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QoS-Aware Service Selection 

Abstract 
As the widespread use of the Internet, the number of web services that 

can provide similar functionality is increasing rapidly in recent years, web 
service selection has to be based on some non-functional attributes of the 
services such as the quality of service (QoS). In this chapter, we use a server 
switching service that is commonly used in Internet hosting environment to 
explain how an agent can use a performance model to evaluate services and 
select the most suitable services among a number of functionally similar 
services returned by the service discovery. The various criteria that can be 
used to assess QoS are introduced in this chapter, including mean response 
time, throughput, system utilisation and some others closely related to 
business such as revenue and operating costs. Service selection in the chosen 
case study depends on the quality and suitability of various switching 
policies, in another word, different switching policies can be selected 
depending on the QoS of the services and the run-time system state. Since the 
system performance can be evaluated using a analytic model, therefore, the 
QoS of services is assessed based on the output of the performance model. 

1 Introduction 

There are two key challenges in Semantic Web services. One is service 
advertisement and discovery, which has been discovered in last chapter. The 

second key challenge is service selection and composition, which has attracted 

extensive research in the literature [1, 2, 3, 4, 5, 6, 7, 8]. 

Web services are usually described by WSDL [9] and published by registering 
the service using UDDI [10]. Current approaches for service publication and 

registration rely on static description of web service interfaces. The static 
description is sufficient for providing some information such as service 
functionality, service URL and the service namespace. However, some other 

attributes such as QoS of a service can not be accurately described as it is runtime 
environment dependent. A web service might work well in one scenario, whereas 

it might be a bad choice for another scenario. Therefore, it is crucial to select the 

most suitable service among many functionally similar services. 

The goal for service selection is to find the best set of services available at 
runtime, taking into consideration end-user preferences and the execution 

context [2]. It is a challenge task as it is very difficult to predict the QoS of a given 
web service. The challenge arises partly because you may not able to trust the 
other party who could claim arbitrary QoS properties to attract interested parties, 

and partly because you lack knowledge of the environment within which it is 
executing, especially in some runtime context where many factors could affect the 

performance of the service. Moreover, dynamic evaluation of service is usually 
required as the run-time system state is changing. In addition, all customer system 
environments are different, thus it is difficult for the service provider to test the 
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service for all scenarios. Therefore, it might be a good idea that the agents be able 

to evaluate the quality of a service in different customised environments using a 

performance model. 

In this chapter, we use a server switching service usually used in Internet 
hosting centres to explain how an agent can use a performance model to evaluate 
and select the most suitable services among a number of functionally similar 

services returned by the service discovery. Service selection in the chosen case 
study depends on the suitability and quality of various switching policies, that is 

different switching policies can be selected depending on the QoS of the services 
and the run-time system state. Since the system performance can be evaluated 

using a analytic model, therefore, the QoS of services is assessed based on the 

output of the performance model. 

2 Service Selection Procedure 

 

Figure 1: System diagram of service selection. 

Figure 1 is an illustration of the service selection procedure. First, when a 

client sends a service request, the agent searches for services that can provide 
required capabilities in the registry and uses the matchmaker to match the user 

requirements (in terms of the functionality required) with all available services. 
The output from the service matchmaker is a number of functionally similar 
services. The agent needs to choose the most suitable service among those 

services based on some non-functional attributes such as the QoS of the services. 
As introduced earlier, it is very difficult to present QoS using static description in 

WSDL. Therefore, the performance evaluation manager can play a important role 
in the service selection process. Evaluation can be made throughput analytical 

model, simulation or the hybrid approach. The evaluation manager takes the 
system data such as system architecture configuration information, runtime 
workload demand and feeds the data into the performance model for evaluation. 

The main benefit of the use of performance model is that performance can be 
quickly evaluated without actual invocation of the services. Performance metrics 

of each model depends on the design of the model and the common metrics 
include mean response time, throughput and system utilisation. Some other 
performance metrics related closely to business include operational costs, system 

revenue. 



3 

Based on the performance evaluation results, the agent can choose the most 

suitable service and composite it when it is needed. This chapter focuses on 
service selection, and service composition will be introduced in the next chapter. 
When a service is selected and properly composited, it then can be called by the 

client. After service invocation, the user can give feedback of the service via a 
feedback (or recommendation) system. The feedback component in the 

framework is used for the purpose – to adjust the performance model and to 

dynamically adapt to user requirements. 

In the next section, we use the server switching service as an example to 
explain how performance evaluation can be done and how the results can be used 

to assist web service selection. 

3 Case Study – Selection of Switching Service 

3.1 Server Switching in Internet Hosting Centres 

Internet services are normally hosted in a commercial hosting environment that 
are run by Internet Service Providers (ISPs). Workload demand for Internet 
services is usually very bursty [11][12][13], thus it is difficult to predict the 

workload level at a certain point in time. Therefore, fixed server configurations 
for a service are far from satisfactory for an application when the workload level 

is high; whereas it is potentially a waste of resource while the workload is light 
for the remaining applications supported by the system. Therefore, it is desirable 
that server resources in a shared hosting environment can be switched between 

applications to accommodate workload variation. 

 Presentation Application Data Persistence 
  Tier  Tier  Tier 

 

Figure 2: Illustration of server switching in a multi-tier architecture. 

A server switching service is a service that can be employed by the ISPs to 
improve the Internet service and optimise the resource usage in the server 

centres. To employ a switching service, the ISPs need to assess the quality of the 
service, in another word, to assess the benefits of using the switching service. The 

quality of the switching service depends on the benefits it has brought to the ISPs, 
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thus, to assess the quality of a switching service, one needs to assess the 

improvement of the Internet services. There are a number of performance metrics 
to evaluate the quality of a switching service. From a request sender’s perspective, 
mean response time is the main performance metric; from ISPs’ perspective, some 

performance metrics include throughput, system utilisation and total generated 

revenue due certain period. 

Figure 2 is an illustration of how server switching happens in a distributed e-
Business environment. The diagram assumes the ISP hosts two different Internet 

services, both of which require a multi-tier system architecture. The typical 
system configuration includes the presentation tier, application tier and data 

persistence tier. In each tier, a cluster of servers is used for processing the 
requests. In Figure 2, the cluster of servers in each tier is partitioned into two 
pools, each of which is responsible for each Internet application. When there is a 

need, some portion of servers at the same tier can be switched between pools to 
adapt workload fluctuation. 

3.2 Server Switching Procedure 

 

Figure 3: Server switching procedure. 

Figure 3 shows how server switching works in a distributed e-Business 

environment. This diagram is a portion of Figure 1 and it corresponds to the 
evaluation manager component of Figure 1. In this diagram, there are some key 

components, including admission control, workload model, performance model, 
system monitoring and the switching engine. When requests arrive, they are 
controlled by the admission control component, based on the system information 

(e.g. system utilisation) from the monitoring component. The workload model 
takes as the input the allowed requests and builds a workload model based on the 

workload characteristics. The performance model then takes as input the output 
of the workload model and system architecture configuration and calculates the 
required performance metrics. These metrics combined with system information 

from the monitoring facilities are fed into the switching engine, which then 
computes the benefits and penalties of all possible switches before making the 
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final switching decision. In the following section, we show how to model the multi-

tier Internet services using queueing network. 

3.3 Modelling Multi-tier Internet Services 

A multi-tiered Internet service can be modelled using a multi-class closed 
queueing network [14, 15]. Figure 4 shows a model for a typical configuration of 

such applications. In the model, C refers to the client; WS, AS and DS refer to the 
web server, application server and database server respectively. The queueing 
network is solved using the MVA (Mean Value Analysis) algorithm [16], which is 

based on Little’s law [17] and the Arrival Theorem [16, 18] from standard 
queueing theory. In this section, we briefly describe how different performance 

metrics can be derived from the closed queueing network model. Table 1 
summarises the notation used throughout this chapter. 

Table 1: Notation used in this chapter 

Symbol Description 

Sir Service time of job class-r at station i 

vir Visiting ratio of job class-r at station i 

N Number of service stations in QN 

K Number of jobs in QN 

R Number of job classes in QN 

Kir Number of class-r job at station i 

mi Number of servers at station i 

φr Revenue of each class-r job 

πi Marginal probability at centre i 

T System response time 

Dr Deadline for class-r jobs 

Er Exit time for class-r jobs 

Pr Probability that class-r job stays 

Xr Class-r throughput before switching 

Class-r throughput after switching 

Ui Utilisation at station i 

ts Server switching time 

td Switching decision interval time 

Consider a product form closed queueing network with N load-independent 

service stations. N = {1,2,··· ,N} is the set of station indexes. Suppose there are K 
customers and they are partitioned into R classes according to their service 

request patterns; customers grouped in a class are assumed to be statistically 
identical. R = {1,2,··· ,R} is the set of class indexes. The service time, Sir, in a multi-
class closed queueing network is the average time spent by a class-r job during a 

single visit to station1 i. The service demand, denoted as Dir, is the total service 
requirement, which is the average amount of time that a class-r job spends in 

service at station i during execution. This can be derived from the Service Demand 

                                                                  
1 the terms station, centre and node have the same meaning, and are used interchangeably. 
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Law [19] as Dir = Sir·vir; here vir is the visiting ratio of class-r jobs to station i. Kr is 

the total population of customers of class r. The total population of the network is 

thus defined as K = Pr Kr. The vector 

K~ = {K1,K2,··· ,KR} is used to represent the population of the network. 

In modern enterprise systems, clusters of servers are commonly used in each 

application tier to improve server processing capability. Thus, when modelling 

 

Figure 4: A model of a typical configuration of a cluster-based multi-tiered 

Internet service. C represents customer machines; WS, AS and DS represent web 

servers, application servers and database servers, respectively. 

those applications, we need to consider both -/M/1-FCFS and -/M/m-FCFS in each 
station. Suppose there are k jobs in the queueing network, for i = 1, ..., N and r = 1, 

..., R, the mean response time of a class-r job at station i can be computed as follows 

[20], 

  (1) 

here, (k − 1r) = (k1,...,kr − 1,...,KR) is the population vector with one classr job less in 
the system. The mean system response is the sum of mean response time of each 

tier. 

For the case of multi-server nodes (mi > 1), it is necessary to compute the 

marginal probabilities. The marginal probability that there are j jobs (j = 1,...,(mi − 
1)) at the station i, given that the network is in state k, is given by [20], 

  (2) 

Applying Little’s law [17], the throughput of class-r jobs can be calculated, 

  (3) 

Applying Little’s Law again with the Force Flow Law [19], we derive the mean 

 
queue length Kir for class-r job at station i as below, 

 

 Kir (k) = Xr (k) · Tir (k) · vir (4) 
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The starting point of this equation is Kir(0,0...,0) = 0,πi(0 | 0) = 1,πi(j | 0) = 0; 

after K iterations, system response time, throughput and mean queue length in 

each tier can be computed. 

In multiclass product form queueing networks, per-class station utilisation 

can be computed using the following equation [16], 

  (5) 

and the total station utilisation Ui(k) is the sum of per-class station utilisation, 

 
The above is the exact solution for multiclass product form queueing 

networks. The trade-offs between exact solutions and approximations are 
accuracy and speed. We use exact solutions to guide server switching decisions as 

a higher degree of accuracy is believed to be important here. However, a dedicated 
machine can be used for the switching system itself, to solve speed and storage 

issues and to reduce the interference with the servers themselves. In our model, 
job class switching is not permitted. 

3.4 Model Parameterisation 

Once a performance model is built, it can be parameterised. The parameterisation 
involves collection and manipulation of sample data. Sample data to be collected 

include service time Sir of each type of request, the visiting ratio vir. Since service 
demand Dir = Sir × vir, so essentially, only service demand of each request needs to 
be collected. Service demand of each request is difficult to measure, however, 

according to the service demand law [19], Dir = Ui/Xir, here Ui is the utilisation of 
service station i and Xir is the throughput of job class r at station i. Therefore, we 

can measure Ui and Xir (through monitoring utility or system log) and calculate Dir 

using the service demand law. In a real test-bed, we could drive the system 

utilisation to a required level by sending a large number of requests that are of 
the same type, and measure the resulted throughput. The service demand of each 

request can then be computed based on the service demand law. 

3.5 Bottleneck Identification of Multi-tier Architecture 

Bottlenecks are a phenomenon where the performance or capacity of an entire 
system is severely limited by a single component. This component is sometimes 
called the bottleneck point. Formally, a bottleneck lies on a system’s critical path 

and provides the lowest throughput [21]. It has been shown in [22] that multiclass 
models can exhibit multiple simultaneous bottlenecks. The dependency of the 

bottleneck set on the workload mix is therefore derived. In an enterprise system 
there are normally different classes of jobs and the class mix can change at run-

time. This suggests that there might be several bottlenecks at the same time and 
bottlenecks can shift from tier to tier over time. Therefore, system designers need 
to study the best server configuration to avoid bottlenecks during system capacity 

planning and provisioning, and ideally provide schemes to support dynamic 

server allocation during run-time. 
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3.5.1 Identification Methods 

In [23], it is shown that the bottleneck for a single class queueing network is the 
station i with the largest service demand Sivi, under the assumption of the 
invariance of service time Si and visiting ratio vi and given routing frequencies. 

Considerable research exists [22][23][24][25][26] which studies bottleneck 
identification for multi-class closed product-form queueing networks as the 

population grows to infinity. For a finite population, the results in [27][28] can be 
used. In this paper we use the approach developed in [29], which uses convex 
polytopes for bottleneck identification in multi-class queueing networks. This 

method can compute the set of potential bottlenecks in a network with one 
thousand servers and fifty customer classes in just a few seconds. 

 
 0 

46.2 61.5 100 gold class jobs (%) 

Figure 5: Bottleneck of the two-class queueing network in pool 1. 

 
 0 16.7 33.3 50.0 75.0 100 silver class jobs (%) 

Figure 6: Bottleneck of the two-class queueing network in pool 2. 

Fig. 5 and Fig. 6 are the bottleneck identification results using convex 
polytopes for our chosen configurations for pool 1 and pool 2. Fig. 5 shows that in 

pool 1, when the percentage of gold class jobs is less than 46.2%, the web server 
tier is the bottleneck; when it is between 46.2% and 61.5%, the system enters a 

crossover points region, where the bottleneck changes; when the percentage of 
gold class jobs in pool 1 exceeds 61.5%, the application server tier becomes the 

bottleneck. 

Fig. 6 shows the bottleneck identification in pool 2. It is more complex and is 
a good example of multiple bottlenecks and bottleneck shifting. In this case, when 

the percentage of silver class jobs is less than 16.7%, the web server tier is the 
bottleneck; when it is between 16.7% and 33.3%, both the web server tier and the 
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database tier are in the crossover region; if the percentage of silver class jobs lies 

in the region 33.3% to 50.0%, the database tier becomes the bottleneck; when it 
is between 50.0% and 75.0%, the system enters another crossover region, where 
the application server tier and the database server tier dominate; and finally, if 

the percentage of silver class jobs exceeds 75.0%, the application server tier is the 

bottleneck in the system. 

Fig. 7 and Fig. 8 provide a clear picture as to how the utilisations 
corresponding to the workload mix changes in both pools. The two figures can 

also be used to verify the results in Fig. 5 and Fig. 6. 

 

 Figure 7: Utilisation in pool 1. Figure 8: Utilisation in pool 2. 

3.6 Server Switching for Revenue Maximisation 

As previously highlighted, the workload in enterprise systems can vary 
significantly. It is therefore the case that one-time system configuration is no 

longer effective and it is desirable that servers be able to switch from one pool to 
another, depending on the load conditions. However, the server-switching 

operation is not cost-free, since during the period of switching the servers being 
switched cannot serve jobs. Therefore, a decision has to be made as to whether it 
is worth switching in terms of revenue maximisation. 

3.6.1 Revenue Function 

For a typical Internet service, a user normally issues a sequence of requests 

(referred to as a session) during new visit to the service site. Intuitively, a request 
contributes full revenue if it is processed before the deadline2 Dr. When a request 
r misses its deadline, it still waits for execution with a probability P(Tr) and credit 

is still due for late, yet successful processing. As can be seen from Figure 9, when 
the response time Tr < Dr, then P(Tr) = 1; which means that the request contributes 

full revenue and the user will send another request. Suppose Er is some time point, 
at which the request is dropped from the system. It is assumed in this chapter that 

when Dr ≤ Tr ≤ Er, the request will quit the system with probability P(Tr), which 
follows a uniform distribution (refer to Figure 10). If Tr ≥ Er, then P(Tr) = 0, which 
means that the request quits the system without contributing any revenue. The 

following equation is used for calculating Pr, 

                                                                  
2 soft deadline in lieu of hard deadline is used in this chapter. 
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  (6) 

The meaning of the above equation is that the longer the completion time of a 
job r exceeds its deadline, the more likely it is that the client will quit the system, 

thus approximating real-world client behaviour. 

 

Figure 9: Illustration of the relationship between job response time and the 

probability that the customer will remain in the system. 

 

Figure 10: Illustration of the relationship between the probability density 

function and request response time. 

3.6.2 Revenue Maximisation 

Based on the revenue function, the revenue gained and lost by server switching 

can be calculated. Suppose some servers need to be switched from pool i to pool 

j. We use  to represent the revenue loss in pool i. From the time that switching 
happens, the service capacity offered by server pool i starts to degrade. From eq. 
7, the revenue loss in pool i can be derived, 

 R R 

 i X i i i X i0 i i 
 Vloss = Xr(k )φrP(Tr)td − Xr (k )φrP(Tr)td (7) 
 r=1 r=1 

The server switching itself takes time, during which neither pool i nor pool j can 

use the servers being switched. Only after switching time ts, does pool j then 
benefit from the switched servers. During the switching decision interval time td, 

the revenue gain Vgainj can be calculated as below, 
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here, it is assumed the decision interval time td > ts. 

Our goal in this chapter is to maximise the ISP’s total revenue contributed by 
both pool i and pool j. In other words, when we decide whether to switch servers, 

we need to compare the revenue gain and loss caused by server switching, and 

the switching is done only when . In this chapter, we only consider 
switching servers between pools in the same tier (i.e., we switch web servers from 
pool i to the web server tier in pool j), although given proper configuration, the 

switching is also possible between tiers (i.e., switching web servers in pool i to the 
application tier in pool j). 

3.7 Switching Policies 

In this section, we describe two different server switching policies namely the 

proportional switching policy (PSP) and the bottleneck-aware switching policy 
(BSP). In the real-world web service registry, there might be a large number of 

similar services in terms of the switching functionality, however, the service 

selection procedure discussed in this chapter is the same for each of the services. 

3.7.1 Proportional Switching Policy 

First, we consider a n¨aive policy called the proportional switching policy (PSP). 

The policy switches servers between pools based on the workload proportion in 
both pools. Performance criteria for server switching is computed using the 
queueing network model; if the performance of the new configuration is better 

than the current one, then server switching is done, otherwise the server 

configuration remains the same. Algorithm 1 describes how the policy operates. 

Input: N, mi, R, Kir, Sir, vir, φr , ts, td 

Output: Server configuration 

1. for each i in N do 

2. m1i/m2i = K1/K2 

3. end for 

4. calculate Vloss and Vgain using eq. 7 and eq. 8; 

5. if Vgain > Vloss then 

6. do switching according to the 

calculations; 

7. ; 

8. else 

9. server configuration remains the same; 

10. end if 

11. return current configuration. 

Algorithm 1: Proportional Switching Policy 

Algorithm 1 is simple as it only considers the workload proportion. In fact, 
workload mix and revenue contribution from individual classes in different pools 

can also affect the total revenue. In the next section, we will introduce a new 
switching policy, which takes the above factors into account. 
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3.7.2 Bottleneck-aware Switching Policy 

Here we describe a more sophisticated server switching policy called the 
bottleneck-aware switching policy (BSP), as described in Algorithm 2. BSP works 
in two phases: 1) Bottleneck identification. It first checks for bottleneck saturation 

in both pools. If both pools have bottlenecks at the same tier, two cases are 
considered: a) if both of them are saturated, then no server will be switched; b) if 

a bottleneck is saturated in one pool but not in the other, then the algorithm 

incrementally switches servers to the bottleneck tier and compares the 

Input: Nr, mi, R, Kir, Sir, vir, φr , ts, td 

Output: new configuration 

1. while bottleneck saturation found in one pool do 

2. if found at same tier in the other pool then 

3. return; 

4. else switch servers to 

the bottleneck tier; 

5.and; 

6. end if 

7. end while 

8. search configurations using Algorithm 3 

9. return current configuration. 

Algorithm 2: The Bottleneck-aware Switching Policy 
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Input: Nr, mi, R, Kir, Sir, vir, φr , ts, td 

Output: best configuration 

Initialisation: compute Ui1,Ui2 

1. while  do 

2. if  then 

3. ; 

4. while  do 

5. if  then 

6.; 

7. whiledo 

 then 8. if 

9.; 

10.compute Vloss using eq. 7; 

11.; 

12. compute Vgain using eq. 8; 

13. if Vgain > Vloss then 

14. store current configuration; 

15. end if 

16. compute new Ui1,Ui2; 

17. end if 

18. end while 

19. similar steps for 

20. ; 

21. compute new Ui1,Ui2; 

22. end if 

23. end while 

24. similar steps for  

25. ; 

26. compute new Ui1,Ui2; 

27. end if 

28. end while 

29. similar steps for  

30. return best configuration. 

Algorithm 3: The Configuration Search Algorithm new revenue with 
the value from the current configuration. If a potential switch will 
result in more revenue, then the configuration will be stored. The 
process continues until no bottleneck saturation in either pools or no 
more switching can be done from the other pool. Note that when 
bottleneck saturation is found, server switching in other tiers has 
little or no effect, thus it can be safely neglected. 2) Local search. If 
there is no bottleneck saturation in either of the pools, then the 
algorithm computes the server utilisation at all tiers in both pools 
and switches servers from low utilisation tiers to high utilisation tiers 
using a local search algorithm (Algorithm 3). In both algorithms, 
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superscripts represent pools and subscripts 0, 1, 2 represent the web 
tier, application tier and database tier respectively. 

Algorithm 3 uses nested loops to search for possible server switches, starting 
from the web tier continuing to the database tier. It tries to explore as many 

possible switching configurations as possible. However, the algorithm will not 
guarantee that the best switching result (the global optimal) will be found, thus it 

is a best-effort algorithm. If we use m0,m1,m2 to represent the total number of web 
servers, application servers and database servers in both pools respectively, in 
the worst case, the total number of searches made by Algorithm 3 will be 

(m0−2)×(m1−2)×(m2−2), therefore the time complexity is O(m0·m1·m2). For 
typical server configurations, m0, m1 and m2 are not normally large, thus Algorithm 

3 is feasible in practice. The time for each search iteration depends on the 
complexity of the underlying queueing network model, which in turn depends on 
the number of stations and the number of job classes (the dominant factor as 

shown in [25]). Enterprise systems are normally three-tiered (N = 3), and the 
number of job classes is normally small, depending on the classification criteria. 

Therefore, solving such a multi-class closed queueing network model is very 
quick, thus the same applies for each iteration in the searching algorithm. As 

shown later in this chapter, for our configuration, the average runtime of the 
algorithm is less than 200 milli-seconds on a 2.2Ghz computer, which is 

considered acceptable. 

For complex multi-class closed queueing network models, with thousands of 
stations and hundreds of job classes, the storage requirement for solving the 

models are very high. In our case, storage is also not an issue as the model is 
relatively simple. Moreover, as mentioned in section ??, using a dedicated 

machine for the switching engine can increase the searching speed, and also relax 
the associated storage requirement. 

3.8 Proactive and Reactive Switching 

In our proposed switching system, two approaches to server switching can be 
used – proactive switching and reactive switching. Proactive switching is 

motivated by identifying similar workload patterns over time (hours, days, weeks 
etc). Most Internet services have cyclical patterns. For instance, for real-time 

financial applications, the peak load normally appears at the beginning and the 
end of the market, and the load is lower during the remainder of the opening 
hours; it is also the case that Monday and Friday are busier than other weekdays. 

Based on historical workload patterns, and by applying some workload prediction 
techniques such as those introduced in [30], the server switching engine can re-

allocate resources before the expected heavy workload arrives, and also, can save 
the costs of server switching during a heavily loaded period. However, due to 
uncertainties, workload demand can have huge variation and predictive 

inaccuracies can be introduced by the workload predictor, which are then passed 
to the switching engine, stimulating inappropriate or wrong decisions. Therefore, 

proactive switching is not perfect and it can at best hope to improve the overall 

performance during long term periods. 

Reactive switching is more dynamic, based on run-time system parameters 
and can respond to system state changes quickly. The run-time data is collected 
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via system monitoring tools, is reformatted, and is fed into the analytical model. 

The model then is solved and alternative switching decisions are compared. The 
proactive and reactive switching approaches can of course work together to 
optimise the overall system performance. 

3.9 Admission Control 

As described in the literature, admission control (AC) is necessary for busy 

Internet services in order to achieve the SLAs. When a system is overloaded, most 
ISPs simply reject less important requests. ISPs may give their customers 

compensation for the rejected requests, depending on the SLAs between 

themselves and their customers. 

In this work, we also use a simple admission control scheme, in addition to the 
server switching policy, to maintain the number of concurrent jobs in the system 
at an appropriate level. When the workload is high, which in turn makes the 

overall system response time high, less important requests are rejected first. If 
requests in this category are rejected, but the overall response time still remains 

high, the AC scheme continues to reject jobs in the system, until the response time 

decreases to an acceptable level. 

4 Performance Evaluation 

4.1 Experimental Setup 

We design and develop a simulator to evaluate the server switching approach in 

this chapter. Two applications are simulated, running on two logical pools (1 and 
2). Each application has two classes of job (gold and silver), which represent the 

importance of these jobs. Both applications are multi-tiered and run on a cluster 
of servers. The service time Sir and the visiting ratio vir are chosen based on 

realistic values or from those supplied in supporting literature. 

Based on a real test-bed which we have access to, the application server 
switching takes less than five seconds and web server switching is relatively 

straightforward. Database server switching is more complex, however, it does not 
affect the switching policy itself. In this chapter, we assume switching cost for web 

servers, application servers and database servers is the same for simplicity. 

Experimental parameters used for our evaluation can be found in Table 2. 

4.2 Evaluation Results 

Experiments have been conducted for a number of different workload scenarios 

called mixed workload, cross load, random load and workload generated from real-
world Internet traces. For each of these cases, we compare the results from Table 

2: Experimental parameters. 

  Pool 1 Pool 2 

Silver Gold  Gold Silver 
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Number of 

servers 

WS 

AS 

DS 

4 

10 

2 

  5 

15 

3 

Service 

time(sec) 

WS 

AS 

DS 

0.07 

0.03125 

0.05 

0.1 

0.1125 

0.025 

0.05 

0.01 

0.0375 

0.025 
0.06 

0.025 

Visiting ratio 

WS 

AS 

1.0 

1.6 

0.6 

0.8 

1.0 

2.0 

0.8 

1.0 

 DS 1.2 0.8 1.6 1.6 

Deadline (sec) 20 15 6 8 

Exit point (sec) 30 20 10 12 

Revenue unit 2 10 20 4 

our proposed bottleneck-aware server switching policy (BSP) with those from the 

proportional server switching policy (PSP) and the non-switching policy (NSP). 

4.2.1 Mixed Workload 

As described in section 3.7.2, even if the total workload remains the same, system 
bottlenecks can shift among tiers depending on the workload mix. To study the 

system behaviour of different workload mixes, we choose a few key evaluation 
points illustrated in Figure 5 and Figure 6. Two sets of experiments are run: 1) 

keeping the workload mix constant in pool 1 and altering the workload mix in 
pool 2, as shown in Figure 11, 12 and 13; 2) keeping the workload mix in pool 2 
constant and altering the workload mix in pool 1 as seen in Figure 14, 15, 16. The 

server switching time is set to 5 seconds and the switching decision is made every 
30 seconds. We explain the impact of the workload mix on the total revenue for 

the NSP, and compare the results against the PSP and BSP policies. 

 
Figure 11: The ratio of silver class 

jobs to gold class jobs in pool 1 is 
(80:20).The percentage of silver 

class jobs in pool 2 ranges from 10% 

to 90%. 

Figure 12: The ratio of silver class 
jobs to gold class jobs in pool 1 is 

(60:40). The percentage of silver 
class jobs in pool 2 ranges from 10% 

to 90%. 
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Figure 13: The ratio of silver class 
jobs to gold class jobs in pool 1 is 

(20:80). The percentage of silver 
class jobs in pool 2 ranges from 10% 

to 90%. 

 

 

Figure 14: The ratio of gold class jobs 
to silver class jobs in pool 2 is 

(80:20).The percentage of gold class 
jobs in pool 1 ranges from 10% to 

90%. 

 

Figure 15: The ratio of gold class jobs 

to silver class jobs in pool 2 is 
(60:40). The percentage of gold class 

jobs in pool 1 ranges from 10% to 

90%. 

Figure 16: The ratio of gold class jobs 

to silver class jobs in pool 2 is 
(20:80). The percentage of gold class 

jobs in pool 1 ranges from 10% to 

90%. 

From Figure 11, 12 and 13, it can be seen that when the workload mix in pool 
1 is constant, Figure 11, 12 and 13 show similar patterns. The total revenue from 
both pools from NSP and PSP decreases when the percentage of silver class jobs 

in pool 2 increases from 10% to 40%. This is understandable as silver class jobs 
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contribute less to the total revenue. When the percentage increases to 50%, there 
is a big increase in total revenue. Based on our observations, this is due to a lower 
response time in pool 2, which is less than Er for gold class jobs in pool 2. When 

the percentage of silver class jobs is over 50%, although the response time in pool 
2 decreases, the total revenue again decreases due to the decreasing weight of 

gold class jobs. It can also be seen that Figure 11 has the highest revenue and 
Figure 13 has the lowest revenue among the three cases. This is due to the longer 
response time (within deadline) in pool 1 as a result of the percentage increases 

in gold class jobs in the pool. As we know, a longer response time results in less 

throughput, which then results in less revenue contribution. 

In the second set of experiments, the workload mix in pool 2 is constant and 
the percentage of gold class jobs in pool 1 is altered. Figure 14, 15 and 16 also 

present similar patterns. The total revenue in all three cases decreases when the 
percentage of gold class jobs in pool 1 increases from 10% to 50%. The difference 

in revenue between BSP and the other two policies is smaller as the weight of gold 
class jobs increases. When the percentage is greater than 50%, the total revenue 
increases as the percentage of gold class jobs in pool 1 increases. We notice that 

the total revenue in Figure 16 is significantly higher than that in the other two 
cases. This is due to lower response time (below Er) of both classes of jobs in pool 

2, which can result in a significant increase in revenue. 

In both sets of experiments, it can be seen that PSP and NSP have almost the 

same impact on total revenue for the one-time switching. The total revenue from 
NSP is always higher than those from the other two policies as the local search 
algorithm is employed in BSP and switching is done only when a better 

configuration is found. 

4.2.2 Alternative Workload 

In a web hosting centre, it is not uncommon that during certain periods the 
workload for one application is increasing while it is decreasing for another. This 

kind of crossover in workload can affect overall system performance. In this 
section, we conduct performance evaluation for two cases: 1) when the workload 
increases in pool 1 and decreases in pool 2; 2) when the workload increases in 

pool 2 and decreases in pool 1. In both cases, the workload mix for silver and gold 
class jobs in both pools is constant. The total number of concurrent users is set to 

a fixed number (200), which matches the value in section 4.2.1. During evaluation, 
admission control is applied when necessary. Both sets of experiments are run for 
570 seconds, during which 19 switching decisions are made. Table 3 and Table 4 

list the results for both sets of experiments. 

In Table 3, we see that the workload in pool 1 increases by 10 each time from 

10 to 200, while it decreases by 10 from 200 to 10 in pool 2. The total revenue 
from NSP is 88,093. If AC is not applied, the total revenue from PSP and BSP are 

85,130 and 1,900,034, representing a -3.4% and a 115.7% improvement, 
respectively. When AC is applied, the total revenue from PSP and BSP are 85,130 

and 211,947, representing a -3.4% and a 140.6% improvement, Table 3: Load in 

pool 1 increases while it decreases in pool 2. 

Workload NSP Without A/C With A/C 
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(P1, P2) PSP BSP PSP BSP 

(20,190) 2418 403 5916 403 5916 

(30,180) 2429 2429 2569 2429 2569 

(40,170) 2429 2429 6134 2429 6134 

(50,160) 2425 2425 2619 2425 2619 

(60,150) 2420 2420 7175 2420 7175 

(70,140) 2415 2415 3458 2415 3385 

(80,130) 2410 2410 15097 2410 15097 

(90,120) 3827 3827 10389 3827 9288 

(100,110) 3459 3459 11014 3459 3837 

(110,100) 6374 6374 11872 6374 16510 

(120,90) 5244 5526 11189 5526 16497 

(130,80) 5557 6923 7963 6923 16233 

(140,70) 4761 6255 13367 6255 16151 

(150,60) 6735 3780 13408 3780 16038 

(160,50) 6834 6905 13461 6905 15877 

(170,40) 6944 6273 13532 6273 15639 

(180,30) 7068 6478 13632 6478 15264 

(190,20) 7201 7012 13752 7012 14604 

(200,10) 7143 7387 13487 7387 13114 

Total revenue 88093 85130 190034 85130 211947 

Improvement  -3.4% 115.7% -3.4% 140.6% 

respectively. The negative impact from PSP is reasonable as the PSP is a n¨aive 
switching policy, which simply allocates servers based on the workload 
proportion regardless of the performance results. Moreover, for each server 

switching, there is also a cost associated with it. Although during each run, the 
resulting revenue from PSP is higher than from NSP, in the long term the overall 

improvement could be negative (note that PSP does not switch servers in each 
run). In this set of experiments, there is also a performance improvement when 

admission control is applied. 

In Table 4, the workload in pool 1 decreases by 10 each time step from 200 to 
10, while it increases in steps of 10 from 10 to 200 in pool 2. The total revenue 

from NSP is 83,289. Without AC, the total revenue from PSP and BSP are 105,698 
and 127,469, representing a 26.9% and a 53.0% performance improvement, 

respectively. When AC is applied, the new total revenues are 105,698 and 
117,808, representing a 26.9% and a 41.4% improvement. Note that with AC, the 

total revenue from BSP is less than it is in the no AC case. This is reasonable for 
light load situation (such as the chosen workload in this case) because the AC 
works before the BPS and if the workload results in system bottleneck saturation, 

the AC simply rejects requests. However, the saturation for current configuration 
can be relaxed in another configuration that is returned by the BPS, and the 

rejected requests will result in loss of revenue. We believe when workload is high, 
due to switching cost, the overall revenue without AC will be less than it in the 
with AC case. To confirm this, we set the total number of users in both pools to 
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250. The total revenue from NSP is now 84,170. Without Table 4: Load in pool 1 

decreases while it increases in pool 2 

Workload 

(P2, P1) 
NSP 

Without A/C With A/C 

PSP BSP PSP BSP 

(20,190) 7201 6227 14492 6227 14492 

(30,180) 7068 6862 11895 6862 11895 

(40,170) 6944 5584 9865 5584 9865 

(50,160) 6834 5576 14617 5576 14617 

(60,150) 6735 5569 14787 5569 14787 

(70,140) 4761 5560 14917 5560 14917 

(80,130) 5557 5551 1790 5551 1790 

(90,120) 5244 5540 4567 5540 4742 

(100,110) 6374 5528 7562 5528 5238 

(110,100) 3459 5515 9442 5515 3321 

(120,90) 3827 5499 12455 5499 4233 

(130,80) 2410 5482 586 5482 2028 

(140,70) 2415 5461 1792 5461 7181 

(150,60) 2420 5436 1346 5436 1346 

(160,50) 2425 5405 1468 5405 1468 

(170,40) 2429 5367 1469 5367 1469 

(180,30) 2429 5314 1471 5314 1471 

(190,20) 2418 5229 1474 5229 1474 

(200:10) 2339 4993 1474 4993 1474 

Total revenue 83289 105698 127469 105698 117808 

Improvement  26.9% 53.0% 26.9% 41.4% 

AC, it is 127,918 using PSP and 158,487 from BSP, representing a 52.0% and a 
88.3% performance improvement. With AC, the total revenue from PSP and BSP 

are 127,918 and 161,550, representing a 52.0% and a 115.7% performance 
improvement. In conclusion, BSP always outperforms PSP in terms of revenue 

contribution. The AC doesn’t always improve performance, depending on the 
workload intensity and workload mix. 

4.2.3 Random Workload 

In this section, we consider a more representative workload scenario – the 
random workload. The number of users in pools 1 and 2 are uniformly distributed 

between 20 and 200. Moreover, the workload mix in each pool is also random. In 
section 4.2.1 and section 4.2.2, a thirty-second fixed switching decision interval is 

used. In this section the switching decision interval time is the same as the 
workload change interval time, which is also a random number uniformly 
distributed in a fixed range. Two cases are considered: 1) a short switching 

decision interval time uniformly distributed between 15 and 25 seconds; 2) a long 
switching decision interval time uniformly distributed between 25 to 55 seconds. 

In section 4.2.1 and section 4.2.2, a 5 second fixed server switching time is used; 
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we also alter the switching time (to 5, 10 and 15 seconds) and evaluate the 
performance impact of the switching cost on total revenue for the three different 
switching policies. We evaluate the performance of the three policies with and 

without the admission control scheme for each of the above cases. All the 
experiments run for approximately two hours, during which 1,000 switching 

decisions are made. 

Table 5: Short decision interval for random load. 

 Without A/C With A/C 

Switching time  Metrics NSP PSP BSP NSP PSP BSP 

5 sec 

No. of switches 0 130 
Revenue (x1000) 2340 2833 
Improvement (%) 0 21.1 

20 
5692 
143.3 

0 
2340 

0 

145 
2813 
20.2 

15 
5702 
143.7 

 Improvement over non-ac (%)  0 -0.71 0.17 

10 sec 

No. of switches 0 108 
Revenue (x1000) 2340 2886 
Improvement (%) 0 23.3 

3 
4731 
102.2 

0 
2340 

0 

112 
2894 
23.7 

13 
5684 
142.9 

 Improvement over non-ac (%)  0 0.27 20.2 

15 sec 

No. of switches 0 101 
Revenue (x1000) 2340 2928 
Improvement (%) 0 25.2 

3 
4730 
102.1 

0 
2340 

0 

106 
2937 
25.5 

3 
4783 
104.4 

 Improvement over non-ac (%)  0 0.29 1.13 

Tables 7 and 8 list the performance results for short and long switching 

decision intervals (thus switching decision interval time). As can be seen from 
Table 7, for different server switching times, both PSP and BSP perform better 
than NSP in terms of revenue contribution with and without AC. When no AC is 

applied, the improvements are 21.1% and 143.3%, 23.3% and 102.2%, 25.2% and 
102.1% for the 5, 10 and 15 second switching times respectively. With AC, the 

improvement are 20.2% and 143.7%, 23.7% and 142.9%, 25.5% and 104.4%, for 
the three cases, respectively. Without AC, the numbers of switches are 130 and 

20, 108 and 3, 101 and 3, for 5, 10 and 15 second switching times respectively. 
When AC is employed, the numbers are 145 and 15, 112 and 13, 106 and 3, 
respectively. As can be seen from both tables, the number of server switches 

decreases as the server switching time increases. This is because the increase in 
switching time makes server switching more costly, which results in fewer 

switches. PSP always implements more switches than BSP. Also, the total revenue 
from BSP decreases slightly whereas it increases using PSP as the server 
switching time increases. This is understandable since PSP makes switching 

decisions solely based on workload proportion, and it switches servers even 
though the performance improvement may be very small. BSP on the other hand 

tries to search for the best switching that results in more improvement at each 
switching step. We find that the configuration returned by BSP is usually much 
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further from the current configuration (that not found by PSP), thus each BSP 
switching step is more costly than that from PSP. On average, for each switching 
step, the ratio of the improvement over the cost from BSP is greater than that from 

PSP. Thus, BSP results in more revenue than the PSP policy. Due to the nature of 
the random load, servers may need to be switched back to their original pool. As 

the switching time increases, the number of switches for both policies decreases, 
therefore the total revenue increases from PSP but decreases from BSP. However, 
BSP consistently outperforms PSP in terms of revenue contribution for all cases, 

and the improvement from BSP over NSP is more than four times that of PSP. 

From Table 7, it can also be seen that when AC is employed, there is a 
considerable improvement (20.2%) when the server switching time is 10 

seconds. The improvement for the other two cases is less pronounced. The table 
also shows that when AC is employed, PSP results in more switches in each case 

compared with the no AC case. We believe this is a result of the workload mix 
change, which is caused by the AC. 

Table 6: Long decision interval for random load. 

 Without A/C With A/C 

Switching time  Metrics NSP PSP BSP NSP PSP BSP 

5 sec 

No. of switches 0 152 
Revenue (x1000) 4778 5702 
Improvement (%) 0 19.4 

20 
11567 
142.1 

0 
4778 

0 

158 
5661 
18.5 

13 
11579 
142.4 

 Improvement over non-ac (%)  0 -0.73 0.11 

10 sec 

No. of switches 0 134 
Revenue (x1000) 4778 5710 
Improvement (%) 0 19.5 

20 
11557 
141.9 

0 
4778 

0 

82 
6399 
33.9 

15 
11577 
142.3 

 Improvement over non-ac (%)  0 12.1 0.17 

15 sec 

No. of switches 0 119 
Revenue (x1000) 4778 5832 
Improvement (%) 0 22.1 

3 
9539 
99.7 

0 
4778 

0 

80 
6436 
34.7 

15 
11566 
142.1 

 Improvement over non-ac (%)  0 10.4 21.2 

Table 8 presents similar results to those seen in Table 7. Without AC, the 
number of switches for PSP increases from 130 to 152, 108 to 134, 101 to 119 for 

5, 10 and 15 second switching times, respectively; the number from BSP drops to 
3 for the 15 second case, this trend can also be seen in Table 7. This is reasonable 

as longer switching interval times result in potentially better configurations, thus 
more switches. With AC, the number of server switches for PSP increases from 

145 to 158 for the 5 second case, but decreases from 112 to 

82, 106 to 80 for the other two cases; the numbers of switches from BSP are 13, 

15, 15 for 5, 10, 15 second switching times, respectively. We believe that the 
workload mix (more weight for gold class jobs) in the long switching decision 
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interval case will result in more potentially better configurations, and thus more 

switches. 

The revenue improvement when using BSP is almost 142% for all the cases 
regardless of the use of AC (an exception is the 99.7% implement for the case 
when the server switching time is 15 seconds and no AC is employed). The reason 

for the latter decrease is the same as for the number of switches above. The total 

revenue improvement from PSP without AC are 19.4%, 19.5% and 

22.1% for the three switching time cases. With AC, the improvements are 18.5%, 
33.9% and 34.7%. The improvements are, however, much less than those from 

BSP regardless of the use of AC. 

4.2.4 Workloads Generated from Internet Traces 

The workloads used for our simulation are generated from real-world Internet 

traces [31]. Two Internet traces are used for the workloads in the two server pools 
in the experiments. The EPA-HTTP trace contains a day’s worth of HTTP requests 

to the EPA WWW server located at Research Triangle Park, NC. The SDSC-HTTP 
trace contains a day’s worth of HTTP requests to the SDSC WWW server located 
at the San Diego Supercomputer Centre in California. Workload characteristics (in 

terms of the number of requests in the systems) in both traces are extracted every 
five minutes. In this section, two switching decision intervals are considered: 1) a 

short switching decision interval – 30 seconds; 2) a long switching decision 
interval – 60 seconds. In section 4.2.2, a five-second fixed server switching time is 

used; we use different server switching times (5, 10 and 15 seconds) in this 
section and evaluate the performance impact of the switching cost on total 
revenue for the three different switching policies. We evaluate the performance 

of the three policies with and without the admission control scheme for each of 

the above cases. 

Table 7: Short decision interval for workload from traces. 

 Without A/C With A/C 

Switching time  Metrics NSP PSP BSP NSP PSP BSP 

5 sec 

No. of switches 0 18 
Revenue (x1000) 614 683.5 
Improvement (%) 0 11.3 

5 
1374 
123.7 

0 
614 

0 

18 
683.2 
11.3 

7 
1447 
135.6 

 Improvement over non-ac (%)  0 0 11.9 

10 sec 

No. of switches 0 14 
Revenue (x1000) 614 715 
Improvement (%) 0 16.4 

5 
1370 
123.2 

0 
614 

0 

13 
714.7 
16.4 

16 
1370 
123.2 

 Improvement over non-ac (%)  0 0 0 

15 sec 

No. of switches 0 13 
Revenue (x1000) 614 648.7 
Improvement (%) 0 5.6 

16 
569.1 
-7.3 

0 
614 

0 

13 
648.7 

5.6 

24 
1250 
103.5 
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 Improvement over non-ac (%)  0 0 110.8 

Tables 7 and 8 list the performance results for short and long switching 
decision intervals. As can be seen from both tables, for different server switching 
times, both PSP and BSP perform better than NSP in terms of revenue 

contribution with and without AC, except for the long interval case when the 
server switching time is 15 seconds. The improvement for PSP ranges from 5.6% 

to 16.4% whereas it ranges from 103.5% to 136% for BSP with one exception 

(-7.3%). 

Table 8 shows that when the number of switches is the same (the number of 
switches for BSP is the same for different switching times), the longer the server 

switching time is, the less the performance improvement is. Table 8 also shows 
that the number of switches for PSP when the switching time is 5 and 10 seconds 
is the same; but when the switching time increases to 15 seconds, the number of 

switches decreases by 2 to 16, which results in a slight performance 
improvement. In Table 7, it can be seen that when the server switching time 

increases from 5 seconds to 10 seconds, the number of server switches for PSP 
drops from 18 to 14, which results in slight performance improvement. When the 

switching time is increased to 15 seconds, the number of switches only decreases 
by 1. Since the switching cost has increased by 50%, the total revenue is reduced. 
Results from both tables are intuitive. Server switching is not costfree, therefore, 

the performance improvement is closely related to how long a switching takes 
and the number of server switches. There is a trade-off between performance 

improvement and the number of server switches, and it depends on the decision 
interval and the server switching time. On the one hand, more switches results in 
more potential performance improvement, on the other hand, due to the 

switching costs involved, too many switches could result in less or negative 
improvement. 

Table 8: Long decision interval for workload from traces. 

 Without A/C With A/C 

Switching time  Metrics NSP PSP BSP NSP PSP BSP 

5 sec 

No. of switches 0 18 
Revenue (x1000) 1228 1369 
Improvement (%) 0 11.5 

5 
2750 
123.9 

0 
1228 

0 

18 
1369 
11.4 

7 
2899 
136.0 

 Improvement over non-ac (%)  0 -0.1 12.1 

10 sec 

No. of switches 0 18 5 
Revenue (x1000) 1228 1367 
Improvement (%) 0 11.3 

0 
2747 
123.7 

18 
1228 

0 

7 
1366 
11.3 

2894 
135.6 

 Improvement over non-ac (%)  0 0 11.9 

15 sec 

No. of switches 0 16 
Revenue (x1000) 1228 1420 
Improvement (%) 0 15.6 

5 
2744 
123.4 

0 
1228 

0 

16 
1420 
15.6 

7 
2890 
135.3 
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 Improvement over non-ac (%)  0 0 11.9 

For the chosen workload, when AC is applied, there is no performance 
improvement for PSP, and the overall improvement for BSP is approximately 
12%. The exception is the last case in Table 7, where the improvement is 103.5% 

with AC but is negative without AC. 

In conclusion, for certain workload scenarios, there is a trade-off between 

performance improvement and the number of server switches for different server 
switching times and switching decision intervals. The number of server switches 

depends on workload characteristics. Admission control schemes do not always 
improve performance for all workload scenarios. 

5 The Selection of Switching Services 

After extensive performance evaluation of the switching services, the agent can 
then choose the most suitable service among all services. The goal of each server 

switching service in the given example is to maximise the total revenue from both 
server pools. The performance results show that the BSP service outperforms the 

PSP service in terms of revenue contribution to ISPs, therefore, it should be 
chosen in the given scenario. 

6 Summary 

In this chapter, we first explain the importance of web service selection as the 
number of functionally similar services is increasing, hence, the agent has to 

choose the best one among those services based on some non-functional 
attributes such as the QoS of each service. The challenge of web service selection 
arise due to a number of factors. One important factor is that it is very difficult to 

assess the QoS of a service, especially in the real-time environment, where 
changing system state can affect the quality of the service. Another important 

factor that could affect the assessment of QoS is that some dishonours service 
providers over claim the quality of their services to attract more clients. This issue 

is closely related to reputation of service providers and trust between them and 
the agents (or the end users). Some approaches such as the introduce of user 

feedback (or voting) mechanisms can help to resolve the trust-related issues. 

After general discussion of the procedure of service selection, we then use a 
server switching service as an case study to describe the service selection 

procedure. The focus of case study is on performance modelling of the multitier 
Internet services and performance evaluation of various switching services 

employed in such as multi-tier architecture. As can be seen in this chapter, service 
selection after performance evaluation is straightforward, therefore, 

performance evaluation plays a very important role in web service selection. The 
development of performance models can be time-consuming, however, it is the 
service providers’ responsibility to model their service and the targeted execution 

environments. 
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