
1

QoS-Aware Service Selection

Abstract
As the widespread use of the Internet, the number of web services that

can provide similar functionality is increasing rapidly in recent years, web
service selection has to be based on some non-functional attributes of the
services such as the quality of service (QoS). In this chapter, we use a server
switching service that is commonly used in Internet hosting environment to
explain how an agent can use a performance model to evaluate services and
select the most suitable services among a number of functionally similar
services returned by the service discovery. The various criteria that can be
used to assess QoS are introduced in this chapter, including mean response
time, throughput, system utilisation and some others closely related to
business such as revenue and operating costs. Service selection in the chosen
case study depends on the quality and suitability of various switching
policies, in another word, different switching policies can be selected
depending on the QoS of the services and the run-time system state. Since the
system performance can be evaluated using a analytic model, therefore, the
QoS of services is assessed based on the output of the performance model.

1 Introduction

There are two key challenges in Semantic Web services. One is service
advertisement and discovery, which has been discovered in last chapter. The

second key challenge is service selection and composition, which has attracted

extensive research in the literature [1, 2, 3, 4, 5, 6, 7, 8].

Web services are usually described by WSDL [9] and published by registering
the service using UDDI [10]. Current approaches for service publication and

registration rely on static description of web service interfaces. The static
description is sufficient for providing some information such as service
functionality, service URL and the service namespace. However, some other

attributes such as QoS of a service can not be accurately described as it is runtime
environment dependent. A web service might work well in one scenario, whereas

it might be a bad choice for another scenario. Therefore, it is crucial to select the

most suitable service among many functionally similar services.

The goal for service selection is to find the best set of services available at
runtime, taking into consideration end-user preferences and the execution

context [2]. It is a challenge task as it is very difficult to predict the QoS of a given
web service. The challenge arises partly because you may not able to trust the
other party who could claim arbitrary QoS properties to attract interested parties,

and partly because you lack knowledge of the environment within which it is
executing, especially in some runtime context where many factors could affect the

performance of the service. Moreover, dynamic evaluation of service is usually
required as the run-time system state is changing. In addition, all customer system
environments are different, thus it is difficult for the service provider to test the

2

service for all scenarios. Therefore, it might be a good idea that the agents be able

to evaluate the quality of a service in different customised environments using a

performance model.

In this chapter, we use a server switching service usually used in Internet
hosting centres to explain how an agent can use a performance model to evaluate
and select the most suitable services among a number of functionally similar

services returned by the service discovery. Service selection in the chosen case
study depends on the suitability and quality of various switching policies, that is

different switching policies can be selected depending on the QoS of the services
and the run-time system state. Since the system performance can be evaluated

using a analytic model, therefore, the QoS of services is assessed based on the

output of the performance model.

2 Service Selection Procedure

Figure 1: System diagram of service selection.

Figure 1 is an illustration of the service selection procedure. First, when a

client sends a service request, the agent searches for services that can provide
required capabilities in the registry and uses the matchmaker to match the user

requirements (in terms of the functionality required) with all available services.
The output from the service matchmaker is a number of functionally similar
services. The agent needs to choose the most suitable service among those

services based on some non-functional attributes such as the QoS of the services.
As introduced earlier, it is very difficult to present QoS using static description in

WSDL. Therefore, the performance evaluation manager can play a important role
in the service selection process. Evaluation can be made throughput analytical

model, simulation or the hybrid approach. The evaluation manager takes the
system data such as system architecture configuration information, runtime
workload demand and feeds the data into the performance model for evaluation.

The main benefit of the use of performance model is that performance can be
quickly evaluated without actual invocation of the services. Performance metrics

of each model depends on the design of the model and the common metrics
include mean response time, throughput and system utilisation. Some other
performance metrics related closely to business include operational costs, system

revenue.

3

Based on the performance evaluation results, the agent can choose the most

suitable service and composite it when it is needed. This chapter focuses on
service selection, and service composition will be introduced in the next chapter.
When a service is selected and properly composited, it then can be called by the

client. After service invocation, the user can give feedback of the service via a
feedback (or recommendation) system. The feedback component in the

framework is used for the purpose – to adjust the performance model and to

dynamically adapt to user requirements.

In the next section, we use the server switching service as an example to
explain how performance evaluation can be done and how the results can be used

to assist web service selection.

3 Case Study – Selection of Switching Service

3.1 Server Switching in Internet Hosting Centres

Internet services are normally hosted in a commercial hosting environment that
are run by Internet Service Providers (ISPs). Workload demand for Internet
services is usually very bursty [11][12][13], thus it is difficult to predict the

workload level at a certain point in time. Therefore, fixed server configurations
for a service are far from satisfactory for an application when the workload level

is high; whereas it is potentially a waste of resource while the workload is light
for the remaining applications supported by the system. Therefore, it is desirable
that server resources in a shared hosting environment can be switched between

applications to accommodate workload variation.

 Presentation Application Data Persistence
 Tier Tier Tier

Figure 2: Illustration of server switching in a multi-tier architecture.

A server switching service is a service that can be employed by the ISPs to
improve the Internet service and optimise the resource usage in the server

centres. To employ a switching service, the ISPs need to assess the quality of the
service, in another word, to assess the benefits of using the switching service. The

quality of the switching service depends on the benefits it has brought to the ISPs,

W eb
Servers

Application
Servers

Database
Servers

W eb
Servers

Application
Servers

Database
Servers

Requests
Application

A

Requests
Application

B

Partition A

W eb
Servers

Partition B

Application
Servers

Database
Servers

Partition A Partition A

Partition B Partition B

4

thus, to assess the quality of a switching service, one needs to assess the

improvement of the Internet services. There are a number of performance metrics
to evaluate the quality of a switching service. From a request sender’s perspective,
mean response time is the main performance metric; from ISPs’ perspective, some

performance metrics include throughput, system utilisation and total generated

revenue due certain period.

Figure 2 is an illustration of how server switching happens in a distributed e-
Business environment. The diagram assumes the ISP hosts two different Internet

services, both of which require a multi-tier system architecture. The typical
system configuration includes the presentation tier, application tier and data

persistence tier. In each tier, a cluster of servers is used for processing the
requests. In Figure 2, the cluster of servers in each tier is partitioned into two
pools, each of which is responsible for each Internet application. When there is a

need, some portion of servers at the same tier can be switched between pools to
adapt workload fluctuation.

3.2 Server Switching Procedure

Figure 3: Server switching procedure.

Figure 3 shows how server switching works in a distributed e-Business

environment. This diagram is a portion of Figure 1 and it corresponds to the
evaluation manager component of Figure 1. In this diagram, there are some key

components, including admission control, workload model, performance model,
system monitoring and the switching engine. When requests arrive, they are
controlled by the admission control component, based on the system information

(e.g. system utilisation) from the monitoring component. The workload model
takes as the input the allowed requests and builds a workload model based on the

workload characteristics. The performance model then takes as input the output
of the workload model and system architecture configuration and calculates the
required performance metrics. These metrics combined with system information

from the monitoring facilities are fed into the switching engine, which then
computes the benefits and penalties of all possible switches before making the

Admission
Control

Enterprise System

System
Monitoring

Switching
Engine

Performance
Model

W orkload

SLA

W orkload
Model

5

final switching decision. In the following section, we show how to model the multi-

tier Internet services using queueing network.

3.3 Modelling Multi-tier Internet Services

A multi-tiered Internet service can be modelled using a multi-class closed
queueing network [14, 15]. Figure 4 shows a model for a typical configuration of

such applications. In the model, C refers to the client; WS, AS and DS refer to the
web server, application server and database server respectively. The queueing
network is solved using the MVA (Mean Value Analysis) algorithm [16], which is

based on Little’s law [17] and the Arrival Theorem [16, 18] from standard
queueing theory. In this section, we briefly describe how different performance

metrics can be derived from the closed queueing network model. Table 1
summarises the notation used throughout this chapter.

Table 1: Notation used in this chapter

Symbol Description

Sir Service time of job class-r at station i

vir Visiting ratio of job class-r at station i

N Number of service stations in QN

K Number of jobs in QN

R Number of job classes in QN

Kir Number of class-r job at station i

mi Number of servers at station i

φr Revenue of each class-r job

πi Marginal probability at centre i

T System response time

Dr Deadline for class-r jobs

Er Exit time for class-r jobs

Pr Probability that class-r job stays

Xr Class-r throughput before switching

Class-r throughput after switching

Ui Utilisation at station i

ts Server switching time

td Switching decision interval time

Consider a product form closed queueing network with N load-independent

service stations. N = {1,2,··· ,N} is the set of station indexes. Suppose there are K
customers and they are partitioned into R classes according to their service

request patterns; customers grouped in a class are assumed to be statistically
identical. R = {1,2,··· ,R} is the set of class indexes. The service time, Sir, in a multi-
class closed queueing network is the average time spent by a class-r job during a

single visit to station1 i. The service demand, denoted as Dir, is the total service
requirement, which is the average amount of time that a class-r job spends in

service at station i during execution. This can be derived from the Service Demand

1 the terms station, centre and node have the same meaning, and are used interchangeably.

6

Law [19] as Dir = Sir·vir; here vir is the visiting ratio of class-r jobs to station i. Kr is

the total population of customers of class r. The total population of the network is

thus defined as K = Pr Kr. The vector

K~ = {K1,K2,··· ,KR} is used to represent the population of the network.

In modern enterprise systems, clusters of servers are commonly used in each

application tier to improve server processing capability. Thus, when modelling

Figure 4: A model of a typical configuration of a cluster-based multi-tiered

Internet service. C represents customer machines; WS, AS and DS represent web

servers, application servers and database servers, respectively.

those applications, we need to consider both -/M/1-FCFS and -/M/m-FCFS in each
station. Suppose there are k jobs in the queueing network, for i = 1, ..., N and r = 1,

..., R, the mean response time of a class-r job at station i can be computed as follows

[20],

 (1)

here, (k − 1r) = (k1,...,kr − 1,...,KR) is the population vector with one classr job less in
the system. The mean system response is the sum of mean response time of each

tier.

For the case of multi-server nodes (mi > 1), it is necessary to compute the

marginal probabilities. The marginal probability that there are j jobs (j = 1,...,(mi −
1)) at the station i, given that the network is in state k, is given by [20],

 (2)

Applying Little’s law [17], the throughput of class-r jobs can be calculated,

 (3)

Applying Little’s Law again with the Force Flow Law [19], we derive the mean

queue length Kir for class-r job at station i as below,

 Kir (k) = Xr (k) · Tir (k) · vir (4)

7

The starting point of this equation is Kir(0,0...,0) = 0,πi(0 | 0) = 1,πi(j | 0) = 0;

after K iterations, system response time, throughput and mean queue length in

each tier can be computed.

In multiclass product form queueing networks, per-class station utilisation

can be computed using the following equation [16],

 (5)

and the total station utilisation Ui(k) is the sum of per-class station utilisation,

The above is the exact solution for multiclass product form queueing

networks. The trade-offs between exact solutions and approximations are
accuracy and speed. We use exact solutions to guide server switching decisions as

a higher degree of accuracy is believed to be important here. However, a dedicated
machine can be used for the switching system itself, to solve speed and storage

issues and to reduce the interference with the servers themselves. In our model,
job class switching is not permitted.

3.4 Model Parameterisation

Once a performance model is built, it can be parameterised. The parameterisation
involves collection and manipulation of sample data. Sample data to be collected

include service time Sir of each type of request, the visiting ratio vir. Since service
demand Dir = Sir × vir, so essentially, only service demand of each request needs to
be collected. Service demand of each request is difficult to measure, however,

according to the service demand law [19], Dir = Ui/Xir, here Ui is the utilisation of
service station i and Xir is the throughput of job class r at station i. Therefore, we

can measure Ui and Xir (through monitoring utility or system log) and calculate Dir

using the service demand law. In a real test-bed, we could drive the system

utilisation to a required level by sending a large number of requests that are of
the same type, and measure the resulted throughput. The service demand of each

request can then be computed based on the service demand law.

3.5 Bottleneck Identification of Multi-tier Architecture

Bottlenecks are a phenomenon where the performance or capacity of an entire
system is severely limited by a single component. This component is sometimes
called the bottleneck point. Formally, a bottleneck lies on a system’s critical path

and provides the lowest throughput [21]. It has been shown in [22] that multiclass
models can exhibit multiple simultaneous bottlenecks. The dependency of the

bottleneck set on the workload mix is therefore derived. In an enterprise system
there are normally different classes of jobs and the class mix can change at run-

time. This suggests that there might be several bottlenecks at the same time and
bottlenecks can shift from tier to tier over time. Therefore, system designers need
to study the best server configuration to avoid bottlenecks during system capacity

planning and provisioning, and ideally provide schemes to support dynamic

server allocation during run-time.

8

3.5.1 Identification Methods

In [23], it is shown that the bottleneck for a single class queueing network is the
station i with the largest service demand Sivi, under the assumption of the
invariance of service time Si and visiting ratio vi and given routing frequencies.

Considerable research exists [22][23][24][25][26] which studies bottleneck
identification for multi-class closed product-form queueing networks as the

population grows to infinity. For a finite population, the results in [27][28] can be
used. In this paper we use the approach developed in [29], which uses convex
polytopes for bottleneck identification in multi-class queueing networks. This

method can compute the set of potential bottlenecks in a network with one
thousand servers and fifty customer classes in just a few seconds.

 0

46.2 61.5 100 gold class jobs (%)

Figure 5: Bottleneck of the two-class queueing network in pool 1.

 0 16.7 33.3 50.0 75.0 100 silver class jobs (%)

Figure 6: Bottleneck of the two-class queueing network in pool 2.

Fig. 5 and Fig. 6 are the bottleneck identification results using convex
polytopes for our chosen configurations for pool 1 and pool 2. Fig. 5 shows that in

pool 1, when the percentage of gold class jobs is less than 46.2%, the web server
tier is the bottleneck; when it is between 46.2% and 61.5%, the system enters a

crossover points region, where the bottleneck changes; when the percentage of
gold class jobs in pool 1 exceeds 61.5%, the application server tier becomes the

bottleneck.

Fig. 6 shows the bottleneck identification in pool 2. It is more complex and is
a good example of multiple bottlenecks and bottleneck shifting. In this case, when

the percentage of silver class jobs is less than 16.7%, the web server tier is the
bottleneck; when it is between 16.7% and 33.3%, both the web server tier and the

silver class jobs (%)

100

53.8
38.5

 WS tier

 WS tier
 AS tier

 AS tier

gold class jobs (%)

100

50.0

25.0

 DS tier
 WS tier

 AS tier

 AS tier

 WS tier

 DS tier

 DS tier

66.7
83.3

9

database tier are in the crossover region; if the percentage of silver class jobs lies

in the region 33.3% to 50.0%, the database tier becomes the bottleneck; when it
is between 50.0% and 75.0%, the system enters another crossover region, where
the application server tier and the database server tier dominate; and finally, if

the percentage of silver class jobs exceeds 75.0%, the application server tier is the

bottleneck in the system.

Fig. 7 and Fig. 8 provide a clear picture as to how the utilisations
corresponding to the workload mix changes in both pools. The two figures can

also be used to verify the results in Fig. 5 and Fig. 6.

 Figure 7: Utilisation in pool 1. Figure 8: Utilisation in pool 2.

3.6 Server Switching for Revenue Maximisation

As previously highlighted, the workload in enterprise systems can vary
significantly. It is therefore the case that one-time system configuration is no

longer effective and it is desirable that servers be able to switch from one pool to
another, depending on the load conditions. However, the server-switching

operation is not cost-free, since during the period of switching the servers being
switched cannot serve jobs. Therefore, a decision has to be made as to whether it
is worth switching in terms of revenue maximisation.

3.6.1 Revenue Function

For a typical Internet service, a user normally issues a sequence of requests

(referred to as a session) during new visit to the service site. Intuitively, a request
contributes full revenue if it is processed before the deadline2 Dr. When a request
r misses its deadline, it still waits for execution with a probability P(Tr) and credit

is still due for late, yet successful processing. As can be seen from Figure 9, when
the response time Tr < Dr, then P(Tr) = 1; which means that the request contributes

full revenue and the user will send another request. Suppose Er is some time point,
at which the request is dropped from the system. It is assumed in this chapter that

when Dr ≤ Tr ≤ Er, the request will quit the system with probability P(Tr), which
follows a uniform distribution (refer to Figure 10). If Tr ≥ Er, then P(Tr) = 0, which
means that the request quits the system without contributing any revenue. The

following equation is used for calculating Pr,

2 soft deadline in lieu of hard deadline is used in this chapter.

10

 (6)

The meaning of the above equation is that the longer the completion time of a
job r exceeds its deadline, the more likely it is that the client will quit the system,

thus approximating real-world client behaviour.

Figure 9: Illustration of the relationship between job response time and the

probability that the customer will remain in the system.

Figure 10: Illustration of the relationship between the probability density

function and request response time.

3.6.2 Revenue Maximisation

Based on the revenue function, the revenue gained and lost by server switching

can be calculated. Suppose some servers need to be switched from pool i to pool

j. We use to represent the revenue loss in pool i. From the time that switching
happens, the service capacity offered by server pool i starts to degrade. From eq.
7, the revenue loss in pool i can be derived,

 R R

 i X i i i X i0 i i
 Vloss = Xr(k)φrP(Tr)td − Xr (k)φrP(Tr)td (7)
 r=1 r=1

The server switching itself takes time, during which neither pool i nor pool j can

use the servers being switched. Only after switching time ts, does pool j then
benefit from the switched servers. During the switching decision interval time td,

the revenue gain Vgainj can be calculated as below,

T r E r D r

P (T r)

1

D r E r

1
E r − D r

T r

f (T r)

11

here, it is assumed the decision interval time td > ts.

Our goal in this chapter is to maximise the ISP’s total revenue contributed by
both pool i and pool j. In other words, when we decide whether to switch servers,

we need to compare the revenue gain and loss caused by server switching, and

the switching is done only when . In this chapter, we only consider
switching servers between pools in the same tier (i.e., we switch web servers from
pool i to the web server tier in pool j), although given proper configuration, the

switching is also possible between tiers (i.e., switching web servers in pool i to the
application tier in pool j).

3.7 Switching Policies

In this section, we describe two different server switching policies namely the

proportional switching policy (PSP) and the bottleneck-aware switching policy
(BSP). In the real-world web service registry, there might be a large number of

similar services in terms of the switching functionality, however, the service

selection procedure discussed in this chapter is the same for each of the services.

3.7.1 Proportional Switching Policy

First, we consider a n¨aive policy called the proportional switching policy (PSP).

The policy switches servers between pools based on the workload proportion in
both pools. Performance criteria for server switching is computed using the
queueing network model; if the performance of the new configuration is better

than the current one, then server switching is done, otherwise the server

configuration remains the same. Algorithm 1 describes how the policy operates.

Input: N, mi, R, Kir, Sir, vir, φr , ts, td

Output: Server configuration

1. for each i in N do

2. m1i/m2i = K1/K2

3. end for

4. calculate Vloss and Vgain using eq. 7 and eq. 8;

5. if Vgain > Vloss then

6. do switching according to the

calculations;

7. ;

8. else

9. server configuration remains the same;

10. end if

11. return current configuration.

Algorithm 1: Proportional Switching Policy

Algorithm 1 is simple as it only considers the workload proportion. In fact,
workload mix and revenue contribution from individual classes in different pools

can also affect the total revenue. In the next section, we will introduce a new
switching policy, which takes the above factors into account.

12

3.7.2 Bottleneck-aware Switching Policy

Here we describe a more sophisticated server switching policy called the
bottleneck-aware switching policy (BSP), as described in Algorithm 2. BSP works
in two phases: 1) Bottleneck identification. It first checks for bottleneck saturation

in both pools. If both pools have bottlenecks at the same tier, two cases are
considered: a) if both of them are saturated, then no server will be switched; b) if

a bottleneck is saturated in one pool but not in the other, then the algorithm

incrementally switches servers to the bottleneck tier and compares the

Input: Nr, mi, R, Kir, Sir, vir, φr , ts, td

Output: new configuration

1. while bottleneck saturation found in one pool do

2. if found at same tier in the other pool then

3. return;

4. else switch servers to

the bottleneck tier;

5.and;

6. end if

7. end while

8. search configurations using Algorithm 3

9. return current configuration.

Algorithm 2: The Bottleneck-aware Switching Policy

13

Input: Nr, mi, R, Kir, Sir, vir, φr , ts, td

Output: best configuration

Initialisation: compute Ui1,Ui2

1. while do

2. if then

3. ;

4. while do

5. if then

6.;

7. whiledo

 then 8. if

9.;

10.compute Vloss using eq. 7;

11.;

12. compute Vgain using eq. 8;

13. if Vgain > Vloss then

14. store current configuration;

15. end if

16. compute new Ui1,Ui2;

17. end if

18. end while

19. similar steps for

20. ;

21. compute new Ui1,Ui2;

22. end if

23. end while

24. similar steps for

25. ;

26. compute new Ui1,Ui2;

27. end if

28. end while

29. similar steps for

30. return best configuration.

Algorithm 3: The Configuration Search Algorithm new revenue with
the value from the current configuration. If a potential switch will
result in more revenue, then the configuration will be stored. The
process continues until no bottleneck saturation in either pools or no
more switching can be done from the other pool. Note that when
bottleneck saturation is found, server switching in other tiers has
little or no effect, thus it can be safely neglected. 2) Local search. If
there is no bottleneck saturation in either of the pools, then the
algorithm computes the server utilisation at all tiers in both pools
and switches servers from low utilisation tiers to high utilisation tiers
using a local search algorithm (Algorithm 3). In both algorithms,

14

superscripts represent pools and subscripts 0, 1, 2 represent the web
tier, application tier and database tier respectively.

Algorithm 3 uses nested loops to search for possible server switches, starting
from the web tier continuing to the database tier. It tries to explore as many

possible switching configurations as possible. However, the algorithm will not
guarantee that the best switching result (the global optimal) will be found, thus it

is a best-effort algorithm. If we use m0,m1,m2 to represent the total number of web
servers, application servers and database servers in both pools respectively, in
the worst case, the total number of searches made by Algorithm 3 will be

(m0−2)×(m1−2)×(m2−2), therefore the time complexity is O(m0·m1·m2). For
typical server configurations, m0, m1 and m2 are not normally large, thus Algorithm

3 is feasible in practice. The time for each search iteration depends on the
complexity of the underlying queueing network model, which in turn depends on
the number of stations and the number of job classes (the dominant factor as

shown in [25]). Enterprise systems are normally three-tiered (N = 3), and the
number of job classes is normally small, depending on the classification criteria.

Therefore, solving such a multi-class closed queueing network model is very
quick, thus the same applies for each iteration in the searching algorithm. As

shown later in this chapter, for our configuration, the average runtime of the
algorithm is less than 200 milli-seconds on a 2.2Ghz computer, which is

considered acceptable.

For complex multi-class closed queueing network models, with thousands of
stations and hundreds of job classes, the storage requirement for solving the

models are very high. In our case, storage is also not an issue as the model is
relatively simple. Moreover, as mentioned in section ??, using a dedicated

machine for the switching engine can increase the searching speed, and also relax
the associated storage requirement.

3.8 Proactive and Reactive Switching

In our proposed switching system, two approaches to server switching can be
used – proactive switching and reactive switching. Proactive switching is

motivated by identifying similar workload patterns over time (hours, days, weeks
etc). Most Internet services have cyclical patterns. For instance, for real-time

financial applications, the peak load normally appears at the beginning and the
end of the market, and the load is lower during the remainder of the opening
hours; it is also the case that Monday and Friday are busier than other weekdays.

Based on historical workload patterns, and by applying some workload prediction
techniques such as those introduced in [30], the server switching engine can re-

allocate resources before the expected heavy workload arrives, and also, can save
the costs of server switching during a heavily loaded period. However, due to
uncertainties, workload demand can have huge variation and predictive

inaccuracies can be introduced by the workload predictor, which are then passed
to the switching engine, stimulating inappropriate or wrong decisions. Therefore,

proactive switching is not perfect and it can at best hope to improve the overall

performance during long term periods.

Reactive switching is more dynamic, based on run-time system parameters
and can respond to system state changes quickly. The run-time data is collected

15

via system monitoring tools, is reformatted, and is fed into the analytical model.

The model then is solved and alternative switching decisions are compared. The
proactive and reactive switching approaches can of course work together to
optimise the overall system performance.

3.9 Admission Control

As described in the literature, admission control (AC) is necessary for busy

Internet services in order to achieve the SLAs. When a system is overloaded, most
ISPs simply reject less important requests. ISPs may give their customers

compensation for the rejected requests, depending on the SLAs between

themselves and their customers.

In this work, we also use a simple admission control scheme, in addition to the
server switching policy, to maintain the number of concurrent jobs in the system
at an appropriate level. When the workload is high, which in turn makes the

overall system response time high, less important requests are rejected first. If
requests in this category are rejected, but the overall response time still remains

high, the AC scheme continues to reject jobs in the system, until the response time

decreases to an acceptable level.

4 Performance Evaluation

4.1 Experimental Setup

We design and develop a simulator to evaluate the server switching approach in

this chapter. Two applications are simulated, running on two logical pools (1 and
2). Each application has two classes of job (gold and silver), which represent the

importance of these jobs. Both applications are multi-tiered and run on a cluster
of servers. The service time Sir and the visiting ratio vir are chosen based on

realistic values or from those supplied in supporting literature.

Based on a real test-bed which we have access to, the application server
switching takes less than five seconds and web server switching is relatively

straightforward. Database server switching is more complex, however, it does not
affect the switching policy itself. In this chapter, we assume switching cost for web

servers, application servers and database servers is the same for simplicity.

Experimental parameters used for our evaluation can be found in Table 2.

4.2 Evaluation Results

Experiments have been conducted for a number of different workload scenarios

called mixed workload, cross load, random load and workload generated from real-
world Internet traces. For each of these cases, we compare the results from Table

2: Experimental parameters.

 Pool 1 Pool 2

Silver Gold Gold Silver

16

Number of

servers

WS

AS

DS

4

10

2

 5

15

3

Service

time(sec)

WS

AS

DS

0.07

0.03125

0.05

0.1

0.1125

0.025

0.05

0.01

0.0375

0.025
0.06

0.025

Visiting ratio

WS

AS

1.0

1.6

0.6

0.8

1.0

2.0

0.8

1.0

 DS 1.2 0.8 1.6 1.6

Deadline (sec) 20 15 6 8

Exit point (sec) 30 20 10 12

Revenue unit 2 10 20 4

our proposed bottleneck-aware server switching policy (BSP) with those from the

proportional server switching policy (PSP) and the non-switching policy (NSP).

4.2.1 Mixed Workload

As described in section 3.7.2, even if the total workload remains the same, system
bottlenecks can shift among tiers depending on the workload mix. To study the

system behaviour of different workload mixes, we choose a few key evaluation
points illustrated in Figure 5 and Figure 6. Two sets of experiments are run: 1)

keeping the workload mix constant in pool 1 and altering the workload mix in
pool 2, as shown in Figure 11, 12 and 13; 2) keeping the workload mix in pool 2
constant and altering the workload mix in pool 1 as seen in Figure 14, 15, 16. The

server switching time is set to 5 seconds and the switching decision is made every
30 seconds. We explain the impact of the workload mix on the total revenue for

the NSP, and compare the results against the PSP and BSP policies.

Figure 11: The ratio of silver class

jobs to gold class jobs in pool 1 is
(80:20).The percentage of silver

class jobs in pool 2 ranges from 10%

to 90%.

Figure 12: The ratio of silver class
jobs to gold class jobs in pool 1 is

(60:40). The percentage of silver
class jobs in pool 2 ranges from 10%

to 90%.

17

Figure 13: The ratio of silver class
jobs to gold class jobs in pool 1 is

(20:80). The percentage of silver
class jobs in pool 2 ranges from 10%

to 90%.

Figure 14: The ratio of gold class jobs
to silver class jobs in pool 2 is

(80:20).The percentage of gold class
jobs in pool 1 ranges from 10% to

90%.

Figure 15: The ratio of gold class jobs

to silver class jobs in pool 2 is
(60:40). The percentage of gold class

jobs in pool 1 ranges from 10% to

90%.

Figure 16: The ratio of gold class jobs

to silver class jobs in pool 2 is
(20:80). The percentage of gold class

jobs in pool 1 ranges from 10% to

90%.

From Figure 11, 12 and 13, it can be seen that when the workload mix in pool
1 is constant, Figure 11, 12 and 13 show similar patterns. The total revenue from
both pools from NSP and PSP decreases when the percentage of silver class jobs

in pool 2 increases from 10% to 40%. This is understandable as silver class jobs

18

contribute less to the total revenue. When the percentage increases to 50%, there
is a big increase in total revenue. Based on our observations, this is due to a lower
response time in pool 2, which is less than Er for gold class jobs in pool 2. When

the percentage of silver class jobs is over 50%, although the response time in pool
2 decreases, the total revenue again decreases due to the decreasing weight of

gold class jobs. It can also be seen that Figure 11 has the highest revenue and
Figure 13 has the lowest revenue among the three cases. This is due to the longer
response time (within deadline) in pool 1 as a result of the percentage increases

in gold class jobs in the pool. As we know, a longer response time results in less

throughput, which then results in less revenue contribution.

In the second set of experiments, the workload mix in pool 2 is constant and
the percentage of gold class jobs in pool 1 is altered. Figure 14, 15 and 16 also

present similar patterns. The total revenue in all three cases decreases when the
percentage of gold class jobs in pool 1 increases from 10% to 50%. The difference

in revenue between BSP and the other two policies is smaller as the weight of gold
class jobs increases. When the percentage is greater than 50%, the total revenue
increases as the percentage of gold class jobs in pool 1 increases. We notice that

the total revenue in Figure 16 is significantly higher than that in the other two
cases. This is due to lower response time (below Er) of both classes of jobs in pool

2, which can result in a significant increase in revenue.

In both sets of experiments, it can be seen that PSP and NSP have almost the

same impact on total revenue for the one-time switching. The total revenue from
NSP is always higher than those from the other two policies as the local search
algorithm is employed in BSP and switching is done only when a better

configuration is found.

4.2.2 Alternative Workload

In a web hosting centre, it is not uncommon that during certain periods the
workload for one application is increasing while it is decreasing for another. This

kind of crossover in workload can affect overall system performance. In this
section, we conduct performance evaluation for two cases: 1) when the workload
increases in pool 1 and decreases in pool 2; 2) when the workload increases in

pool 2 and decreases in pool 1. In both cases, the workload mix for silver and gold
class jobs in both pools is constant. The total number of concurrent users is set to

a fixed number (200), which matches the value in section 4.2.1. During evaluation,
admission control is applied when necessary. Both sets of experiments are run for
570 seconds, during which 19 switching decisions are made. Table 3 and Table 4

list the results for both sets of experiments.

In Table 3, we see that the workload in pool 1 increases by 10 each time from

10 to 200, while it decreases by 10 from 200 to 10 in pool 2. The total revenue
from NSP is 88,093. If AC is not applied, the total revenue from PSP and BSP are

85,130 and 1,900,034, representing a -3.4% and a 115.7% improvement,
respectively. When AC is applied, the total revenue from PSP and BSP are 85,130

and 211,947, representing a -3.4% and a 140.6% improvement, Table 3: Load in

pool 1 increases while it decreases in pool 2.

Workload NSP Without A/C With A/C

19

(P1, P2) PSP BSP PSP BSP

(20,190) 2418 403 5916 403 5916

(30,180) 2429 2429 2569 2429 2569

(40,170) 2429 2429 6134 2429 6134

(50,160) 2425 2425 2619 2425 2619

(60,150) 2420 2420 7175 2420 7175

(70,140) 2415 2415 3458 2415 3385

(80,130) 2410 2410 15097 2410 15097

(90,120) 3827 3827 10389 3827 9288

(100,110) 3459 3459 11014 3459 3837

(110,100) 6374 6374 11872 6374 16510

(120,90) 5244 5526 11189 5526 16497

(130,80) 5557 6923 7963 6923 16233

(140,70) 4761 6255 13367 6255 16151

(150,60) 6735 3780 13408 3780 16038

(160,50) 6834 6905 13461 6905 15877

(170,40) 6944 6273 13532 6273 15639

(180,30) 7068 6478 13632 6478 15264

(190,20) 7201 7012 13752 7012 14604

(200,10) 7143 7387 13487 7387 13114

Total revenue 88093 85130 190034 85130 211947

Improvement -3.4% 115.7% -3.4% 140.6%

respectively. The negative impact from PSP is reasonable as the PSP is a n¨aive
switching policy, which simply allocates servers based on the workload
proportion regardless of the performance results. Moreover, for each server

switching, there is also a cost associated with it. Although during each run, the
resulting revenue from PSP is higher than from NSP, in the long term the overall

improvement could be negative (note that PSP does not switch servers in each
run). In this set of experiments, there is also a performance improvement when

admission control is applied.

In Table 4, the workload in pool 1 decreases by 10 each time step from 200 to
10, while it increases in steps of 10 from 10 to 200 in pool 2. The total revenue

from NSP is 83,289. Without AC, the total revenue from PSP and BSP are 105,698
and 127,469, representing a 26.9% and a 53.0% performance improvement,

respectively. When AC is applied, the new total revenues are 105,698 and
117,808, representing a 26.9% and a 41.4% improvement. Note that with AC, the

total revenue from BSP is less than it is in the no AC case. This is reasonable for
light load situation (such as the chosen workload in this case) because the AC
works before the BPS and if the workload results in system bottleneck saturation,

the AC simply rejects requests. However, the saturation for current configuration
can be relaxed in another configuration that is returned by the BPS, and the

rejected requests will result in loss of revenue. We believe when workload is high,
due to switching cost, the overall revenue without AC will be less than it in the
with AC case. To confirm this, we set the total number of users in both pools to

20

250. The total revenue from NSP is now 84,170. Without Table 4: Load in pool 1

decreases while it increases in pool 2

Workload

(P2, P1)
NSP

Without A/C With A/C

PSP BSP PSP BSP

(20,190) 7201 6227 14492 6227 14492

(30,180) 7068 6862 11895 6862 11895

(40,170) 6944 5584 9865 5584 9865

(50,160) 6834 5576 14617 5576 14617

(60,150) 6735 5569 14787 5569 14787

(70,140) 4761 5560 14917 5560 14917

(80,130) 5557 5551 1790 5551 1790

(90,120) 5244 5540 4567 5540 4742

(100,110) 6374 5528 7562 5528 5238

(110,100) 3459 5515 9442 5515 3321

(120,90) 3827 5499 12455 5499 4233

(130,80) 2410 5482 586 5482 2028

(140,70) 2415 5461 1792 5461 7181

(150,60) 2420 5436 1346 5436 1346

(160,50) 2425 5405 1468 5405 1468

(170,40) 2429 5367 1469 5367 1469

(180,30) 2429 5314 1471 5314 1471

(190,20) 2418 5229 1474 5229 1474

(200:10) 2339 4993 1474 4993 1474

Total revenue 83289 105698 127469 105698 117808

Improvement 26.9% 53.0% 26.9% 41.4%

AC, it is 127,918 using PSP and 158,487 from BSP, representing a 52.0% and a
88.3% performance improvement. With AC, the total revenue from PSP and BSP

are 127,918 and 161,550, representing a 52.0% and a 115.7% performance
improvement. In conclusion, BSP always outperforms PSP in terms of revenue

contribution. The AC doesn’t always improve performance, depending on the
workload intensity and workload mix.

4.2.3 Random Workload

In this section, we consider a more representative workload scenario – the
random workload. The number of users in pools 1 and 2 are uniformly distributed

between 20 and 200. Moreover, the workload mix in each pool is also random. In
section 4.2.1 and section 4.2.2, a thirty-second fixed switching decision interval is

used. In this section the switching decision interval time is the same as the
workload change interval time, which is also a random number uniformly
distributed in a fixed range. Two cases are considered: 1) a short switching

decision interval time uniformly distributed between 15 and 25 seconds; 2) a long
switching decision interval time uniformly distributed between 25 to 55 seconds.

In section 4.2.1 and section 4.2.2, a 5 second fixed server switching time is used;

21

we also alter the switching time (to 5, 10 and 15 seconds) and evaluate the
performance impact of the switching cost on total revenue for the three different
switching policies. We evaluate the performance of the three policies with and

without the admission control scheme for each of the above cases. All the
experiments run for approximately two hours, during which 1,000 switching

decisions are made.

Table 5: Short decision interval for random load.

 Without A/C With A/C

Switching time Metrics NSP PSP BSP NSP PSP BSP

5 sec

No. of switches 0 130
Revenue (x1000) 2340 2833
Improvement (%) 0 21.1

20
5692
143.3

0
2340

0

145
2813
20.2

15
5702
143.7

 Improvement over non-ac (%) 0 -0.71 0.17

10 sec

No. of switches 0 108
Revenue (x1000) 2340 2886
Improvement (%) 0 23.3

3
4731
102.2

0
2340

0

112
2894
23.7

13
5684
142.9

 Improvement over non-ac (%) 0 0.27 20.2

15 sec

No. of switches 0 101
Revenue (x1000) 2340 2928
Improvement (%) 0 25.2

3
4730
102.1

0
2340

0

106
2937
25.5

3
4783
104.4

 Improvement over non-ac (%) 0 0.29 1.13

Tables 7 and 8 list the performance results for short and long switching

decision intervals (thus switching decision interval time). As can be seen from
Table 7, for different server switching times, both PSP and BSP perform better
than NSP in terms of revenue contribution with and without AC. When no AC is

applied, the improvements are 21.1% and 143.3%, 23.3% and 102.2%, 25.2% and
102.1% for the 5, 10 and 15 second switching times respectively. With AC, the

improvement are 20.2% and 143.7%, 23.7% and 142.9%, 25.5% and 104.4%, for
the three cases, respectively. Without AC, the numbers of switches are 130 and

20, 108 and 3, 101 and 3, for 5, 10 and 15 second switching times respectively.
When AC is employed, the numbers are 145 and 15, 112 and 13, 106 and 3,
respectively. As can be seen from both tables, the number of server switches

decreases as the server switching time increases. This is because the increase in
switching time makes server switching more costly, which results in fewer

switches. PSP always implements more switches than BSP. Also, the total revenue
from BSP decreases slightly whereas it increases using PSP as the server
switching time increases. This is understandable since PSP makes switching

decisions solely based on workload proportion, and it switches servers even
though the performance improvement may be very small. BSP on the other hand

tries to search for the best switching that results in more improvement at each
switching step. We find that the configuration returned by BSP is usually much

22

further from the current configuration (that not found by PSP), thus each BSP
switching step is more costly than that from PSP. On average, for each switching
step, the ratio of the improvement over the cost from BSP is greater than that from

PSP. Thus, BSP results in more revenue than the PSP policy. Due to the nature of
the random load, servers may need to be switched back to their original pool. As

the switching time increases, the number of switches for both policies decreases,
therefore the total revenue increases from PSP but decreases from BSP. However,
BSP consistently outperforms PSP in terms of revenue contribution for all cases,

and the improvement from BSP over NSP is more than four times that of PSP.

From Table 7, it can also be seen that when AC is employed, there is a
considerable improvement (20.2%) when the server switching time is 10

seconds. The improvement for the other two cases is less pronounced. The table
also shows that when AC is employed, PSP results in more switches in each case

compared with the no AC case. We believe this is a result of the workload mix
change, which is caused by the AC.

Table 6: Long decision interval for random load.

 Without A/C With A/C

Switching time Metrics NSP PSP BSP NSP PSP BSP

5 sec

No. of switches 0 152
Revenue (x1000) 4778 5702
Improvement (%) 0 19.4

20
11567
142.1

0
4778

0

158
5661
18.5

13
11579
142.4

 Improvement over non-ac (%) 0 -0.73 0.11

10 sec

No. of switches 0 134
Revenue (x1000) 4778 5710
Improvement (%) 0 19.5

20
11557
141.9

0
4778

0

82
6399
33.9

15
11577
142.3

 Improvement over non-ac (%) 0 12.1 0.17

15 sec

No. of switches 0 119
Revenue (x1000) 4778 5832
Improvement (%) 0 22.1

3
9539
99.7

0
4778

0

80
6436
34.7

15
11566
142.1

 Improvement over non-ac (%) 0 10.4 21.2

Table 8 presents similar results to those seen in Table 7. Without AC, the
number of switches for PSP increases from 130 to 152, 108 to 134, 101 to 119 for

5, 10 and 15 second switching times, respectively; the number from BSP drops to
3 for the 15 second case, this trend can also be seen in Table 7. This is reasonable

as longer switching interval times result in potentially better configurations, thus
more switches. With AC, the number of server switches for PSP increases from

145 to 158 for the 5 second case, but decreases from 112 to

82, 106 to 80 for the other two cases; the numbers of switches from BSP are 13,

15, 15 for 5, 10, 15 second switching times, respectively. We believe that the
workload mix (more weight for gold class jobs) in the long switching decision

23

interval case will result in more potentially better configurations, and thus more

switches.

The revenue improvement when using BSP is almost 142% for all the cases
regardless of the use of AC (an exception is the 99.7% implement for the case
when the server switching time is 15 seconds and no AC is employed). The reason

for the latter decrease is the same as for the number of switches above. The total

revenue improvement from PSP without AC are 19.4%, 19.5% and

22.1% for the three switching time cases. With AC, the improvements are 18.5%,
33.9% and 34.7%. The improvements are, however, much less than those from

BSP regardless of the use of AC.

4.2.4 Workloads Generated from Internet Traces

The workloads used for our simulation are generated from real-world Internet

traces [31]. Two Internet traces are used for the workloads in the two server pools
in the experiments. The EPA-HTTP trace contains a day’s worth of HTTP requests

to the EPA WWW server located at Research Triangle Park, NC. The SDSC-HTTP
trace contains a day’s worth of HTTP requests to the SDSC WWW server located
at the San Diego Supercomputer Centre in California. Workload characteristics (in

terms of the number of requests in the systems) in both traces are extracted every
five minutes. In this section, two switching decision intervals are considered: 1) a

short switching decision interval – 30 seconds; 2) a long switching decision
interval – 60 seconds. In section 4.2.2, a five-second fixed server switching time is

used; we use different server switching times (5, 10 and 15 seconds) in this
section and evaluate the performance impact of the switching cost on total
revenue for the three different switching policies. We evaluate the performance

of the three policies with and without the admission control scheme for each of

the above cases.

Table 7: Short decision interval for workload from traces.

 Without A/C With A/C

Switching time Metrics NSP PSP BSP NSP PSP BSP

5 sec

No. of switches 0 18
Revenue (x1000) 614 683.5
Improvement (%) 0 11.3

5
1374
123.7

0
614

0

18
683.2
11.3

7
1447
135.6

 Improvement over non-ac (%) 0 0 11.9

10 sec

No. of switches 0 14
Revenue (x1000) 614 715
Improvement (%) 0 16.4

5
1370
123.2

0
614

0

13
714.7
16.4

16
1370
123.2

 Improvement over non-ac (%) 0 0 0

15 sec

No. of switches 0 13
Revenue (x1000) 614 648.7
Improvement (%) 0 5.6

16
569.1
-7.3

0
614

0

13
648.7

5.6

24
1250
103.5

24

 Improvement over non-ac (%) 0 0 110.8

Tables 7 and 8 list the performance results for short and long switching
decision intervals. As can be seen from both tables, for different server switching
times, both PSP and BSP perform better than NSP in terms of revenue

contribution with and without AC, except for the long interval case when the
server switching time is 15 seconds. The improvement for PSP ranges from 5.6%

to 16.4% whereas it ranges from 103.5% to 136% for BSP with one exception

(-7.3%).

Table 8 shows that when the number of switches is the same (the number of
switches for BSP is the same for different switching times), the longer the server

switching time is, the less the performance improvement is. Table 8 also shows
that the number of switches for PSP when the switching time is 5 and 10 seconds
is the same; but when the switching time increases to 15 seconds, the number of

switches decreases by 2 to 16, which results in a slight performance
improvement. In Table 7, it can be seen that when the server switching time

increases from 5 seconds to 10 seconds, the number of server switches for PSP
drops from 18 to 14, which results in slight performance improvement. When the

switching time is increased to 15 seconds, the number of switches only decreases
by 1. Since the switching cost has increased by 50%, the total revenue is reduced.
Results from both tables are intuitive. Server switching is not costfree, therefore,

the performance improvement is closely related to how long a switching takes
and the number of server switches. There is a trade-off between performance

improvement and the number of server switches, and it depends on the decision
interval and the server switching time. On the one hand, more switches results in
more potential performance improvement, on the other hand, due to the

switching costs involved, too many switches could result in less or negative
improvement.

Table 8: Long decision interval for workload from traces.

 Without A/C With A/C

Switching time Metrics NSP PSP BSP NSP PSP BSP

5 sec

No. of switches 0 18
Revenue (x1000) 1228 1369
Improvement (%) 0 11.5

5
2750
123.9

0
1228

0

18
1369
11.4

7
2899
136.0

 Improvement over non-ac (%) 0 -0.1 12.1

10 sec

No. of switches 0 18 5
Revenue (x1000) 1228 1367
Improvement (%) 0 11.3

0
2747
123.7

18
1228

0

7
1366
11.3

2894
135.6

 Improvement over non-ac (%) 0 0 11.9

15 sec

No. of switches 0 16
Revenue (x1000) 1228 1420
Improvement (%) 0 15.6

5
2744
123.4

0
1228

0

16
1420
15.6

7
2890
135.3

25

 Improvement over non-ac (%) 0 0 11.9

For the chosen workload, when AC is applied, there is no performance
improvement for PSP, and the overall improvement for BSP is approximately
12%. The exception is the last case in Table 7, where the improvement is 103.5%

with AC but is negative without AC.

In conclusion, for certain workload scenarios, there is a trade-off between

performance improvement and the number of server switches for different server
switching times and switching decision intervals. The number of server switches

depends on workload characteristics. Admission control schemes do not always
improve performance for all workload scenarios.

5 The Selection of Switching Services

After extensive performance evaluation of the switching services, the agent can
then choose the most suitable service among all services. The goal of each server

switching service in the given example is to maximise the total revenue from both
server pools. The performance results show that the BSP service outperforms the

PSP service in terms of revenue contribution to ISPs, therefore, it should be
chosen in the given scenario.

6 Summary

In this chapter, we first explain the importance of web service selection as the
number of functionally similar services is increasing, hence, the agent has to

choose the best one among those services based on some non-functional
attributes such as the QoS of each service. The challenge of web service selection
arise due to a number of factors. One important factor is that it is very difficult to

assess the QoS of a service, especially in the real-time environment, where
changing system state can affect the quality of the service. Another important

factor that could affect the assessment of QoS is that some dishonours service
providers over claim the quality of their services to attract more clients. This issue

is closely related to reputation of service providers and trust between them and
the agents (or the end users). Some approaches such as the introduce of user

feedback (or voting) mechanisms can help to resolve the trust-related issues.

After general discussion of the procedure of service selection, we then use a
server switching service as an case study to describe the service selection

procedure. The focus of case study is on performance modelling of the multitier
Internet services and performance evaluation of various switching services

employed in such as multi-tier architecture. As can be seen in this chapter, service
selection after performance evaluation is straightforward, therefore,

performance evaluation plays a very important role in web service selection. The
development of performance models can be time-consuming, however, it is the
service providers’ responsibility to model their service and the targeted execution

environments.

26

References

[1] L. Vu, M. Hauswirth, and K. Aberer. QoS-Based Service Selection and Ranking

with Trust and Reputation. Lecture Notes in Computer Science, 2005.

[2] M. Sun and F. Arbab. Qos-driven Service Selection and Composition. In 8th

International Conference on Application of Concurrency to System Design,

2008.

[3] D. A. D’Mello and V. S. Ananthanarayana. Quality Driven Web Service
Selection and Ranking. In Fifth International Conference on Information
Technology (ITNG’08), 2008.

[4] Y. Gao, J. Na, B. Zhang, L. Yang, and Q. Gong. Optimal Web Services Selection

Using Dynamic Programming. In 11th IEEE Symposium on Computers and
Communications (ISCC’06).

[5] P. C. Xiong and Y. S. Fan. QoS-aware Web Service Selection by a Synthetic
Weight. In Fourth International Conference on Fuzzy Systems and Knowledge

Discovery, 2007.

[6] D. T. Tsesmetzis, I. G. Roussaki, I. V. Papaioannou, and M. e. Anagnostou. QoS
awareness Support in Web Service Semantics. In the Advanced International
Conference on Telecommunications and International Conference on Internet
and Web Applications and Services (AICT/ICIW’06), 2006.

[7] A. S. Ali, S. A. Ludwig, and O. F. Rana. A Cognitive Trust-Based Approach for

Web Service Discovery and Selection. In Third IEEE European Conference on
Web Services, 2005.

[8] S. Galizia, A. Gugliotta, and J. domingue. A Trust Based Methodology for Web
Service Selection. In International Conference on Semantic Computing

(ICSC’07), 2007.

[9] WSDL. Web Serivce Description Language. In http://www.w3.org/TR/ wsdl.

[10] UDDI. Universal Description Discovery and Integretion. In http://

www.uddi.org, 2006.

[11] M. Arlitt and T. Jin. A Workload Characterization Study of the 1998 World

Cup Web Site. IEEE Network, 14(3):30–37, 2000.

[12] P. Barford and M. Crovella. Generating Representative Web Workloads for
Network and Server Performance Evaluation. ACM SIGMETRICS Performance

Evaluation Review, 26(1):151–160, 1998.

[13] J. Y. Zhou and T. Yang. Selective Early Request Termination for Busy Internet
Services. In 15th International Conference on World Wide Web, Edinburgh,
Scotland, 2006.

27

[14] B. Urgaonkar, G. Pacifici, P. J. Shenoy, M. Spreitzer, and A. Tantawi. An
Analytical Model for Multi-tier Internet Services and its Applications. ACM

SIGMETRICS Performance Evaluation Review, pages 291– 302, 2005.

[15] A. Zalewski and A. Ratkowski. Evaluation of Dependability of Multitier

Internet Business Applications with Queueing Networks. In International
Conference on Dependability of Computer Systems (DEPCOSRELCOMEX’06),

2006.

[16] M. Reiser and S. Lavenberg. Mean-value Analysis of Closed Multi-Chain

Queueing Networks. Journal of the Association for Computing Machinary,
27:313–322, 1980.

[17] J. Little. A Proof of the Queueing Formula L = λW. Operations Research,

9(3):383–387, May 1961.

[18] K. Sevcik and I. Mitrani. The Distribution of Queueing Network States at Input
and Output Instants. Journal of the Association for Computing Machinary,

28(2), 1981.

[19] D. A. Menasce and V. A. F. Almeida. Capacity Planning for Web Performance:
metrics, models,and methods. Prentice Hall PTR, 1998.

[20] G. Bolch, S. Greiner, H. de Meer, and K. S. Trivedi. Queueing Networks and
Markov Chains: modelling and performance evaluation with computer science
applications. Wiley, 2nd edition, 2006.

[21] J. Y. L. Boudec. Rate Adaptation, Congestion Control and Fairness: A Tutorial,
Nov 2005.

[22] G. Balbo and G. Serazzi. Asymptotic Analysis of Multiclass Closed Queueing
Networks: Multiple Bottlenecks. Performance Evaluation, 30(3):115– 152,

1997.

[23] P. J. Denning and J. P. Buzen. The Operational Analysis of Queueing Network

Models. ACM Computing Surveys, 10(3):225–261, 1978.

[24] C. Knessl and C. Tier. Asymptotic Approximations and Bottleneck Analysis in
Product Form Queueing Networks with Large Populations. Performance
Evaluation, 33(4):219–248, 1998.

[25] M. Litoiu. A Performance Analysis Method for Autonomic Computing

Systems. ACM Transaction on Autonomous and Adaptive Systems, 2(1):3,
2007.

[26] P. J. Schweitzer. A Fixed-point Approximation to Product-form Networks
with Large Populations. In 2nd ORSA Telecommunication Conference, 1992.

[27] D. L. Eager and K. C. Sevcik. Bound Hierarchies for Multiple-class Queueing

Networks. Journal of ACM, 33(1):179–206, 1986.

28

[28] T. Kerola. The Composite Bound Method for Computing Throughput Bounds
in Multiple Class Environments. Performance Evaluation, 6(1):1– 9, 1986.

[29] G. Casale and G. Serazzi. Bottlenecks Identification in Multiclass Queueing
Networks Using Convex Polytopes. In Modelling, Analysis, and Simulation of

Comp. and Telecommunication Systems (MASCOTS), 2004.

[30] J. Rolia, X. Zhu, M. Arlitt, and A. Andrzejak. Statistical Service Assurances for
Applications in Utility Grid Environments. Technical report, Technical

Report HPL-2002-155, HP Labs, 2002.

[31] Internet Trace. Internet Traffic Archive Hosted at Lawrence Berkeley

National Laboratory. In http://ita.ee.lbl.gov/html/traces.html, 2008.

