INTRODUCTION

There are three isoforms of the nitric oxide synthase (NOS) enzymes, eNOS, iNOS, and nNOS. The enzymes generate nitric oxide (NO) through L-arginine oxidation (Bokhari, and Murrell, 2012). mRNA levels of the iNOS isoform of NO were upregulated four-fold in the healing tendon p < 0.01 (Szomor et al., 2006). iNOS levels have been associated with apoptosis in non-insertional Achilles tendinopathy (Pearce et al., 2010), and NO is suggested to be toxic in large doses, but important as a messenger molecule in small doses (Nakazawa et al., 2017). In 2012, Nell et al., (2012) observed a potential heterozygous advantage of the C/A genotype of the iNOS variant rs2779249 within their Australian cohort in their preliminary analysis. The effects of the iNOS gene variant rs2779249 as a risk factor for ATP are not fully understood.

AIM

We aimed to discover whether the rs2779249 C/A variant that lies -1026 base pairs upstream of the iNOS gene was associated with the risk of Achilles Tendon Pathology (ATP) in a British cohort. We also aimed to establish whether there were any sex specific effect of the variant.

METHODS

121 ATP cases were recruited from the County Clinic in Northampton, UK, and 129 controls were recruited from the Midlands, UK. Oragene-DNA sputum collection kits (OG-500) were used for DNA collection and prept-L2P DNA extraction kits were used to successfully purify the DNA. The DNA concentration’s (ng/μl) and purity’s (260/280 ratio) were measured using a NanoDrop 2000 spectrophotometer. Following this, the samples were diluted to a standard concentration of 10 ng/μl. Custom TaqMan® SNP Genotyping Assays were used to conduct qPCR on the StepOnePlus platform, and the subsequent StepOne software was used to automatically determine the samples genotypes. Pearson’s Chi-squared (χ²) and Fisher’s Exact tests were applied to analyse genotypic and allelic frequencies. The SNPStats association software was used to test Hardy-Weinberg equilibrium (HWE), linkage disequilibrium and haplotype frequency estimations, alongside providing Exact tests were applied to analyse genotypic and allelic differences between participant characteristics. P < 0.05 was accepted as significant for the aforementioned tests.

DISCUSSION

A significant difference in genotype distribution was observed between ATP cases (C/C, 60.3%; C/A, 27.3%; A/A, 12.4%) and controls (C/C, 46.5%; C/A, 45.7%; A/A, 7.8%). An association was observed between the iNOS rs2779249 variant and ATP in the British cohort, highlighting the heterozygous C/A genotype as under-represented in the ATP population (P = 0.0088). This under-representation suggests a heterozygous advantage model for Achilles tendinopathy, this is consistent with preliminary research previously reported by Nell, et al., (2012). This under-representation remained in the ATP case control cohort, with a specific effect identified in males.

CONCLUSION

• The iNOS rs2779249 variant shows a heterozygous advantage within a British ATP case control cohort, with a specific effect identified in males.

• This research could be used to further improve risk determination for individuals susceptible to tendinopathy.

REFERENCES


VARIATION WITHIN THE iNOS GENE INFLUENCES RISK OF ACHILLES TENDON PATHOLOGY IN A BRITISH COHORT

Charlotte Brookes1, Louis El Khoury2, Rebecca Rickaby3, William Ribbans4, and Stuart Raleigh5

1Faculty of Health and Society, University of Northampton, Northampton, UK, charlotte.brookes@northampton.ac.uk, 2Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA, ElKhoury.Louis@mayo.edu, 3 Faculty of Health and Society, University of Northampton, Northampton, UK, rebecca.rickaby@northampton.ac.uk, 4 Faculty of Health and Society, University of Northampton, Northampton, UK, billribbans@billribbans.com, 5Centre for Sport, Exercise and Life Sciences, Coventry University, Coventry, UK, ac8510@coventry.ac.uk