as a scientific experiment. Whilst these criteria explicitly 

address issues of landscape evolution, which is not directly applicable to the fingerprinting 

investigation of this thesis, the work can be evaluated in the context of these requirements.  

1. Specific hypotheses about the evolution of landscapes which are amenable to 

falsification must be formalised. 

2. Definitions of explicit geomorphological properties and operational statements with 

respect to measurement are needed. 

3. The measurements must be made in the general context of an explicit general 

conceptual model of landform evolution.  

4. A formal schedule of measurements is required.  

5. A formal scheme for analysis of measurements is necessary. 

6. A data collection and management system is necessary. 

The results presented in this thesis are based upon the observation of the uncertainties 

occurring in a structured fine sediment fingerprinting investigation and the fine sediment 

dynamics in the Nene river basin. Specific hypotheses were not specified and investigated, 

and as a result the conclusions of this thesis can be considered somewhat empirical. The 

fulfilment of the Aims was achieved by inductive reasoning; as a result the conclusions of the 
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thesis provided strong evidence for the processes investigated rather than providing 

conclusive answers to specific hypotheses. 

 

Aim 1: Fingerprinting the sources of fine sediment 

 

Requirements 1, 2 and 3: formalisation of hypotheses, defining geomorphological 

properties and operational statements and the general context of a conceptual model. 

The sediment fingerprinting investigation of this thesis (Aim 1) was conducted in the context 

of the current understanding (conceptual model) of the potential uncertainties associated 

with fine sediment fingerprinting. The approach used in this thesis is commonly used in 

published sediment fingerprinting studies, where an independent validation of results 

through controlled experiment is almost never provided.  A key exception to this is research 

by Small et al. (2002) who used the controlled mixing of known quantities of sediment 

sources in a laboratory to explore the effects of the spatial variability in tracer 

concentrations. Hypotheses were not formally declared, and as a result absolute answers to 

research gaps in geomorphology could not be established. Therefore the experimental 

design of this thesis cannot be considered to conform to the requirement of Church (1984). 

However, the experimental approach allowed for the assessment of key questions regarding 

the accuracy of a sediment fingerprinting investigation and the causes of tracer conservatism 

outlined in previously published research.  

 

Requirements 4, 5 and 6: The requirement for formalised measurement, data analysis and 

data management. 

The fine sediment fingerprinting investigation conducted (Aim 1) was conducted on the basis 

of replicating a sediment fingerprinting methodology typical of those used in published 

literature, with the aim of highlighting and identifying the sources of uncertainty present. A 

problematic aspect of this approach is that a large amount of variability exists in published 

sediment fingerprinting methods, which has been shown to affect study results (Haddadchi 

et al. 2013). Therefore, the need for formalisation of fingerprinting methods is highlighted, 

to ensure greater comparability between the results of future fingerprinting investigations. 
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As is common with published research, issues of available time and resources limited the 

scope of the thesis. The implications of this limitation are explored in terms of the scaling of 

the produced results and the validation of the results which were derived primarily through 

field based observation in Sections 9.3.2. and 9.3.3. . 

 

Aim 2: Fine sediment dynamics in the Nene river basin 

 

Requirements 1, 2 and 3: formalisation of hypotheses, defining geomorphological 

properties and operational statements and the general context of a conceptual model. 

The sediment budget (Aim 2) was not conducted with the aim of identifying and quantifying 

specific erosion and landscape evolution processes. Instead, the work was conducted as a 

comparison of the yield, sources and storage of fine sediment within the Nene basin, with 

other previously investigated catchments. As a result the work cannot be considered an 

experiment in the terms of Church (1984).  

When investigating geomorphological processes the structured deductive experimental 

design and specific hypotheses required by Church (1984) are commonly used. It has 

however been recognised that many geomorphological problems cannot be resolved by the 

experimental method (Slaymaker, 2011). Issues of addressing specific objectives such 

asinvestigating fine sediment pressures for catchment management purposes can be viewed 

as such a situation, due to the significant time and resource requirements of large scale 

investigations. As a result the approach used in this thesis is often applied in published 

research such as by (Walling et al., 2006). The sampling design used had the advantages that 

large scale fine sediment dynamics in the Nene basin could be investigated, which would not 

have been possible due to the time and resource requirements of a more tightly controlled 

experimental design. The major disadvantage of this approach is that little indication as to 

the processes controlling the observed sediment dynamics could be gained, and issues of 

scaling and implications relating to the validation of the results are created, these are 

explored in Sections 9.3.2. and 9.3.3.  
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Requirements 4, 5 and 6: The requirement for formalised measurement, data analysis and 

data management. 

The sediment budget framework provided a formal structure to the measurement and 

analysis of fine sediment dynamics in the Nene basin. However, the limited time available 

for work resulted in the absence of specific components of the budget, such as rates of the 

erosion of sediment sources and the temporary within catchment storage of sediment.   

Hammond, (1978) identifies the use of quasi-experiments which, while fulfilling the six 

requirements laid out by Church, (1984), have the lowest level of control on environmental 

variables. In a quasi-experiment sampling sites are selected upon the best judgement of the 

geomorphologist. The sampling strategy in the Nene basin can be considered typical of a 

quasi-experiment. Sampling locations were selected on the judgement of the author as to 

the regions of the basin representative of the different topographies, lithologies and land 

utilisations present in the catchment.  Sampling locations were also somewhat dictated by 

the accessibility of sampling locations. For example, sediment yield was measured where 

Environment Agency flow gauging was taking place, and the locations of floodplain coring 

sites were dictated by the extremely limited areas of the Nene’s floodplain which had 

remained un-disturbed for the previous 100 years. The following section examines the 

scaling implications of the sampling design and sampling locations used. 

 

9.3.2.  Scaling and representativeness 

 

Published fine sediment fingerprinting investigations have been conducted at local to 

catchment scales (D'Haen et al., 2012). The sampling locations used in the Nene included small 

tributary headwater catchments, as well as the fingerprinting of overbank sediment and 

floodplain cores with an upstream catchment containing the majority of the Nene basin. As a 

result the results obtained can be considered applicable to medium and large scale 

fingerprinting investigations. However, little attention was given to the effects of small scale 

changes to tracer signatures and small scale variability in tracer concentrations within the 

catchment. For example, it has been highlighted that alterations to the sediments’ organic 

matter content and particle size distribution take place throughout the entire catchment (Hoey 

and Ferguson, 2010). Therefore, to fully record the uncertainties entering the fingerprinting 
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investigation throughout the catchment, a small scale investigation of the fingerprinting would 

be required. 

 

Issues of scaling are most prominent in the fingerprinting investigation of this thesis when 

considering the variability of source group tracer concentrations. Process domains have been 

defined as ‘predictable areas of a landscape within which distinct suites of geomorphic 

processes govern physical habitat type, structure and dynamics; the disturbance regimes 

associated with process domains dictate the template upon which ecosystems 

develop’(Montgomery, 1999, pp. 402). As a result specific small areas with high rates of erosion 

and connectivity to the river may be contributing a disproportionally high amount of sediment 

to the Nene. This issue was highlighted in the analysis of the within-source variability in tracer 

concentrations in Section 7.3.2.  It can however be considered a limitation to the sampling 

design of this thesis that smaller scale variability in tracer concentrations were not directly 

investigated in the field, specifically because there is uncertainty remaining as to the 

representativeness of the source sampling. The selection of channel bed sediment sampling 

locations was also potentially a source of uncertainty, considering localised domains of 

deposition processes may cause the sampling to be un-representative of the entirety of the 

Nene basin. 

 

Scaling issues become more apparent when considering the sediment budget methodology 

used in this thesis (Aim 2). Parsons (2012) Identifies the limitation of sediment fingerprinting 

and the use of sediment yield, that they fail to take into account the travel distances and times 

of sediment through a catchment. As a result changes in the conditions of sediment 

mobilisation in a catchment may not be quickly realised at the catchment outlet if a significant 

quantity of sediment is temporarily sequestered on route to the river channel. An implication of 

this criticism is that changes to the Nene basin caused by factors such as the intensification of 

agricultural practices may not have been realised in the sediment budget produced. The 

quantification of within field sediment storage and the transit times of eroded material would 

have provided sufficient to remove this limitation, however the considerable time and resource 

requirements of these measurements prevented such an investigation taking place. Limiting the 

size of the study area used in this thesis would have allowed for this measurement and may 

have resulted in a more detailed study of sediment dynamics in the Nene. An argument can 

however be made that small scale studies can neglect major sediment sources and processes in 



9: Conclusions and evaluation  

245 
 

a catchment. For example Slaymaker (2009) and Church (2010) highlight the failure of 

geomorphologists to consider the impacts of human agency on geomorphology. Using a large 

scale sampling design in the Nene allowed for the inclusion of towns and flood defences in the 

study area, which are an important characteristic of highly modified river catchments such as 

the Nene.  

 

Scaling issues can also be identified in the selection of sampling locations within the Nene basin. 

Different segments of floodplain have been shown to differ in ecosystem structure and function 

(Bellmore and Baxter 2014). As a result the representativeness of the floodplain coring locations 

to the entirety of the Nene’s floodplain can be questioned. The use of tributary and reservoir 

sub-catchments for the quantification of sediment yield also represents a potential source of 

uncertainty introduced in this thesis. The absence of the majority of the Nene’s floodplain in the 

three sites investigated is likely to result in the sediment yield failing to account for the 

deposition of sediment on the floodplain throughout the length of the Nene’s main channel. 

This represents a potential explanation for the higher sediment yields found in this thesis in 

comparison to the earlier study performed by Willmott and Collins (1981) where sampling was 

conducted close to the mouth of the Nene. 

The most important scaling issue of this thesis is that it was conducted in a single catchment. 

As a result the results derived can only be considered representative of the Nene basin or 

catchments in the East Midlands of the UK. 

 

Temporal scaling has also been highlighted as a potential limitation to many experimental 

designs. Relationships between landscape and channel morphology can only be considered 

to be in equilibrium (Steady time) in timescales of one year or less Schumm and Lichty 

(1965). Therefore, the applicability of the contemporary monitoring of sediment dynamics to 

future studies can be questioned. The application of palaeolimnological reconstruction 

provides long-term context to the results produced. However, the methods used are limited 

to a coarse resolution record of changing sediment provenance and sediment yield. An 

understanding of the processes controlling sediment dynamics in the Nene would provide 

robustness to the results derived in this thesis, and allow for the prediction of the impacts of 

future changes to the catchment. 
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9.3.3.  The importance of independent validation of field based results 

The previously highlighted limitations of the sampling design of this thesis introduce the 

potential for unrecognised uncertainty to be present in its results. This is most likely when 

investigating the accuracy of sediment fingerprinting results and utilising these results in the 

sediment budget. In almost all published sediment fingerprinting studies no validation of 

model outcomes using independently derived data is provided. This thesis used multiple 

tracer groups in an attempt to more completely represent the uncertainty present in the 

fingerprinting results. Because of this, the sediment provenance results presented in this 

thesis can be considered of greater reliability than is typical in published research. However, 

it was identified that because no independent source of accurate sediment provenance 

information was available, the error associated with individual tracer groups could not be 

quantified. As a result the possibility existed that all tracer groups produced a largely 

incorrect sediment provenance prediction which was interpreted as being accurate due to a 

high consistency between multiple tracer group predictions. This potential for uncertainty 

was somewhat addressed by the observation of sediment sources within the catchment 

during periods of intense rainfall and high flow. It was observed that almost no connectivity 

was present between cultivated land and the river catchment. As a result the finding that 

channel banks are the dominant sediment source was consistent with field based 

observations. The validation of results is also of importance for communicating the 

significance of results to non-specialist audiences (Chung and Fabbri, 2003), this may 

especially be of importance when conveying sediment fingerprinting outcomes which may 

contain a very high degree of uncertainty, such as in this thesis. As a result the absence of 

the thorough validation of the outcomes of this thesis can be considered a major limitation. 

Validation of the effects of the organic matter content particle size and chemical alterations 

of the sediment were also not provided in this thesis, due to the constraints of its 

experimental design, leaving a gap in knowledge. The following section explores remaining 

gaps in research highlighted from issues of data validation, scaling and the sampling design 

of this thesis. 
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9.4. Remaining gaps in research and the need for future research 

This thesis has successfully highlighted the uncertainties associated with a sediment 

fingerprinting investigation and has investigated fine sediment dynamics in the Nene river 

basin. However, the need for further research has been highlighted in particular by the 

limitations of the experimental design used which were identified in the previous section 

and the fact that this thesis only investigates a single catchment. This section describes the 

remaining gaps in knowledge identified in this thesis and provides suggestion for future 

research projects to address these gaps. 

 

9.4.1.  Aim 1: Fingerprinting the sources of fine sediment 

 

The accuracy of fingerprinting results derived using different tracer groups. 

Remaining gap in knowledge 

The differences between sediment fingerprinting predictions made by different tracer 

groups were highlighted in this thesis. However, due to the discussed limitations of the 

experimental design used, no independent validation of the accuracy of individual tracer 

groups could be determined. The investigation of the accuracy of different tracer types 

represents arguably the most important need for future research. This would allow for 

guidelines for tracer selection to be produced, based on tracer behaviour in the 

environment.  

 

Potential future research 

A return to some of the earliest used geomorphological techniques such as the use of 

erosion pins (Davis and Gregory, 1994), profilometers (Sirvent et al., 1997) and surveys of 

erosion features (Werrity and Ferguson, 1980) can potentially allow for the quantification of 

sediment inputs to lakes and rivers. On large scales such methods have been shown to be 

impractical (Peart and Walling, 1988), however, in a small catchment such as that of Sywell 

reservoir investigated in this thesis, these methods may allow for the production of an 
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independent source of sediment provenance data with which to validate fingerprinting 

results derived using different tracer groups. 

 

The effects of changes to the organic matter content and particle size distribution of the 

sediment 

Remaining gap in knowledge 

The results of this thesis have suggested that the most commonly investigated sources of 

uncertainty in fingerprinting studies, of the effects of organic matter and particle size on 

tracer signatures (Koiter et al. 2013), were not the most important source of uncertainty in 

the fingerprinting performed in the Nene basin. Therefore, a gap in knowledge remains as to 

ascertaining the exact effects of these factors on fingerprinting results in the Nene basin and 

other catchments worldwide.  

 

Potential future research 

Research by Motha et al. (2003) presented a study where a considerable amount of 

attention was given to the relationship between organic matter, particle size and tracer 

concentrations. The sediment source samples were fractionated into (<2, 2–20, 20–40, 40–

63 µm) particle size categories and tracer concentration was measured in each fraction. The 

organic matter content in each fraction, and relationships of tracers with organic matter 

were also quantified and appropriate data corrections were applied on this basis. Using this 

methodology a more precise relationship between particle size, organic matter and tracer 

concentrations could be derived than the simple relationship assumed by the corrections 

which were used in this thesis. A methodology such as this, or similar methodologies used by 

other authors, such as Russell et al. (2001) represent a very thorough assessment of the 

impacts of changing sediment particle size and organic matter content to tracer signatures. 

Alternatively novel approaches such as the controlled mixing of known quantities of 

sediment sources by Lees (1997), combined with the controlled alteration of the particle size 

and organic matter content of the sediment, could provide a less resource intensive means 
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of assessing the potential impacts of these factors when applied on a catchment specific 

basis. 

 

The effects of within-source variability in tracer concentrations  

Remaining gap in knowledge 

Whilst this thesis has identified the error present in a fine fingerprinting study and the 

methodology strongly suggested that variability in source group tracer concentrations was a 

cause of the observed uncertainty, this was not able to be verified by an independent means 

of investigation. Therefore, a gap in research remains as to the effects of spatial variability. A 

study by Small et al. (2002) was the first to highlight this issue, which remained under 

investigated until this thesis. Small et al. (2002) also identified the uncertainty associated 

with the number of sediment source samples used to categorise each sediment source 

group.  

Potential future research 

The methods used by Lees (1997) present the most promising potential way to fill this gap in 

knowledge. Lees (1997) produced controlled mixtures of known quantities of sediment 

source samples to identify non-linear additivity effects associated with the use of mineral 

magnetic tracers. This approach was replicated by Small et al. (2002) for the purpose of 

investigating the issue of within source variability. The application of the methods of Lees 

(1997) and Small et al. (2002) provide the opportunity for the potential exploration of within 

source variability of specific tracer types and in specific environments to produce a set of 

guidelines to inform tracer selection in future research. The use of the tracer variability ratio 

used in this thesis also provides the potential for an additional stage in the tracer 

discrimination procedure, to identify if the un-mixing modelling being conducted is likely to 

produce an output with a suitably small uncertainty for the specific aims of future 

fingerprinting investigations. Alternative methods of investigation could also include detailed 

field based surveys of tracer concentrations in a range of sediment sources, in different 

catchments and at different scales. Such a database of surveys would potentially allow for 

researchers to make judgements of the number of source samples and types of tracers to 

use without extensive investigations conducted in every catchment investigated. 
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The ability of tracers to differentiate between sediment sources 

Remaining gap in knowledge 

The ability of tracers to differentiate between sediment sources has been highlighted in this 

thesis as an important prerequisite for a successful fine sediment fingerprinting 

investigation. As in this thesis, a review paper by Walling (2013), identified the current 

uncertainty regarding using the optimum tracer types to differentiate between sediment 

sources in different catchments.   

 

Potential future research 

Further work could be undertaken to develop the use of novel or under-used tracers, such as 

soil enzyme activity or compound specific stable isotopes by Martínez-Carreras et al. (2010) 

and Nosrati et al. (2011) which may display greater contrasts in concentration between 

sediment source groups. Alternatively, research conducted by Collins (2013) using organic 

isotopes provides the opportunity to potentially achieve the requirement laid out by Smith 

and Blake (2014) for a robust justification for tracer selection. Whilst the use of geochemical, 

lithogenic radionuclide tracers may exploit un-quantified variability in lithology, the presence 

of specific organic molecules indicative of surface vegetation provides a justification for the 

use of these tracers as robust as the fallout origins of 137Cs, which provided robust source 

discrimination in this thesis. Additional to these opportunities to further explore tracer use, 

the use of methods such as Infrared spectroscopy by Evrard et al. (2013) potentially provide 

the ability to rapidly and inexpensively acquire a database of tracers. Such approaches could 

be used for the validation of, or to compliment the results derived using other tracer types. 
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9.4.2.  Aim 2: Fine sediment dynamics 

 

The erosion of channel banks 

Remaining gap in knowledge 

Channel banks were shown to be the dominant sediment source in the Nene basin, which 

contributed an atypically high proportion of sediment compared to other UK catchments. 

Therefore, it is recommended that further work could be undertaken to assess the 

mechanisms of channel bank erosion in the Nene basin and East Midlands region of the UK. 

Potential future research 

Flume based studies have shown significant potential for investigating the processes 

effecting channel bank erosion (Cherry and Beschta, 1989). However, research such as by 

Bull (1996) identified the complex nature of bank erosion in river catchments. Abernethy 

and Rutherfurd, (1998) and Couper and Maddock, (2001) identified the importance of so 

called ‘process domains’ where hydrology was often determined to be a major contributor 

to the rates of channel bank erosion. Therefore the optimum means of investigating the 

processes within the Nene basin may be the controlled observation of channel bank erosion 

during different periods of flow and after different periods of sub-aerial preparation, such as 

was done by Couper and Maddock, (2001) and Lawler et al. (1999). 

 

Processes of soil erosion and sediment delivery 

Remaining gap in knowledge 

The quantification of rates and processes of soil erosion and sediment delivery were absent 

from the sediment budget of this thesis. This has been identified as a major limitation of the 

sampling design used.  

 

Potential future research 

The use of the geomorphological techniques suggested for use as an independent source of 

sediment provenance data for fingerprinting, such as erosion pins (Davis and Gregory, 1994), 
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profilometers (Sirvent et al., 1997) and surveys of erosion features (Werrity and Ferguson, 

1980) can quantify rates of erosion. Alternative methods include computer based modelling 

of erosion and sediment transport. However, catchment complexity has been highlighted as 

a major limitation to the accuracy of such approaches (Jakeman et al. 1999). 137Cs soil 

redistribution techniques have been used to quantify rates of soil erosion within a sediment 

budget framework (Walling and Collins, 2008). These methods could potentially be used 

within the Nene basin to quantify soil erosion, and the differences between erosion and 

sediment yield used to estimate within catchment sediment storage. However Parsons and 

Foster (2011) raise considerable questions as to the accuracy of the 137Cs redistribution 

methods. Alternative methods include that of Parsons et al. (2010) who used the application 

of artificial magnetite grains to soils to quantify the rates of transport of eroded material, 

however, the 16 years used in this approach may prove impractical for most investigations. 

Computer based modelling has also been combined with field based measurement such as 

the use of SedNet coupled with a mass balance model of particle residence times based on 

atmospheric and fluvial fluxes of three fallout radionuclide tracers (7Be, 210Pbun and 137Cs) by 

Smith et al. (2014). 

 

The role of floodplain sedimentation in the sediment budget 

Remaining gap in knowledge 

The results of this thesis were able to identify that rates of floodplain sedimentation in four 

locations in the Nene basin had reduced after 1963 using four floodplain cores. However, 

when the sediment deposition rates in these cores was scaled to a square kilometre scale 

results were clearly too high for the sediment dynamics of the Nene to make logical sense. 

As a result the fluvial sediment budget produced as part of Aim 2 can be considered 

incomplete. A study by Walling et al. (1999b) showed that between 39-40% of the total 

annual sediment yield of the River Ouse, UK, and 50% for the River Wharfe, UK was 

deposited on the river’s floodplains. Therefore, a significant amount of the sediment budget 

of the Nene may remain unaccounted for. 
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Potential future research 

A more accurate and complete quantification of the quantities of sediment deposited onto 

floodplains could be produced using the methods of Walling and Owens (2002). As in this 

thesis, only four sampling locations were used in the 1346 km2 catchment (comparable in 

size to the Nene) however, a transect of 10 cores was taken from the river across the 

floodplain at each sampling site. In this way the authors were able to quantify floodplain 

sediment storage within a sediment budget framework. The methods used for the 

quantification of floodplain sediment storage in the Ouse and Tweed basins used 26 such 

transects in a 3315 km2 catchment (Owens and Walling, 2002). The bulk measurement of 
137Cs activity allowed for the rapid measurement of accumulation rates in multiple cores, as 

opposed to the time consuming analysis of individual segments of single floodplain cores in 

this thesis.  

The extremely limited areas of undisturbed land adjacent to the river channel in the Nene 

basin restricted the use of this approach in this thesis. However, catchments elsewhere in 

the East Midlands region of the UK provide the potential opportunity for the expansion of 

the quantification of floodplain storage.  Should nearby catchments be comparable to the 

Nene basin, the percentage of the annual sediment yield stored on the floodplains could be 

calculated and utilised to inform other catchments in the region, such as the Nene. 

 

9.5. Closing statement 

The results presented in this thesis have shown the significant potential for sediment 

fingerprinting techniques to determine sediment provenance. It has however been identified 

that the uncertainties present when using fingerprinting techniques can be considerable. As 

a result the need for the careful analysis of the uncertainty present in fingerprinting 

investigations due to variability in tracer concentrations, and tracer non-conservatism should 

be a priority for future research.  

The Nene basin has been shown to have a low sediment yield in comparison to most 

catchments in the UK and worldwide. The most important finding about the sediment 

dynamics in the Nene basin is that channel banks are the dominant source of sediment, 

which is highly un-usual for UK rivers. The results of this thesis have identified that the 

mitigation of fine sediment pressures in the Nene basin would be best achieved by the 



9: Conclusions and evaluation  

254 
 

stabilisation of channel banks to reduce the overall sediment yield, re-connecting the river 

with its floodplain to increase floodplain sedimentation back to the 1958 – 1963 

accumulation rate, and the removal of any obstacles to the episodic high flows, required to 

flush away fine sediment accumulated on channel beds.
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Appendix 1 (electronically submitted supplementary data) 

The attached CD contains the raw data used in this thesis, the composite fingerprints used in 

Chapters 6 and 7, the raw results of the un-mixing models run and a summary of the 

sediment fingerprinting results.
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