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Interpretation of averaged evoked potentials is difficult when the time relationship between stimulus and response is not constant.
Later components are more prone to latency jitter, making them insufficiently reliable for routine clinical use even though they
could contribute to greater understanding of the functioning of polysynaptic components of the afferent nervous system. This
study is aimed at providing a simple but effective method of identifying and quantifying latency jitter in averaged evoked
potentials. Autocorrelation techniques were applied within defined time windows on simulated jittered signals embedded
within the noise component of recorded evoked potentials and on real examples of somatosensory evoked potentials. We
demonstrated that the technique accurately identifies the distribution and maximum levels of jitter of the simulated
components and clearly identifies the jitter properties of real evoked potential recording components. This method is designed
to complement the conventional analytical methods used in neurophysiological practice to provide valuable additional
information about the distribution of latency jitter within an averaged evoked potential. It will be useful for the assessment of
the reliability of averaged components and will aid the interpretation of longer-latency, polysynaptic components such as those
found in nociceptive evoked potentials.

1. Introduction

Clinical neurophysiology uses potentials recorded from the
human scalp, evoked by peripheral stimulation, to investi-
gate the integrity of the neural pathways of various sensory
modalities [1]. The conventional form of analysis is a simple
average, where the stimulus is repeated multiple times and
the recording process is triggered by the stimulus onset.
Each successive recording is added to the previous ones,
with appropriate adjustment of amplitude, to form a run-
ning average. This process assumes that the signal compo-
nents of interest are time-locked to the stimulus onset,
whereas the background noise is assumed to be random with
respect to the stimulus. Consequently, as increasing num-
bers of recordings are added to the average, the noise ele-
ments reduce whilst the signal components retain their
original amplitude and are seen to “grow” out of the back-

ground noise. In theory, an average of an infinite number
of recordings would have zero noise, and the signal would
be revealed with its true amplitude [2].

However, the underlying neurophysiology of the pro-
duction of the evoked potential (EP) is not compatible with
the assumptions of averaging. In particular, there is evidence
that evoked potential components vary in both amplitude
and latency on repeated recordings, with later components
displaying greater latency variations (“jitter”) [3]. Signal
components which occur at the same point in time relative
to the stimulus onset but have different amplitudes produce
averaged components of identical shape and latency but
varying amplitudes. When different signal components
overlap in time, they will produce shape changes in the com-
posite signal, but the latencies of the individual components
will not change. However, varying latencies within a single
signal component can also produce shape and amplitude
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distortions, but the apparent latency as measured on the
averaged signal will not be a true measure of the original
signals.

Early components of scalp-recorded evoked potentials
represent activity from fast neural pathways, which only
have a few synapses and therefore have the least latency var-
iation. This makes them sufficiently consistent and reliable
for clinical use [4]. However, the later components are sus-
ceptible to much greater variability because of the larger
number of synapses and involvement with other aspects of
brain responses, such as attention. In addition, some modal-
ities of stimulation, such as for visual and auditory evoked
potentials, do not achieve the same synchronous volley as
that produced by electrical stimulation of fast sensory affer-
ent fibres, which also results in variability in the latency of
the recorded components [5]. Nociceptive evoked potentials
are a comparatively new addition to the potential tools for
examining the nervous system and are mediated by slow
peripheral fibres in addition to undergoing numerous synap-
ses [6]. This and the limited number of repetitions of the
stimulus that are possible have resulted in their use in only
very limited clinical settings.

A previous study by the authors [7] describes a method
of assessing the reliability of an averaged evoked potential
component, using the median correlation coefficient of
pairs of repeated signals within specified time windows
(median r). This technique quantifies the similarity in
shape of the evoked potential produced by each external
stimulus, within specified time windows. Amplitude varia-
tion of discrete components alone does not affect the
median r value. An averaged component with a high value
of median r indicates that the constituent single responses
are occurring at the same latency and have the same shape.
Averaged components with low median r values could indi-
cate either interference from other overlapping components
unrelated to the stimulus or that the single responses have
variation in latency. This study extends the utility of this
approach by additionally identifying the distribution of
the latency shift exhibited by any specified component.
The proposed analysis technique could be performed in
parallel with the acquisition of conventionally averaged
responses and can give important additional information
about the role of latency variability in components with
low signal reliability. In addition, information about the
nature of latency variation may be relevant for both clinical
and research contexts [8].

Other methods have been used to take account of
latency jitter of EP components: Achimowicz [9], for exam-
ple, used phase domain pattern recognition techniques; Hu
et al. [10] used wavelet filtering together with multiple linear
regression; Limpiti et al. [11] used an expectation-
maximisation algorithm; and Mayhew et al. [12] used mul-
tiple linear regression techniques. However, these were all
focussed on extraction of single trial EP characteristics in
the presence of varying trial-to-trial latency, amplitude,
and/or morphology of the components. The importance of
investigating the latency properties of EPs was recognised
by Woody [13], who developed an iterative adaptive filter
which used autocorrelations between the averaged response

and each individual record to align the components on the
time axis and calculate a new average. This process was
repeated until there was no change between iterations. The
method was refined by Thornton [14] using subaverages.
A refinement of Woody’s algorithm [13], incorporating
the maximum likelihood technique, has also been used
[15]. Ma et al. [8] recognised the clinical utility of latency
jitter and used independent component analysis (ICA) of
multichannel recordings to compare jitter in animal studies.
None of these techniques are in common clinical use, how-
ever. This study takes a simple approach to the identifica-
tion of the distribution of latency changes of a defined EP
component to give information on the latency variability,
which is easily interpreted and can be used alongside the
conventional averaged response in clinical practice.

2. Materials and Methods

Somatosensory evoked potentials (SEPs) were recorded,
with informed consent, from two neurologically normal sub-
jects. These were used as genuine biological samples in the
testing of the autocorrelation method. SEPs were obtained
after surface stimulation of the median nerve at the right
wrist, with 0.2ms electric pulses delivered at the rate of
0.83Hz and intensity set at the threshold for thumb twitch.
Recordings were performed from C3′-Fz scalp derivation
with surface electrodes, where C3′ is the usual upper limb
SEP recording position, over the hand projection in the sen-
sory homunculus [16]. The same electrodes were used to
record equivalent time epochs of EEG spontaneous activity,
without any stimulation (called SEP noise later in this
paper). Amplification of ×100,000 was used with a bandpass
of 0.1-2,000Hz, using 2nd-order Butterworth analog filter-
ing (LT amplifiers by Vertigo, Genova, Italy). Signals were
then sent to an analog-to-digital converter (NI PCIe-6320,
X Series Multifunction DAQ, 16 bit, 250 kHz sampling rate
by National Instruments, Austin, Texas). Software was
developed using LabView 2017® (National Instruments,
Austin, Texas) to acquire 10,000 samples for a period of
1,000ms after each stimulus, thus providing a high defini-
tion recording with a dwell time of 0.1ms. Each response
was stored on a hard disc for off-line averaging.

Simulated single evoked potential components were con-
structed using NI LabView 2017® [17], based on the genera-
tion of a sine wave with variable width and -90° phase shift
at a given distance along the time axis. Jitter (uncertainty
in peak latency) was simulated by applying a random shift
along the time axis, within given maximum limits, every
time the sinusoid was generated and summing the specified
number of iterations. The total length of the simulated signal
was 1,000ms with a dwell time of 0.1ms (data acquisition
rate of 10 kHz) for compatibility with the parameters used
in the SEP recordings described above. Amplitude and DC
shift were constant within the simulation program, but
adjustable between simulations.

Autocorrelation methods were used for identification of
latency jitter. Autocorrelation is a method which can identify
similar signals that are delayed in time with respect to each
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other [18]. For this study, a time window of interest was
defined in the averaged evoked potential recording. Pairs
of single response records were used to calculate the correla-
tion coefficient between them. This was initially calculated
with both records starting at the same time point. A constant
time shift was then introduced by moving one record along
the time axis relative to the other by a constant amount and
recalculating the correlation coefficient. This was repeated so
the correlation coefficient was first calculated for both
records starting at the same time point, then with the second
record delayed by a time shift δt, then by time shift 2δt, etc.,
until the time shift was equal to the time window length.
This was repeated for all possible pairs of records. This is
illustrated in Figure 1.

A virtual instrument was constructed in LabView 2017
which identified a specified time window within a set of N
repeated EP records, either real or simulated. An autocorre-
lation was then performed on every pair of records (a total of

NC2 =N!/ð2!ðN − 2Þ!), using the LabView function crosscor-
relation.vi, and the time difference for the maximum corre-
lation for all pairs of records was plotted as a histogram.

3. Results and Discussion

3.1. Effect of Latency Shifts (“Jitter”) on Averaged Evoked
Potential Components. Conventional signal averaging ideally
requires a stationary signal and random noise in relation to
the stimulus onset [2]. The median cross-correlation coeffi-
cient of every possible pair of repeated signals (median r)
within a defined time window has been used as a measure
of the reliability of signal components where reliability is
defined in terms of repeatability [7]. As change in amplitude
alone does not alter the median r, this reliability is therefore
expressed as components of similar shape occurring at the
same latency. However, there is evidence that evoked poten-
tial components vary in both amplitude and latency, with
later components displaying greater latency variations (“jit-
ter”) [3]. This section, therefore, looks at the effect of varying
amounts of jitter on the averaged components and their reli-
ability (as measured by median r), using simulated signal
components.

Figure 2 shows an example of a simulated EP component
with a peak latency of 100ms, width at its base of 40ms, and

Select N
records, time

window t0 to tend

Set i = 1, a = 1, b = 2

Calculate cross
correlation coefficient, ri,
between records a and b

Shift record m along
the time axis by δt

Select 2
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Set i = i + 1

Y
N

Select maximum ri and
its time shift, ti = i x δt
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of all tis
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Figure 1: Flow chart of the autocorrelation method. N single response recordings of the evoked potential are used. For each possible,
dissimilar pair of recordings a and b (of which there are NC2 =N!/ð2!ðN − 2Þ! combinations), an autocorrelation is performed within a
specified time window (t0 to tend) by calculating the cross-correlation between the recordings (ri, where i identifies the unique pair of
recordings). Recording b is then shifted along the time axis (relative to recording a) by a small amount δt (usually the dwell time of the
recording), and the correlation is again calculated. This is repeated until recording b is shifted by the length of the time window. The
time shift that produced the largest riðtiÞ is then recorded, where ti represents the latency shift between that pair of recordings. Another
pair of recordings is then selected, and the process is repeated until all dissimilar pairs of recordings have been autocorrelated. The
histogram of the tis for all possible pairs shows the distribution of the latency jitter in the set of N responses.
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random jitter with a maximum of ±20ms. Figure 2(a) illus-
trates the jitter production (5 repetitions). Figure 2(b) shows
a single, unjittered simulated component, together with the
compound potential produced by conventional averaging
of 30 identical components with a jitter of ±20ms. It can
be seen that the presence of jitter affects the amplitude,
shape, and latency of the averaged component.

Figure 3 shows the effect of latency jitter on an averaged
simulated component within SEP noise of similar amplitude.
The median r values for every 10ms window are shown in
red and are a measure of the repeatability of the signals
within those windows (see above). The median r values of
successive 10ms windows rapidly decrease with increasing
latency variation. With no jitter (Figure 3(a)), the simulated
SEP component at c. 100ms shows as a large amplitude peak
amongst the averaged SEP noise, even though the ampli-
tudes of the signal and the noise were similar for each of
the 30 individual records. The median r value is high
(>0.8), indicating that this component is highly reliable.
When a small amount of jitter (±5ms) is added to the sim-
ulated component (Figure 3(b)), the amplitude of the signal
peak is smaller and broadened and the median r has
decreased (c. 0.5), which reflects the increased unreliability
of this component. With ±10ms jitter (Figure 5(c)), the
averaged signal is still visible, although again smaller and
broader, but the median r is now indistinguishable from 0,
indicating an unreliable signal component. This is an accu-
rate representation if reliability of the averaged component
is defined as representing a component of similar shape at
the same latency. However, in the absence of further infor-
mation, it may be indistinguishable from a single, large arte-

fact, which would also give a low median r. Additional
methods are needed to correctly interpret components
which may be subject to latency jitter (see the next section).

3.2. Identifying and Measuring Latency Jitter in Individual
Components. An autocorrelation was performed to investi-
gate latency jitter in specified components. A specified time
window was defined to fit the component under investiga-
tion. The correlation coefficient between two records for this
time window was calculated and repeated with one of the
records successively time-shifted by a specified amount (by
default, this was the dwell time of the recording). The time
shift that produced the highest correlation coefficient was
recorded, and this was repeated for every possible dissimilar
pair of records. The results were displayed as a histogram of
the time shifts that produced the maximum correlation for
all possible pairs of records. The flow chart for this process
is shown in Figure 1. This was first tested using simulated
signals with known jitter and then on actual evoked poten-
tial recordings.

3.2.1. Simulated Signals with Known Jitter. Figure 4 shows
the results of performing an autocorrelation on 120 repeti-
tions of the simulated signal shown in Figure 2, with a ran-
dom, normally distributed jitter of up to ±10ms applied to
each signal. The time window was defined as 80-120ms.
The absolute time differences between the repetitions which
gave the maximum correlation coefficient were plotted
against the number of times this occurred between all possi-
ble dissimilar pairs of records (7,140 pairs of records when
there are 120 repetitions). The shape of this histogram shows
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Figure 2: Simulated EP components (peak latency 100ms, width at base 40ms). (a) shows 5 identical components with random jitter of
±20ms. (b) shows a single, unjittered component (in red) together with the average (mean) of 30 identical components with random
jitter of ±20ms (blue). Amplitude is shown in arbitrary units.
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the distribution of the latency jitter. Absolute time differ-
ences were plotted on the x-axis, which is equivalent to
reflecting the left (negative) portion of the distribution curve
on to the positive portion. It can be clearly seen that the
resulting measured latency shifts approximate to the positive
portion of a normal distribution, reflecting the actual jitter
distribution. The maximum time difference was 20ms,
which is equivalent to the ±10ms jitter specified in the
simulation.

Figure 5(a) uses the same small simulated signal (onset
latency 90ms, width 20ms) with random jitter to a maxi-
mum of ±15ms combined with recorded SEP noise of a sim-
ilar amplitude. The resultant average of 30 records appears
as a broadened peak with superimposed noise, and the
median r (calculated for successive 50ms time windows)
goes from 0, where there is only noise, to approximately
0.05 for the width of the averaged signal, indicating poor
reliability. However, the histogram from the autocorrelation
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Figure 3: Effect of latency jitter applied to a simulated single component with onset latency 90ms and width 20ms in recorded EP noise of
similar amplitude. Averages of 30 recordings are shown together with the reliability measure (median r) for successive 10ms windows with
(a) no jitter, (b) random jitter of ±5ms, and (c) random jitter of ±10ms.
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Figure 4: Histogram of the absolute time differences between pairs of records that produced the maximum correlation coefficient using 120
repetitions of a simulated signal of onset latency 90ms and width 20ms, with random jitter of a maximum of ±10ms. Time window used
was 80-120ms.
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(Figure 5(b)) clearly shows absolute time differences
between similar peaks of up to 30ms, which is equivalent
to maximum jitter of ±15ms. This knowledge of the pres-
ence of latency jitter (and its quantification) enables the
low reliability of this component to be interpreted as repre-
senting a real signal component with latency jitter, rather
than being due to a large artefact. A combination of cross-
correlations (median r) and autocorrelation, therefore, gives
an accurate representation of the underlying signal structure

by enabling signal components with low reliability to be dif-
ferentiated into those with large noise or artefacts (low
median r, no autocorrelation) from those with repeatable,
but latency shifted, components (low median, latency shifts
identified).

3.2.2. Using Recorded Somatosensory Potentials. Figure 6
shows the results of using both the cross-correlation
(median r) and autocorrelation (peak difference detection)
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Figure 5: (a) shows the average of 30 repetitions of the simulated signal (onset latency 90ms, width 20ms) with random jitter to a
maximum of ±15ms + SEP noise of similar amplitude, together with the reliability measure (median r) over 50ms time windows. (b)
shows the histogram of the peak time differences which gives maximum correlations for every dissimilar pair of 30 repetitions.
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Figure 6: (a) An averaged somatosensory evoked potential (SEP) (average of 30 repetitions) recorded from the scalp (C3′-Fz) after
stimulation of the right median nerve at the wrist. Recorded from a neurologically normal female. Median r values (horizontal lines,
right axis) are shown for three time windows which include identified signal components: A (17-23ms), B (30-40ms), and C (45-80ms).
(b), (c), and (d) are the autocorrelation histograms for the time windows for A, B, and C, respectively.
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methods on a real somatosensory evoked potential (SEP)
recording. The method of recording the SEP is detailed in
Materials and Methods (section 2) Thirty repetitions were
conventionally averaged and are shown in Figure 6(a). Three
components of interest were identified lying in time win-
dows 17-23ms, 30-40ms, and 45-80ms (marked as A, B,
and C in Figure 6(a)), and the median r values for these
three time windows are superimposed on the averaged
graph. The early component has a high median r value (c.
0.8), indicating high reliability in terms of both shape and
latency. Figures 6(b)–6(d) look at windows A, B, and C,
respectively, and present the distribution of the time interval
that one record has to be time-shifted by to get maximum
similarity with the shape of the other record in that pair.
Each pair of records represents one count at that optimum
time shift. Figure 6(b) shows that the maximum time differ-
ence seen for component A was quite small at about 6ms
(which corresponds to a maximum latency jitter of ±3ms).
However, this natural jitter is not constrained to be nor-
mally distributed as was the case with the simulated signals,
and most of the time, differences were less than 2ms
(±1ms). Component B was associated with a median r
value of c. 0.5, indicating worsening reliability, and this is
confirmed by the results of the autocorrelation shown in
Figure 6(c), which gives a slightly larger maximum latency
jitter of 8ms (±4ms), with most being less than ±3ms.
The median r associated with the later component (C)
was low, at 0.13. This is likely to be due to large latency
variations, as verified in Figure 6(d), which shows a latency
variation of up to 34ms (±17ms), with most being less
than ±11ms, for that component.

The time difference histograms shown in Figures 6(b)–
6(d) give information about not only the maximum extent
of the latency jitter but also the distribution of the time dif-
ferences between repetitions of the signal. This could be a
useful tool for investigating the nature of latency changes
in research and clinical evoked potential applications.

4. Conclusions

This paper describes a simple way of adding latency varia-
tion (jitter) information to evoked potential components
identified by conventional signal averaging. This is especially
important for later components which are polysynaptic in
origin and are therefore highly prone to variation in latency.
The method described in this paper can quickly identify the
distribution of latency variation and estimate the total jitter
range.

The method used is intuitive and is designed to be used
in conjunction with the conventional interpretation of the
averaged evoked potential. It gives a clear, graphical indica-
tion of the distribution of the latency jitter of the recorded
signal within any specified time window. This could be used,
in conjunction with measures of component reliability [7],
to identify and quantify those components whose low reli-
ability is a result of latency shifts, rather than occasional,
large artefacts. The jitter information could also be used to
provide confidence intervals for conduction velocity mea-
surements which rely on late evoked potential components

after stimulation at different sites [19, 20]. Applying our
method, a specified confidence interval of the latency jitter
could easily be identified from analysis of the histogram of
latency shifts, which can then be directly used to give the
confidence interval of the conduction velocity related to that
component. These can be compared statistically with nor-
mative ranges or between groups.

Latency jitter information would be particularly valu-
able when using nociceptive evoked potentials. The diffi-
culty of reliably activating nociceptive pathways and the
variability of amplitude and latency of the resultant evoked
responses have limited the utility of this modality in clin-
ical practice, although there is considerable evidence of
their value [21–23]. However, recent advances in this field
have included a new, reliable method of eliciting nocicep-
tive evoked potentials [24–26], and this combination of
improved recording technique and the analytical methods
for quantification of reliability and latency jitter will enable
these to be easily incorporated into future work to identify
possible abnormalities of the afferent pathways or cortical
processing.
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