Capture and Maintenance
of
Constraints in Engineering Design

A thesis presented for the degree of
Doctor of Philosophy

at the University of Aberdeen

by
Suraj Ajit

(B. E. Computer Science and Engineering, Bangalore University, India)
% UNIVERSITY
or ABERDEEN

Department of Computing Science
University of Aberdeen

United Kingdom

2009

Abstract

The Designerso6é6 Workbench is a system, deve
designers in large organizations, such as Hedgce, to ensure thatdhdesign is
consistent with the specification for the g
design rule book(s). The evolving design is described against a jet engine ontology.

Design rules are expressed as constraints over the domain onfbdoggpture the

constraint information, a domain expert (design engineer) has to work with the
knowledge engineer to identify the constraints, and it is then the task of the knowledge
engineer to encode these into erfoprowor kbenc|
and timeconsuming task. It is highly desirable to relieve the knowledge engineer of

this task, and so this thesis proposes a novel approach to facilitate domain experts in
capturing and maintaining constraints. The approach has been embod@acimping

a system, ConEditor that facilitates domain experts in combining selected entities from

the domain ontology with keywords and operators of a constraint language to form a
constraint expression. Further, this thesis reports that in order topajppely apply,

maintain and reuse constraints, it is important to know the assumptions and context in
which each constraint is applicable. This
and this forms a part of the rationale associated with thetragrts The central

hypothesis of this thesis is that an explicit representation of constraints together with

the corresponding application conditions and the appropriate domain ontology can be

used to support the maintenance of constraints. The thes&tigates two domains,

initially the kite domain and then part of a more demanding FRalgce domain (jet

engine design). Four main types of refinement rules that use the associated application
conditions and domain ontology to support the maintenanceonsétraints are

proposed. The refinement rules have been implemented in ConEditor and the extended

system is known as ConEditor+. With the help of ConEditor+, the thesis demonstrates

that an explicit representation of application conditions together lnatbdrresponding

constraints and the domain ontology can be used to detect inconsistencies, redundancy,
subsumption and fusion, reduce the number of spurious inconsistencies and prevent the
identification of inappropriate refinements of redundancy, subsam@and fusion

between pairs afonstraints.

Notes

Parts of the research work reported in this thesis have been published previously in:

Book Chapter:

A

Ajit, S, Sleeman, D, Fowler, D.W., Knott, D and Hui, K (2005): Capture and
Maintenance of Engineering Design Constraints, Advanced Knowledge
TechnologiegSelected Papers 2005), Nigel Shadbolt and Yannis Kalfoglou
(ed), page809-322.

Journals:

A

Ajit, S, Sleeman, D, Fowler, D.W., Knott, D and Hui, K (2008): Constraint
Capture and Maintenance in Engineering Desidaurnal of Artificial
Intelligence in Engineering Design and Manufacturing (AIEDABpecial

Issue on Design Rationales, Rob Bracewell and Janet Burge (ed), Volume 22,
Issue No. 4, paged25-343.

Sleeman, D, Ajit, S, Fowler, D.W. and Knott, D (2008): The role of ontologies
in creating & maintaining corporate knowledge: a case study from the aero
industry,Journal of Applied OntologyRoberta Cuel and Roberta Ferrario (ed),
Volume 3, Issue No. 3, pagéS1-172.

Conferences/Workshops:

A

Ajit, S, Sleeman, D, Fowler, D.W., Knott, D and Hui, K: ConEditor+ (2007):
Capture and Maintenance of Constraints in Engineering Design, Rose Dieng
and Nada Matta (ed),JCAI-07 Workshop on "Knowledge Managemént
Organizational Memories'Hyderabad, Indigpages$-11.

Sleeman, D, Ajit, S, Fowler, D.W. and Knott, D (2006): The role of ontologies
in creating & maintaining corporate knowledge: a case study from the aero
industry, Roberta Cuel and Roberta Ferrario (e6@MI-06 Workshop
Proceedingsl.aborataey for Applied Ontology, Trentdtaly.

Ajit, S, Sleeman, D, Fowler, D.W., Knott, D and Hui, K (2005): Capture and
Maintenance of Engineering Design ConstraiRt®iceedings of the 2nd AKT
Doctoral Symposiumlanuary 2006, Aberdeen, pagek3.

Ajit, S, Sleeman, D, Fowler, D.W., Knott, D and Hui, K (2005): Capture and
Maintenance of Engineering Design Constraints, The Twiitty SGAI
International Conference on Innovative Techniques and Applications of
Artificial Intelligence, CDProceedings of Al 200&ambridgeUK.

Ajit, S, Sleeman, D, Fowler, D.W., Knott, D and Hui, K (2005): Acquisition
and Maintenance of Constraints in Engineering Design, Third International
Conference on Knowledge CapturBroceedings of KCAP 2003Banff,
Canada, pagekr3-174.

A Ajit, S, Sleeman, D, Fowler, D.W. and Knott, D (2004): ConEditor: Tool to
Input and Maintain Constraints, 14th International Conference on Engineering

Knowledge in the Age of the Semantic Wéhrpceedings of EKAW 2004
Northampton, UK, pges 466 468.

Declaration

| declare that this thesis has been composed by myself and describes my own work. It
has not been accepted in any previous application for a degree. All sources of

knowledge have been specifically acknowledged.

Suraj Ajit
27" May, 2009

Departmenbf Computing Science
University of Aberdeen

Aberdeen

UnitedKingdom

Acknowledgemen

This work is supported wunder the EPSRCOs

Advanced Knowledge Technologies Interdisciplinary Research Collaboration, which
comprises of th&niversities of Aberdeen, Edinburgh, Sheffield, Southampton and the
OpenUniversity.

I would like to thank Mr. David Knott (Head of Design Technology), Dr.
Michael Moss and other people at the R&lsyce plc, Derby, UK for all their support.

In particula, | would like to specially thank Mr. Colin Cadas (Head of Knowledge
Management) and Mr. Stephen Docherty in the Transmission and Structures division
of Rolls-Royce plc, Derby, UK for all the important discussions and contributions,
relevant to the workeported in this thesis.

This thesis would not have been possible without the support of my colleagues,
friends and family. In particular, | would like to thank my supervisor Professor Derek
Sleeman for providing me the opportunity to do a PhD. | deeply appreciate his
continuous spport, encouragement and guidance over the years. | would like to thank
Dr. David Fowler for all his support. | am grateful to Dr. Wamberto Vasconcelos and
Professor Peter Gray for reviewing parts of my research work and giving me useful
comments. | haveeceived support from my former colleague Dr. Kit Hui and am
extremely grateful to him for providing the translator that converts CoLan into CIF. |
would like to thank all the subjects involved in the evaluation of ConEditor+ for taking
part and contributig. 1 would also like to thank my examiners (both internal and
external) for their constructive comments in improvingttiesis.

Lastly (but not in any way least), on a personal note, | would like to thank my

parents and sister for their love and support.

Contents

ABSTRACT
NOTES
DECLARATION
ACKNOWLEDGEMENT
CONTENTS
1 INTRODUCTION
1.1 KnowledgeManagement

1.1.1 Ontologies and th8emantidNeb
1.2 Engineeringesign

121 De s i gWoebeach
1.3 Problem DescriptioandMotivation
1.4 Research AimandHypotheses
1.5 ThesisOverview
1.6 ThesisStructure
2 LITERATURE REVIEW
2.1 KnowledgeAcquisition

2.1.1 Interviewing
2.1.2 ProtocolAnalysis
2.1.3 DocumentAnalysis

2.1.4 CardSorting

2.1.5 Construct Elicitatior{Repertory Grid)

2.1.6 Laddering

2.1.7 Use ofComputerassisted/Computdrased Tools

2.1.8 Discussion

Vi

11

12

15

16
19
20
20
21
21
22

23

27

Know|edgeEngineering Methodologies
%fonte nfs

2.3

2.4

2.5

3.1

3.2

3.3

3.4

2.2.1 Role LimitingMethods(RLM)
2.2.1.1Generic Tasks and TaSkructuregGT)
2.2.1.20verview of RLMsand GTs

2.2.2 ThePROTEGEApproaches

2.2.3 TheCommonKADS Approach

2.2.4 TheMIKE Approach

2.2.5 TheMOKA Approach

2.2.6 Discussbdn

KnowledgeMaintenance

2.3.1 Verificationand Validation

2.3.2 KnowledgeRefinement

2.3.3 Discussion

EngineeringDesign

2.4.1 Constraints irEngineering Design

2.4.2 Concurrent Engineering and Integrar@dductTeams

2.4.3 DesignRationales

2.4.4 Discussion

Summary

CAPTURE AND MAINTENANCE OF CONSTRAINTS
IN ENGINEERING DESIGN: A PROPOSAL

Introduction to thdd e s i g\WWoekbeach
3.1.1 FunctionalityofDesi gner s Wor kbench
3.1.2 Capturing the knowledge in the desigiie book(s)

A Proposed Approach to the CaptofeConstraints

Maintenance of Constraints Engineeringdesign

A Proposed Approach to the Maintenan€€onstraints
Vil

27
28
29
30
31
33
35
36
39
40
42
44
46
47
47
54
59
67

70

72

72

80

80
82

85

Con
4

4.1
4.2
4.3
4.4
4.5

4.6

5.1

5.2

5.3

5.4

6.1
6.2
6.3

6.4

tente”
CONEDITOR

Overviewof CoLan

ConEdiGUIor 0s

Functionalityof ConEditor

Conversion of OWL ontology intDaplexSchema
XML Constraint InterchangEormat (GF)

Summary

VERIFICATION AND REFINEMENT OF
CONSTRAINTS

Analysis of theKite Domain
KnowledgeRefinement Rules
5.2.1 Redundancy

5.2.2 Subsumption

5.2.3 Inconsistency

5.2.4 Fusion

Formal Notation andtlogical Proof
5.3.1 Redundancy

5.3.2 Subsumption

5.3.3 Inconsistency

5.3.4 Fusion

Summary

CONEDITOR+

Evolution from ConEditoto CorEditor+
ConEdiGUWTr +06s
Functionalityof ConEditor+

Algorithm
viii

88

90
90
92
96
97
99

104

105
105
109
109
110
112
113
116
117
119
123
124
128

129

129
131
134

136

IF Interpretation by ConEditor+
Conténts

6.6

v

7.1

7.2

7.3

7.4

8
8.1
8.2

8.3

Summary

EVALUATION
PreliminaryEvaluation

7.1.1 Overviewof Results
Experimentaising ConEditor+

Extension/Evaluation of Jet Engine Ontology and Maintenahae
More complex set of constraints

Summary

CONCLUSIONS AND FUTURE WORK
Research Contributions
Limitations

FutureWork

BIBLIOGRAPHY

APPENDIX A Equations and Constraints inKite Design

APPENDIX B Evaluation of ConEditor+-Questionnaire

APPENDIX C Annotated Walkthrough of Capturing

a constraint Using ConEditor+

APPENDIX D Scanned copies of the Questionnairdbat

were answered by subjects during
Evaluation of ConEditor+

APPENDIX E Sample Refinements of Constraintand

Application Conditions by ConEditor+ in
the Rolls-Roycedomain

139

148

150
151
153
154

173

176

179
179
182

184

188

203

209

210

219

229

List of Figures

Figure 21.

Figure 22.

Figure 23.
Figure 24.
Figure 25.
Figure 26.
Figure 27.

Figure 28.

Figure 29.
Figure 31.
Figure 32.
Figure 33.

Figure 34.

Figure 35.
Figure 36.

Figure 41.

Figure 42.

Figure 43.

Figure 44.

Figure 45.

Laddering Method

A screenshot of the Englidtased method editor used here to
acquire problem solving knowledge to compute the time to
transport an item in a ship

The Protégé Approaches

The MIKE Approach

KRUST Refinement System

Summary of a survey of Design Rationale systems

An example of a rationale generated by KLAUS4

An example of DRed document capturing the design ratione
of an aereengine internal gearbox

The use of Design Rationale in the design process by InfoR
A screenshot of the Designe
The class hierarchy of a simple configuration ontology

A bolted joint

A configuration of the bolted joint in Figure3described using
an ontology

Closeups of the Designerséo
Constraint as expressed in the design rule book

Examples of CoLan constraints from different application
domains

A screenshot of ConEditor 6c¢

A screenshot showing constraints expressed in tables
using ConEditor

Process flow within ConEditor

Framewor k of ConEditor and

Figure 46. (a)Modelling using multiple inheritance

Xi

22

26

31

35

44

61

62

64

66

73

74

74

75

79

91

93

94

96

97

98

Figure 46. (b)Modelling without using multiple inheritance 98
Figure 47. P/FDM Daplex definitions for entity and property metaclas: 100
Figure 48. RDF Schema definitions for the objmet and entmet classe: 101
Figure49. RDF Schema definitions rel 102

Figure 410. XML -CIF fragment corresponding to the CoLan fragment

(p in pc) 103
Figure 51. Basic parts of a flat diamond kite 106
Figure 52. The Kite Domain ontology developed in Protégé 108

Figure6l. A screenshot of ConEditor + 130
Figure 62. Taxonomy Panel of ConEditor+ 133
Figure63. Fr amewor k of ConEditor+ an 135

Figure 64. A screenshot of ConEditor+ showing subsumption betwee
a pair of constraints 138

Figure 65. Constraints in RDF make references to the CIF language
definition and the domain ontology in OWL 139

Figure 71. Constraint as expressed in the design rule book 152

Figure 72. Graph showing results of an experiment to evaluate usabil
of ConEditor+ 163

Figure 73. Graph showing average refinement time taken by ConEdit
versus number of constraints in KB 171

Figure 74. Extended/Evaluated Jet Engine Ontology of a part of the
Rolls-Royce domain in Protégé 173

Figure 81. Proposed System Architecture 184

Figure 91. A screenshot of ConEditor+ showing inconsistency betwee
constraints 232

Xii

List of Tables

Table 71. Time taken by ConEditor+ to detect inconsistenaies
refinements for varioukB sizes 170

Xiii

List of Acronyms & Abbreviations

Al Artificial Intelligence

AKT Advanced Knowledg@&echnologies

API Application Programmingnterface

Auto Automatic

CAD Computer Aidedesign

CIF Constraint Interchangeormat

CommonKADS Common Knowledge Acquisition and Design support

CRLM Configurable Role LimitindMethod

CVvO Constraint Versiot®bject

DEC Digital EquipmeniCorporation

DFX Design forX

DR Design Rationale

DRed Design Rationaleditor

DTI Department of Trade ariddustry

FO Feature Oriented

FOL First Order_ogic

GT GenericTask

GUI Graphical Usemnterface

HCI HumanComputernteraction

HVAC Heat, Ventilation and Ai€onditioning

ICARE Illustration, Constraint, Activity, Ruldntity

ID IdentificationNumber

IDA Institute for Defencénalysis

IPD Integrated Produd@evelopment

IPAS Integrated Products argervices

JDS Joint Design Standards (specificRolls-Royce)

KA KnowledgeAcquisition

KB KnowledgeBase

KBE Knowledge Base&ngineering

KBS Knowledge Base®ystem

KE KnowledgeEngineering

MAKE Maintenance Assistance for Knowledge Engineers

MOKA Methodology and Tools Oriented to Knowledggesed
Engineering Applications

OKBC Open Knowledge Bageonnectivity

OWL Web Ontology Langage

PO Proces®Oriented

PSM Problem Solvingvethod

RDF Resource DescriptioRramework

RDQL RDF QueryLanguage

RLM Role LimitingMethod

Ul Userintervention

UK UnitedKingdom

UML Unified ModellingLanguage

W3C World Wide WebConsortium

Xiv

Chapter 1

Introduction

6Knowl edge Management i s t

Enterprise Performance. 6

- Karl Wiig

This thesis presents original research in the field of knowledge management with
engineering designsaan application domain. The research proposes a novel approach
to facilitate domain experts in capturing and maintaining constraints in engineering
design. The thesis further embodies this approach with the design and construction of a
system. This chapteprovides a background on the topics relevant to this thesis,
describes the motivation for the research work, outlines the research questions and also
providesan overview of the thesis.The chapteris organisedasfollows: Section

1.1 provides a background to knowledge management including ontologies and the
semantic web. Section 1.2 introduces engineering design, and describes a system
developed by previous research (Fovdeal, 2004) to support engineering designers

in large oganisations such as ReRoyce. Section 1.3 describes the motivation for the
research work reported in this thesis. Section 1.4 outlines the research questions that the
thesis aims to address. Section 1.5 provides an overview of the thesis. The chapter

concludes with Section 1.6 describing the thesis structure.

1.1 KnowledgeManagement

We live in a world where there has been an explosion of data, information and
knowledge. However, knowledge is only of value when it can be used effectively and
efficiently. The management of knowledge is increasingly being recognised as a key
element inlie organization of companies and institutions (Diehgl, 1999; Dieng &
Corby, 2000). The forms of knowledge have grown in terms of both complexity and

applications. People often work for a number of employers during their lifetime. Loss

he

\Y

Chapter 1: Introductic

o f knowl edge can be a major factor in red
effectiveness. Organisations have experienced many changes to the way they operate.
The nature of work has changed enormously tighshift from an industrial economy
(where commercial products were the main business focus) to a knowledge economy
(where service and expertise are the main business outcomes) (Debowski, 2006). The
shift in focus from products to services has encouragedter recognition of the
importance of the knowledge held within an organisation. Knowledge management is
concerned with the acquisition, modelling, use, reuse, retrieval, publishing and
maintenance of knowledge. Knowledge engineering techniques hawaekhewn to

bring significant benefits to knowledge management (Preteal 2001). More details

of the various knowledge engineering techniques can be found in Chapter 2.

The challenges relevant in the context of this thesis are knowledge acquisition
ard maintenance. Knowledge acquisition is about extracting knowledge from sources
of expertise and transferring it to a knowledge base (KB). Knowledge acquisition is
well known to be a dAcritical bottlenecko i
apprach to knowledge acquisition is mainly an interaction process involving the
domain expert and knowledge engineer. This approach can be laborious, time
consuming and errgerone, especially if the knowledge engineer is unfamiliar with the
domain. The chadinge here is to develop tools and methodologies that facilitate domain
experts in capturing and maintaining knowledge. In other words, the challenge is to
eliminate or minimize the role of a knowledgegineer.

Knowledge maintenance is concerned with ttaeess of controlling change in
a knowledgebased system. Knowledge maintenance normally involves the following

activities:

A Verification and validation of knowledge based syste¥eification and
validation of the content of knowledge repositories is at the heart of knowledge
maintenance. Verification is a process of ensuring that the knowledge base is
consistent and complete within itself. Validation is the process of detegminin

if a KBS meets its usersd@d9%bequirements |

Chapter 1: Introductic

A Updating/refining of knowledge bas@he challenge is to keep the knowledge
repository functional and consistent. This may involve the regular
updating/refining of content as it changes (e.g., as price lists are revised).
Updating/refinement of KBs can make them inconsistent and furthecctmey
accumulate redundant knowledge. It is important to discard the redundant

knowledge and make sure that the KB remaonssistent.

A Dealing with the obsolescence of knowledgertain sections of the knowledge
may be based on assumptions/conditionschkvhater become untrue. One has
to identify and shelve/remove such sections, when necessary. This may involve
a deeper analysis of the knowledge content. Some content has a considerable
longevity, while other knowledge dates very quickly. If a repositofy o
knowledge is to remain active over a period of time, it is essential to know which

(and when) parts of the knowledge base rhasliscarded.

1.1.1 Ontologies and the Semanti&veb

An ontology is a core element in knowledge management. The word ontologyehas be

taken from Philosophy, where it is used to describe the existence of beings in the world

and referred to as thieory of existenceThe most commonly used definition of
ontology in Artificial Il ntelligencae (Al) [
explicit specification of a caaldep)ualizat
slightly modified Gruberdos definition sayi
specification of a shared conceptual i zatic
explained by Studestal. (1998) as: AA 6éconceptualisat.i

of some phenomenon in the world by having identified the relevant concepts of that

phenomenon. OExplicitdéd means that mhe type
their use are explicitly defined. OFor mal 6
machine readabl e, which excludes natur al | ¢

ontology captures consensual knowledge, that is, it is not private to sdivielual,
but accepted byg@r oup. 0O
Large organizations are more likely to face the problem of integrating

heterogeneous and distributed information expressing the specificity of the sub

Chapter 1: Introductic

communities which, altogether constitute the organization itself (Saeglate2008).

The integration problem is due to the lack of shared and globally consistent
terminologies. Ontologies facilitate knowledge sharing and reuse by providing a
commonly greed domain model. The main differences between an ontology and a

database schema, as listed in Fensel (28@4)

A Alanguage for defining ontologies is syntactically and semantically richer
than common approaches fitatabases.

A The information that isescribed by an ontology consists of sestnuctured
natural language texts and not tabudormation.

A An ontology must be a shared and consensual terminology because it is used
for information sharing aneixchange.

A An ontology provides a domain theorydamot the structure of a data

container.

Ontologies provide the backbone technology for the semantic web (Fensel, 2004). The
semantic web is an evolving extension of the world wide web in which web content can

be expressed in a form that can be understiberpreted and used by computers to

find, share and integrate information more easily (Berheeet al, 2001; Shadbokt

al., 2006). According to the World Wide Web Consortium (W3@&)e semantic web

i's about two things: Al't is about common f
data drawn from diverse sources. It is also about language for recording how the data

relates to real world objects. That allows a person, or a madbirstart off in one

database, and then move through an unending set of databases which are connected not

by wires but by being aboutthe samé i ng. 0O

The main uses of ontologies and semantic web technologies can be summarized as

follows:

A To enable integration of heterogeneous data sources. A common task is to
pose queries that require data from more tharsonece.

! http:/Avww.w3.0rg/2001/swiAccessed online on 12 May 2008.

http://www.w3.org/2001/sw/

Chapter 1: Introductic

A To ensure people and software agents have a shared understanding of the
terms and relationships used id@main.

A To annotate documents and other resources with terms from the ontology, and
then to use these annotations to retrieve aecus. Using the structure of the
ontology, documents that are related to those originally sought can be explored.
For example, a document may be about one engine part, and by using the
ontology, documents about parts that are similar to, or adjacemat@art may
befound.

A To allow reasoning to take place (deduce new statements that were not
explicitly stated) and reveal inconsistencies indat.

A To enable reuse of domamnowledge.

A To make domain assumptioesplicit.

A To separate domain knowledgerh the operation&nowledge.

Ontologies are now in widespread use as a means of formalizing domain knowledge in
a way that makes it accessible, shareable and reusable (Darlington & Culley, 2008). The
research work reported in this thesis uses ontologies and semantic web techmmogies f

knowledge management in engineering design. Engineering design is used as an

application domain and this topic is discussed in the sestion.

1.2 Engineering Design

AKnowl edge management has been identified
for distributed engineering enterprises in th& @éntury. Central to the application and
exploitation of knowledge in enginelering i ¢
et al, 2004). Engineering Design is constramniented and much of the design process
involves the recognition, formulation and satisfaction of constraints (Serrano &
Gossard, 1992; Lin & Chen, 2002). A constraint here refers to a rule that a suiccessf
design must satisfy. Constraints are continually being added, removed and modified
throughout the development of a new product.

Engineering design is an important phase in product development that is known
to have a significant impact on the life cyclearacteristics (e.g. cost, reliability) of the
product (Newneet al, 2008; Saloneet al, 2008). Design begins with functional

specificationof the desiredproduct:a descriptionof propertiesand

Chapter 1: Introductic

conditions that the product shousdtisfy (i.e. constraints). Engineering designers
typically have to find a configuration of parts that implements a particular function. To
assist them, most organizations have built up a large number of design rules and
standards, usually held as largdumes of text. Designers must try to ensure that their
configurations satisfy these constraints, but it is easy to overlook some. Novice
designers may have a hard task in finding and appreciating relevant constraints.
Additionally, in a collaborative ensanment, where many designers are working on
subsections of a common component, it is common for changes made by one designer
to affect the options available to another, and for this to go unnoticed until much later,
thus causing expensive and tho@nsuming redesigns. It would clearly be useful to
have some way of automating the design checking process, so that all applicable
constraints are checked, without the designer having to manually initiate a search and
check if all the constraints are satisfiedertde previous research has developed a
system known as t he De set gln 20043 ¢0 supjport K b e nc h
engineering designers in large organisations such asRajise. The following section

i ntroduces Wotkeenchesi gner so

1.2.1 De s i gWakbendh

The Designersd Workbench uses an ontology
task. Configurations are composed of features, which can be geometric -or non
geometric, physical or abstract. The design rules are expressed as constraints over the
ontlogy. The system allows the designers to build a configuration, and to check that
all the constraints hold. In a real engineering situation, there may be many thousands of
constraints, which means that it is easy to overlook some of them. Constraoftsrare
defined generically, in that they apply to particular types ofcarfigurations of
features, rather than to specific features. Therefore, it is not necessary to have any actual
features specified in the design before defining a constraint. Fopéxame may need

to define a constraint that applies to all pairs of neighbouring features such that if one
feature is made of copper and the other feature is made of zinéatteed then the
features are incompatiBleThis constraint could be added without any knowledge that

such a pair of features exists in a design. Constraint chelogoames

2 http:/iwww.bluescopesteel.com.au/go/howto/avioicbmpatiblemetals Accessed online on 7 May 2009.

http://www.bluescopesteel.com.au/go/howto/avoid-incompatible-metals

Chapter 1: Introductic

a process of finding such s@bnfigurations by posing a query and checking that they
satisfy the constraints.

The system has been implented so that the human designer is free to use his
or her engineering expertise to override constraints that are not deemed applicable to
the current situation. A graphical user interface (GUI) enables the designer to import a
drawing, annotate it with &ures, assign property values, and perform constraint
checks. When a constraint is violated, the designer is presented with a list of features
involved in the violation and a link to the source document that contains the design rule.
The reader is encouwgad to read Section 3.1 in this thesis and Foetded. (2004) for
a more detailed description of the Design
acquisition and maintenance of knowledge (design rules) for systems such as the
Designer s6 Womak liopics oftthis dheses. Thehpeoblems faced by the
Designersdé Workbench have been the motivat

thesis and the following section describes this in some detail.

1.3 Problem Description andMotivation

The motivation ér this thesis has been largely inspired by the observation of problems
faced by the Desi gnetrals 28004)Wdaveiopee mocshippoft Fo wl er
designers in large organizations, such as Redlgce, by ensuring that the design is

consistentwiththe peci fi cati on for the particular de

design rul e book(s) . The process of acqu
Wor kbenchoés KB cormbkasesit s of the foll owing
0 A domain expert (design engineer) works with a knowleelggineer to

identify the desigmules.

() The knowl edge engi neer encodes t he C
Wor kbenchdéds KB as a query in RDQL (RD
2004), and a predicate in Sicst@solog.

3Swedish Institute of Computer Science, version 3.10, Accessed online on 29 May 2008 at
http://www.sics.se/sicstus/

http://www.sics.se/sicstus/

Chapter 1: Introductic

This process is laborious, erfprone and time&onsuming. As design ruleare
described succinctly in the design rule book(s), a@quert in the field finds it very
difficult to understand the context and formulate constraints directly from the design
rule book(s), and so a design engineer has to help the knowledge endine@ratess.

It is highly desirable to relieve the knowledge engineer of this task and to facilitate
domain experts themselves inputting design
It would be useful if a new constraint could be formulated in aritiveuway, by
selecting classes and properties from the ontology, and somehow combining them using
a predefined set of operators. This would enable designers to have control over the
definition and refinement of constraints, and presumably, to be aldedéaeater trust

in the results of constraint checks. This thesis proposes a novel approach to facilitate
domain experts in capturing and maintaining constraints. The approach involves the use
of a graphical interface to facilitate domain experts in sielgclasses and properties

from the appropriate domain ontology and combining them with predefined keywords
and operators from a higlevel constraint language to form a constraint. The approach
has been embodied by developing a system known as Conggitaet al, 2004; Ajit

et al, 2005a, 2005b, 2005c; Agt al, 2006). The thesis provides a detailed description

of the adopted approach and the implemented system, ConEditor, in Chapte#s 3 and

The engineering design process has an iterative natudesigned artefacts
often develop through a series of changes before a final solution is achieved. A common
problem encountered during the design process is that of constraint evolution, which
may involve the identification of new constraints or the rhicaiion or removal of
existing constraints. The reasons for such changes include development in the design
and manufacturing technology, changes to improve performance and changes to reduce
development time and costs. The evolutionary nature of consteaitatblishes the need
to constantly update, revise, and maintain them. Maintenance of constraints involves
various issues/problems. An overview of the issues and problems encountered during
maintenance is providdzelow:

The constraints formulated by exfseare generally applicable only in particular
contexts, as the constraint may be based on specific assumptions. These contexts and
assumptions are oftemplicit to the expert who formulates them and are not well
documented or represented explicitly. Whihe experts who have formulated the

constraints leave the company or become unavailable, it becomes extremely

Chapter 1: Introductic

difficult for other experts to maintain the knowledge base. One needs to identify all the
constraints that require modificati and make sure that all the constraints are applied
in the right contexts. After making any change(s) to the KB, one has to make sure the
KB is consistent. In addition, constant addition/revision of constraints can result in
considerable redundancy in ethKB. It is important to prevent/remove such
redundancies as part of the maintenance of the KB. Maintenance is an important task
that can be both complicated and expensive (Barker & O'Coh989).

In order to reduce/overcome the various maintenancesigsablems, the thesis
proposes a methodology and incorporates it into ConEditor to suppartaintenance
of constraints. The methodology involves: (i) the capture of the context in which a
constraint is applicable as application condition(Ajit et al, 2008a; Sleemaet al,
2008) together with the constraint in a mackhimerpretable format and (ii) the use of
the application condition together with the constraint and the domain ontology to
support the maintenance of constraints. The thesis progosesmain types of
knowledge refinement rules to detect redundancy, subsumption, inconsistency and
fusion between pairs of constraints using the associated application conditions and
domain ontology. The ter m fap pthesictaréefaron c onc
to the context and underlying assumptions associated with a constraint. The application
conditions form a part of the rationales associated with the constraint. Further
discussion of application conditions with examples, the proposed duitigy,
knowledge refinement rules and the support provided for the maintenance of constraints
can be found in Chapters 3, 5 and 6. The following section describes the research aims

and hypotheses of the reseanark.

1.4 Research Aims andHypotheses

One of the aims of the knowledge engineering community has been to

mini mze/eliminate the role of a knowl edge
maintain the knowledge in a knowledgased system has long been an objective of the

knowledge engineeringpopcmmu n i t y 0 et @B2000b).nTais thesis identifies a

situation where it is highly desirable to eliminate the knowledge engineer from doing a
laborious, erroiprone and timeonsuming task. The thesis aims to explore how the

design and constructiornf @ system can facilitate domain experts in capturing and

maintainingconstraints Further,the thesisreportsthat, in orderto appropriately

Chapter 1: Introductic

apply, maintain and reuse constraints, it is important to capture the context in which a
constraint is applicable in a machimeterpretable format. The thesis hypothesises that
this context information, referred to as application conditions, togethér thé
corresponding constraints and the domain ontology can be used to support the
maintenance of constraints. Maintenance of constraints includes (i) detecting
inconsistencies, redundancy, subsumption and fusion (ii) reducing the number of
spurious inconistencies and (iii) preventing the identification of inappropriate
refinements of redundancy, subsumption and fusion, between pairs of constraints. It is
also important to ensure that the speed of the system for realistic tasks is viable for
domain expert$o use. Hence, the main research aims and hypotheses of the thesis can
be posed as the following reseaqelestions:

Research Question |

1. Examine whether it is possible to design and construct a system to facilitate
(domain) experts in capturing and migining constraints in engineering
design. This question can be detailed into the following sntpliestions:
a) Can (domain) experts successfully perform the allocated tasks within
acceptable timémits?
b) Did the (domain) experts perform the tasks acclyaté/hat kind of
mi stakes did they make? Can the syste
or minimize theserrors?
c) How easy and intuitive did (domain) experts find the systens¢®

d) Is the speed of the system on realistic tasks viable for (domain) experts

touse?
Research Question i

2. Examine whether capturing application conditions associated with constraints,
in a machinanterpretable format can provide significant benefits te th
maintenance of constraints in engineering design. In particular, can an explicit
representation of application conditions together with the corresponding
constraints and the domain ontology be used

a) Detect inconsistencies, redundancy, subsumptioriuesioh,

10

Chapter 1: Introductic

b) Reduce the number of spurious inconsisteneied,
c) Prevent the identification of inappropriate refinements of redundancy,
subsumption and fusion between pairsaifstraints?

The next section provides an overview of the reseaark reported in this thesis.

1.5 ThesisOverview

The context for the research work reported in this thesis iBDthes i gner sd Wor kbe
system thathas been developedby previous researcho support designers in large
organisations, such as RelRoyce, to ensure that the design is consistent with the
specification for the particul ar desi gn,
book(s). The knowledge engineering process to capturmamdain constraints for the
Designer sd Wor kb e-drone and simeodnsudhing Ut Ss, highdyr r o r
desirable to relieve the knowledge engineer from the above task. The thesis proposes a

novel approach to facilitate domain experts in capturingnaaidtaining constraints in

engineering design. The thesis embodies the proposed approach with the design and
construction of a system known as ConEditor. ConEditor facilitates basic maintenance

by enabling domain experts to detect and resolve syntax eeditsdelete and store

constraints. The thesis reports on a preliminary evaluation of ConEditor conducted at
Rolls-Royce. Further, the thesis reports that in order to appropriately apply, maintain

and reuse constraints, it is important to capture thenlyidg assumptions and context

in which each constraint is applicable. These assumptions and context are referred to as
the fhAapplication conditionso. The applicat
associated with a constraint. The thesis prap@seapproach to capture the use these
application conditions in a machHm&erpretable format together with the domain

ontology to support the maintenancecohstraints.

The thesis analyses the kite design domain and proposes four main types of
refinement rules to detect inconsistencies, subsumption, redundancy and fusion
between pairs of constraints using application conditions and the domain ontology. The
refinement rules have been proved to be logically sound. The thesis extends ConEditor
to implemen the proposed refinement rules and provide additional support to the
maintenance of constraints. The extended system that was developed to provide
additional support for maintenance became known as ConEditor+. The central

11

Chapter 1: Introductic

hypothesis othe thesis is that an explicit representation (machitezpretable format)

of application conditions together with the corresponding constraints and the domain
ontology can be used to support the maintenance of constraints. Supporting the
maintenance of constraints includes detecting inconsistencies, subsumption,
redundancy and fusion, reducing the number of spurious inconsistencies, and
preventing the identification of inappropriate refinements of subsumption, redundancy
and fusion between pairs of camshts. The thesis reports on experiments, usability and
scalability studies that apply ConEditor+ to support the capture and maintenance of
constraints from a kite design KB. The usability studies demonstrate that ConEditor+
can facilitate domain experis capturing and maintaining constraints in engineering
design. The scalability studies demonstrate that the speed of ConEditor+ on realistic
tasks is viable for domain experts to use. Further, the thesis investigates part of the
Rolls-Royce domain, and d®nstrates that the proposed approach can be applied to a
more complex KB consisting of real world design constraints. The logical proofs of
refinement rules together with the results of experiments in the kite domain and part of
the RollsRoyce domain deonstrate that an explicit representation (machine
interpretable format) of application conditions together with the corresponding
constraints and the domain ontology can be used in: i) detecting inconsistencies,
subsumption, redundancy and fusion, ii) r@dg the number of spurious
inconsistencies, and iii) preventing the identification of inappropriate refinements of

subsumption, redundancy and fusion between patsrwdtraints.

1.6 ThesisStructure

Theses usually adopt a structure in which they firstigepobackground material to the
field(s) of research, i.e., a literature review, and then explain the main problems/issues
tackled, before presenting, discussing and evaluating the proposed solution or new
approach. This thesis is eaception.

Chapter 1 povides a background to knowledge management including
ontologies and the semantic web. This chapter introduces engineering design and
describes the motivation for the research work reported in this thesis. The research aims
and the hypotheses of the rasdawork are then outlined. The chapter concludes by

providing an overview of the thesis andstaucture.

12

Chapter 1: Introductic

Chapter 2 provides a literature review of the principal fields relevant to this
thesis. The review highlights some of the kegu&s in knowledge acquisition,
knowledge engineering methodologies, knowledge maintenance (including
verification, validation and refinement), constraints and engineering design. In addition,
it provides a brief overview of some of the prominent systeatdtive been developed
in these areas over the last couple of decades. The strengths and limitations of systems
that have helped motivate the research work reported in this thesis have been indicated
wherever appropriate. Finally, the chapter concludesusymarizing the key points
from the literature review.

Chapter 3 presents a proposal for the research work reported in this thesis. The
chapter starts by describing the Designers
capture of constraints for this system. The chapter then outlines the proposed approach
to facilitate domain experts in capturing and maintaining constraints. Further, the
chapter describes the issues/problems faced during the maintenance of constraints in an
engineering design environment. The chapter outlines the proposed approach to support
the maintenance of constraints. The chapter concludes with a summary.

Chapter 4 describes the design, implementation and functionality of ConEditor.
The chapter presents an overview of the constraint representation languages (CoLan
and CIF) used by ConEditoThe chapter also describes the principles involved in
converting the domain ontology in OWL into a Daplex Schema and converting CoLan
into CIF. The chapter concludes witls@mmary.

Chapter 5 introduces the concept of an application condition assowitteal
constraint. The chapter analyses the kite domain and describes how the application
conditions together with the constraints and the corresponding domain ontology can be
used to support the maintenance of constraints. Four main types of knowledge
refinement rules are described with examples from the kite design KB. Further, the
refinement rules are expressed in a formal notation (first order logic), and it is proved
that they are logically sound. The chapter concludes vathranary.

Chapter 6 desdres the design, implementation and functionality of
ConEditor+. The chapter highlights the main changes made in extending ConEditor to
ConEditor+. The chapter outlines the algorithm used by ConEditor+ to support the
maintenance of constraints. The chajptiep describes how ConEditor+ interprets the

constraints in CIF to support maintenance. The chapter concludes with a summary.

13

Chapter 1: Introductic

Chapter 7 describes the evaluations performed during the research work. The
chapter reports on a preliminaryadwation performed using ConEditor at ReRoyce.

The chapter then describes experiments, usability and scalability studies conducted in
the kite domain using ConEditor+ together with a discussion of the results obtained.
The chapter concludes by desaridpthe application of the proposed approach to part

of the more complex RoHRoyce domain together with the results obtained. The
chapter concludes with a summary.

Chapter 8 provides an overview of the results and research contributions of this
thesis. t also discusses some limitations of the work. The chapter concludes by
presenting possible directions for future work and the significance of the major
contributions.

Additionally, there are five appendices. Appendix A presents a list of the
constraints btained from the kite domain together with explanations of the
corresponding rationales and application conditions. Appendix B lists the questionnaire
that was used to evaluate the usability of ConEditor+. Appendix C presents an annotated
walkthrough of castraint capture using screenshots of ConEditor+. Appendix D
contains scanned copies of questionnaires that were answered by subjects during the
evaluation of ConEditor+. Appendix E presents sample refinements of constraints and

application conditions by @Editor+ in the Rolld)Royce domain.

14

Chapter 2

Literature Review

6The i mportant thing is

questioning. 6

- Albert Einstein

This chapter presents a literature review of the principal fields relevant to the research
work reported in this thesis. The review on knowledge acquisition, engineering and
maintenance mainly provides a background and sets the context for the rese&rch wor
reported in the thesis. The sections on constraints in engineering design and design
rationales present a review of literature that is more closely relevant to the work reported
in the thesis. The chapter is divided into five main sections: Sectiontgbiluces the
field of knowledge acquisition, including the various approaches to knowledge
acquisition and a brief description of some of the tools developed to support knowledge
acquisition. Section 2.2 reviews some of the prominent knowledge engineering
methodologies developed over the years. Section 2.3 provides background information
on knowledge maintenance with an overview of work done on verification and
validation of KBS, and in the area of knowledge refinement. Section 2.4 provides
background infamation on engineering design, and provides an overview of work done
in the areas of constraints in engineering design, concurrent engineering and integrated
product teams, and design rationales. A discussion of the key points of the review is
provided athe end of each main section. Section 2.5 summarizes the literature review
presented in this chapter. A brief introduction to knowledge engineering is provided
below.

Knowledge Engineering is a field within Artificial Intelligence that refers to the
building, maintenance and development of knowledaged system@BSs). Initially,
early descriptions of knowleddg®msed systems claimed that they consist of a
knowledge base (usually a set of rules) and an inference engine that executed the rules
by forward orbackward chaining. This simple structure failed to distinguish the roles
of differentkinds of knowledgein a KBS, suchasdefiningterms,expressinglomain

15

not

Chapter 2: Literature Revie

facts, and supporting inference and problem solvirigs Tonfounding of different
kinds of knowledge resulted in poorly structured knowleldgsed systems and made
them difficult to understand and maintain. It became clear that one needs to separate
out the different kinds of knowledge in KBSs. A knowledigsed system essentially
consists of two main components, a knowledge base and a prsbleimy method
(PSM).

MYCIN is one of the earliest knowleddmased systems that were developed in
the early 1970s at Stanford University to diagnose infectious blsmhsks. Its KB
comprised of approximately 400 rules relating possible conditions to associated
interpretations. MYCIN was highly domain specific and it became difficult to adapt the
system for related diagnostic applications. This led to a domain indepiesgalsion of
MYCIN, known as the EMYCIN. EMYCIN allowed the inference engine of MYCIN
to be applied to new problem domains and provided an environment for building and
debugging knowledge bases. Subsequently, the notion of identifying the general
problemsolving ability in a domain of expertise was introduced by HalReghet al
(1983).

Clanceyo6s (1985) identification of heu
underlying MYCIN KBS and the analysis of a number of knowleldgged systems led
to the discover of several generglurpose problersolving components. Considerable
emphasis has been placed on the development of knowbedge systems from
sharable and reusable, knowledge components. The development of this type of
knowledgebased system requires lknowledgeengineering process where the
developer selects, adapts, or constructs an appropriate problem solver, and supplies the
system with the knowledge it needs to operate (Puerta & Eriksson, 1996). The two
central activities in this type of developmieare the engineering of reusable
components, and the acquisition of domain knowledge. Knowledge Engineering also
involves the process of maintaining a KBS after it has been developed. Maintenance of
a KBS involves verification, validation and refinemeritkaowledge. More details

follow in subsequent sections of tleisapter.

2.1 KnowledgeAcquisition

Knowledge Acquisition is a field that deals with approaches to capture expert

knowledge, specifically for use in knowledgased systems. A difficulty that became

16

Chapter 2: Literature Revie

prominent during the development of MYWGland subsequent complex knowledge
based systems, was the extraction of the necessary knowledge from the human experts
in the relevant fields. Knowledge Acquisition can be defined as follows:

0The transfer and tr ansf oexpediseiframsoneef pot ent |

knowl edge source t etalal9g8yxr ogram. & (Buchanan

Knowledge Acquisition may involve a wide range of sources such as human
experts, documents, the World Wide Web, etc. Knowledge Acquisition is referred to as
Knowledge Elicitatim when the source of the knowledge acquired is specifically a
human expert. The traditional approach to Knowledge Acquisition involves the
following phases:

A Knowledge Engineer learns about the domain: Terminology (Glossary and
Structured Glossary) and the dominant problem solapgyoaches.

A Domain Expert gets a tdpvel view of Expert Systenischnology.

A Domain Expert solves tasks in the presence of the katme Engineer; then
the Knowledge Engineer solves same/similar tasks and is corrected (if required)
by the DomairExpert.

A Knowledge Engineer encodes knowledge in an Expert System shell and then
does gross debugging of the knowledge base.

A Knowledge Engingeand Domain Expert together use the Expert System to
solve demanding tasks; debugging and modifying the knowledge base if

necessary.

Early attempts to acquire knowledge in this way proved to be secom&uming and
intellectually demanding that knowleelg acqui si ti on was | abell ed
building knowledgebased systems (Feigenbaum, 1977). The reasons that can make

knowledge acquisition unsuccessful include:

A Miscommunication between the knowledge engineer and the domain expert can
make knowlege acquisition an errgarone process. This can happen especially
when a knowledge engineer is unfamiliar with the domain or when the domain

is too specialised for a knowledge enginearrtderstand.

17

Chapter 2: Literature Revie

A Itis not always possible to transfe a domain expertos knowl
system because the respective representations are too dissimilar. In addition, the
facts and principles underlying many domains of interest cannot easily be
encoded in the precise mathematical/logical way thatesessary for
subsequent processing and inference imaeahine.

ArHuman problem solving expertise often r
about the everyday world. Such knowledge is so deeply rooted in our
experiences as humans that we may not even redfiaewe know, or what
knowledge we are using in our reasoning. The existence datiig&nowledge
can make the knowledge acquisition tésknidable.

A The form of questions can affect the answers given bgxperts.

A The domain expert may be busy and hence unwilling to cooperate with the

knowledge engineer.

There are various methods that can be used for Knowledge Acquisition. These
methods can be classified in many ways depending on:

(1) the type of knowledge that is acquired, whether it is procedural or conceptual
(e.g., problem solving strategsiassification).

(i) the type of interaction with the expert (Burge, 1998): Direct methods involve
directly questioning or observing a domain experforming the job (e.qg.,
interviewing). Indirect methods are those where the needed information is
not requested directly. Instead, the knowledge acquisition session is
analysed to obtain the needed information. (e.g., repegtity

(i) whether knowledgé s acquired fAmanuall yo or wit
based tools (e.g., SALMORE).

(iv) whether it is uncontrived or contrived (White, 2000): An uncontrived
method seeks to observe an expert during problem solving without
interfering in the problem solving @ecess. In a contrived method, the
knowledge engineer interacts directly with the domain expert, and can
therefore steer the knowledge acquisition process towards topics of

particular interest.

18

Chapter 2: Literature Revie

The type of method chosen can have an etiadhe knowledge that is acquired. For
example, adopting an indirect method can sometimes obtain additional information than
that provided by direct methods. There are many reasons why an indirect method might
produce more information. One reason is thatindirect method may end up probing
aspects of the problem that the knowledge engineer did not anticipate, and may not have
asked in the direct KA session. Another reason is that some subjects are not as verbal
as other subjects are and are unlikelygtee full and detailed answers to direct
questions. A third reason is that some knowledge mampkcit. Implicit knowledge
is knowledge that was either learned implicitly and cannot be expressed explicitly, or
that was once explicit but has become igipbver time as the domain expert has used
it repeatedly and it became fAautomatico (B
The behaviour of the knowledge engineer can also play a significant part in the
effectiveness of the acquisition exercise, and can even harm the experiment by
introducing an unwanted bias. For example, when interviewing a domain expert, the
language usedylithe knowledge engineer can carry connotations, which influence the
domain expertds answer s. For exampl e, cons
frequently and if so how often? as opposed to do you get headacbasionally and
if so how often?
When choosing a method, there should clearly be a good match between the
type of knowledge required and the type generally produced by the method. For
example, can the proposed method elicit class hierarchies, causal knowledge, examples,
constraints, factsgoals, explanations, justifications, preferences, procedures, or
relations? Cordingley (1989) states that althoungérviewing(see section 2.1.1) is a
good technique for eliciting conceptual structures, facts, and causal knowledge, its
efficacy for elicting rules and assessments of weight of evidence is questionable.
Similarly, therepertory grid methodsee section 2.1.5) is good for eliciting conceptual
structures, rules and weights of evidence, but bad for eliciting causal knowledge,
procedures, andna expert s problem solving strateg

methods is given below:

2.1.1 Interviewing

An interview of the domain expert by the knowledge engineer is a common knowledge

acquisitiontechnique Thereare severaldifferent typesof interview

19

Chapter 2: Literature Revie

(Diaper, 1989). In an unstructured interview, the knowledge engineer asks probing
questions and records the responses. The style of interviewing is flexible, so that the
domain expertoés reacti on c athml Onealtgonatives u e d
is a focussed interview, which concentrates on a single aspect of problem solving, and
covers it in great depth. Another approach is a structured interview, in which the
knowledge engineer keeps strictly to an agenda, and prepatbe faterview with a

list of specific questions.

2.1.2 Protocol Analysis

Protocol Analysis (Ericsson & Simon, 1984) involves asking the expert to perform a
task while "thinking aloud.” The intent is to capture both the actions performed and the
mental process used to determine these actions. As with all the direct methods, the
success of the protocol analysis depends on the ability of the experts to describe why
they are making their decisions. In some cases, the experts may not remember why they
do things a certain way. In many cases, the verbalised thoughts will only beeaafubs

the actual knowledge used to perform the task. One method used to augment this
information is Interruption Analysis (Olson & Reuter, 1987). For this method, the
knowledge engineer interrupts the expert at critical points in the task to ask questions
about why he/she performed a particdation.

2.1.3 DocumentAnalysis

Document analysis involves gathering information from existing documentation. This
may or may not involve interaction with a human expert to confirm or enhance this
information. Some document analysis techniques, particularly those that involve a
human exprt, can be classified as direct. Others, such as collecting artefacts of
performance, such as documents or notes, in order to determine how an expert organises

or processes information are classified as indirect (Cordingley, 1989). This method has

beenad pt ed by systems such as the Designerso

to acquire design knowledge (rules).

20

Chapter 2: Literature Revie

2.1.4 Card Sorting

Card Sorting is a specialised indirect method, used for eliciting further knowledge about

a preselected satf concepts. When sorting, each concept of interest is described on a

card (the card consists of a picture, name of a concept or a short description), and the
domain expert is asked to divide the pack of cards into separate, but meaningful, piles.

The knavledge engineer records the separation and asks the domain expert to explain

it. Then the process is repeated, and the domain expert is requested to provide a further
consistent separation. This continues until the domain expert can think of no more ways

to separate the concepts. Often, sorting acquires knowledge about classes, properties

and priorities. For example, if the task was sorting pictures of different types of houses,

a subject might sort them into grnteoianps dbri

being Amain materi al of construction. o0 The
cards into groups called Aoneo, Atwoo, and
floors in each building. o

2.1.5 Construct Elicitation (Repertory Grid)

Constuct Elicitation methods are used to obtain information about how the expert
discriminates between entities in the problem domain. The most commonly used
construct elimination method is Repertory Grid Analysis. The repertory grid is an
indirect method baseah personal construct theory (Kelly, 1955). In this method, the
domain expert is presented with a list of domain entities and is asked to describe the
similarities and differences between them. These similarities and differences are
analysed to derive thenportant attributes of the entities. After completing the initial

list of attributes, the knowledge engineer works with the domain expert to assign ratings
to each entity/attribute pair. In some cases, attributes are rated as present/not present for
eachentity, in others a scale is used where the attribute is ranked by the degree to which
it is present. The ratings are arranged in the form of a grid/matrix and subsequently
analyzed for any existing correlations. Numerical values in cells will allow more
complex numerical/statistical analysis to be done. The type of information acquired by
this elicitation method may be classification, dependencies/relationships or evaluation.

21

Chapter 2: Literature Revie

2.1.6 Laddering

Laddering was first introduced by Hinkle (1965), a clinical psychologist, in order to

model the concepts and beliefs of people by an unambiguous and systematic approach.
Laddering is a structured questioning method (indirect method), enabling a hierarchy

of concepts to be established (Corbridgeal, 1994). Theknowledge engineer starts

with a secalled seed concept and poses questions such that the domain expert justifies

the position of the concept in a hierarchy, and at the same time offers furthwedge.

For exampl e, given the concept Appl e, one
bel ong to the concept Appl e?d This should
hierarchy (e.g. Cox, Gala). It is also possible to acquire concepts at the same level i

the hierarchy by asking for alternatives,
are similar to the concept Apple?d Concept s
asking for commonalities, e.g., nmhm2d have

An example of knowledge acquired using the laddering method is shown in Eigjure

Fruit
Banana Apple Orange
Cox Gala

Figure 2.1: Laddering Method

22

Chapter 2: Literature Revie

2.1.7 Use of Computerassisted/Computerbased tools

KA methods can be errgarone, laborious and tir@nsuming when applied manually.
Additionally the acquired knowledge has to be encoded into a compated system.
Hence, some of the KA methods (e.g., repertory grid) have been incorporated directly
into computer programs with the aim of minimizing the role of a knowledge engineer.
ETS and AQUINAS (expanded version of ETS), both computerised extensions of the
repertory grid method, have been -gzeded t
knowledgebased systems in Boeing (Boose & Bradshaw, 1999) . Researchers have
also concentrated on harnessing the synergy of the different KA methods by building a
computerised workbench. One of the first was a research prototype called ProtoKEW
(Reichgelt & Shadbo]t1992). This was subsequentlyingplemented and has been
marketed as a commercial product, calledAXTK* (Goodall, 1996; Miltonet al,

1999; Milton, 2007, 2008). It contains a suite of integrated tools that allows theuse
create, inspect and edit XML knowledge bases. Each tool provides a different way of
viewing the knowledge base. The latest version is PCPACKS5 and consists of the
following five acquisition and modelling tools, and five specialised tools:

Acquisition and Modelling Tools:

Protocol Tool i allows the marking up of interview transcripts, notes and
documentation (protocols) to identify and classify knowledge elements to be added to
the KB.

Ladder Tooli facilitates the creation of hierarchies of knowledgenednts such as
concepts, attributes, processes and requirements.

Diagram Tooli allows the user to construct compact networks of relations between
knowledge elements such as process maps, concept maps atrdssition diagrams.
Matrix Tool i allows grics to be created and edited that show relations and attributes of
knowledgeelements.

Annotation Tooli allows sophisticated annotations to be created using dynamic html,
which include automatically generated hyperlinks to other resources in the KB.
Speciaised Tools:

Admin ToolT used to access and man&dss.

4www.epistemics.co.ukAccessed online on 16 M&p08.

23

0]

d ¢

http://www.epistemics.co.uk/

Chapter 2: Literature Revie

Publisher Tool allows creation of websites using a template driven approach.
Diagram Template Toadl used to create templates for use in the Diagram Tool.
Equation Editoii used to create equations for use in the Annotation tool.

Tool Launcheii is a wizard tool allowing easy access to other tools.

PCPACK supports knowledge engineering methodologies such as
CommonKADS and MOKA (Milton, 2008). These knowledge engineering
methodologies are discussed in the next section. Other examples of cobgsater
tools include tools driven by PSMs: SALT-SALT, MORE, MOLE, OPAL, a
grammardriven tool known as COCKATOO, and a KA tool that generates expectations
to develop PSMs, known as EMeD of the EXPECT framework. Tools driven by PSMs
such as SALT, $ALT, MORE, MOLE etc, use a knowledge engineering
methodology called Roleimiting Methods that is explained in section

2.2.1.A brief review of some of the computbased KA tools is givebelow:

MORE: MORE (Kahnet al, 1985) is a system that acquires diagnostically sogmt

knowledge from domain experts by formulating a number of questions. MORE uses a
modettheoretic approach to the acquisition of diagnostic knowledge. It uses a
gualitative model of causal relations together with a theory of how causal knowledge
can beused to achieve more accurate diagnostic conclusions to guide the interview

process.

MOLE : MOLE (Eshelmaret al, 1988) is a successor of MORE. It uses a method of
heuristic classification known as the Co@rd Differentiate problem solving method,

which makes several heuristic assumptions and constructs an initial knowledge base
with the help of domain expert(s). Subsequent interactive problem solving detects errors
in the KB, suggests remedies to the domain expert and makes the required changes to
theKB. An important aim of MOLE is to minimise the number of questions a domain

expert is asked, by making intelligeniesses.

SALT: SALT (Marcus & McDermott, 1989) is a knowledge acquisition tool that uses
the Propos@nd Revise problem solving method.dssence, three generic roles may
be identified for ProposandRevise (Studeet al, 1998):

1 "design extensions" refer to knowledge for proposing a new value for a design
parameter, (a way of upgrading an exisemgty)

24

Chapter 2: Literature Revie

1 “constraints" provide knowledge restricting the admissible values for
parametersand
1 "fixes" make potential remedies available for specific constralations.
For each type of role, a fixed menu (or schema) is presented to the domain expert to be
filled out.

OPAL: OPAL (Musernet al, 1988) is a custortailored KA tool which is driven by a

problem solving method known as skeletal plan refinement. OPAL allows medical
specialists to enter and review cancer treatment plans for use by an expertailsettm

ONCOCIN (Shortliffeet al, 1981) that provides therapy advice to physicians who take

care of cancer patients. The cancer therapy task model has been built into OPAL, and
OPALG6s user interface primari | ystactiationsi st s o

of the task model.

COCKATOO: COCKATOO (White & Sleeman, 2001) is a grampdaiven KA tool

that uses constraint technology to acquire knowledge from the domain experts. The
advantages of this approach include: (i) It provides concise spdorfisaif tasks that

are more readable and save development time (ii) The required properties of each user
input can be checked at acquisition time rather than prior to problem solving or at
problem solving time. (iii) It provides a reactive user interfabene the choice of a

particular value for one input might narrow the options for another.

EXPECT: EXPECT (Kim & Gil, 1999) provides a framework to develop KA tools.
EXPECT uses dependencies between factual knowledge and PSMs to find related
pieces of knowledge in their KBS and create expectations from them. To give an
example of these expectationgjppose that the user is building a KBS for a
configuration task that finds constraint violations, and then applies fixes to them. When
the user defines a new constraint, the KA tool has the expectation that the user will
specify possible fixes for cases @vhthe constraint is violated, and helps the user do
so. EMeD (EXPECT Method Developer) is a KA tool that uses such expectations to

support users to develop PSMs.

25

Chapter 2: Literature Revie

O (hange Text =
C arce]. Dioms |

Change text for the method CALCULATE-TIME-TO-TRANSPORT-IMN-SHIP

Capability calculate the time to transport the amount of weight in the ship from
the firat location to the second location

Body
find the distance from the first location to the second location
and divide the distance by the speed of the ship

0ld text the apeed of the ship KN

Nay taxt Eind the spead of the shap with the weight value |

Updaks

Delets Selection

the length of the ship the width of the ship the depth of the ahip
the weight of the ahip the spesad of the ship the speed of the ship
the spesd of the aircraft L ymd the spaad of the shaiyp vith the weight valus

Enr:;l:‘ii-_i =]

(CALCULATE-TINE-TO-TRANSPORT (087 (?CARQOD IS (INST-0F WEIGHT-WALUE)))

(IN (*SHIP IS (INST-OF SHIP))) (FROM (YORIGIN IS (INST-OF LOCATION)))
(I0 ("DEST 15 (IMST-OF LOCATION})))
Baody

(VALUE-DIVIDE (0BJ (FIKD (0BJ (SPFEC-OF DISTANWCE)) (FREOM TORIGIN) (TO TOEST)))
(BY (R-SPEED 7SHIP)))

Figure 2.2: A screenshot of the Englistbased method editor used here to acquire problem
solving knowledge to compute the time to transport an item in a ship
Source: Kim & Gil (1999)

An Englishbased Method EditqBlythe & Ramachandran, 1999; Blyteeal, 2001)
has been developed to help a user modify and add pretabfnmg knowledge to
existing KBs. The value of the tool lies in the fact that the user need not understand the
syntax of the expert system to neakodifications. Two main steps are involved in this
approach: Firstly, the problem solving knowledge is converted into an Enliftish
structured text fragment and presented to the user. Secondly, selectable parts of the text
are modified by choosing amg alternatives that are also presented to the user via an
Englishparaphrase.

A central theme of this KA research has been how KA tools can exploit
Interdependency Modetbat relate individual components of the knowledge base in

order to develop expectanhs of what users need to add next. A screenshot of the

26

Chapter 2: Literature Revie

Englishbased Method Editor is shown in Figure 2.2. Figure 2.2 shows an English

based front end that describes the method to compute the time to transport an item in a

ship, by dividing the distance to travel by the speed of the ship. The user cahealter t

met hod by selecting a part of the sentence

set of alternatives provided (shown in the second window from the bottom).

2.1.8 Discussion

Knowledge Acquisition is a critical phase within Knowledge Engineering. Théyjual
(correctness) of the knowledge acquired affects the performance of a KBS. There are
various methods that can be used for knowledge acquisition, including manual and
computerassisted tools. There is no single best method for knowledge acquisition. The

type of method to be adopted for knowledge acquisition depends on the type of
knowledge being acquired. Knowledge Acquisition is referred to as Knowledge
Elicitation when the source of knowledge acquired is specifically a human expert.

Several methods andols have been developed with the aim to either minimize or

eliminate the role of a knowledge engineer in the Knowledge Acquisition process. The
underlying assumption here is that minimizing or eliminating the role of a knowledge

engineer would make thknowledge Acquisition process less erpsone and less
tmeeconsumi ng. The Designersd Workbench wuse
Analysis involving a knowledge engineer to acquire design rules. This thesis presents a

novel approach to relieve the knowledgeyineer from doing the errprone and time

consuming task of acquiring design rules (expressed as constraints) in the context of the
Designersdo Workbench. The thesis embodies t
construction of a system that has iedeveloped to facilitate domain experts in

capturing and maintaining constraints in engineering design. More details about the

proposed approach and the developed system can be found in Ghapter

2.2 Knowledge EngineeringMethodologies

Several methodologies and tools have been developed over the years to efficiently
support all the phases of knowledge engineering. A brief review of some of the

knowledge engineering methodologies is given below:

27

Chapter 2: Literature Revie

221 Role-Limiting Methods(RLM)

Role-Limiting Methods (Marcus, 1988) was one of the first attempts to support the
development of KBSs by exploiting the notion of a reusable probtawing method
(PSM), where a PSM is a model of KBS problem solving behaviour (also known as the
inference system). Examples of PSMs are CewaedDifferentiate (for solving
diagnostic tasks) (Marcus, 1988) and Propmsg&Revise (for parametric design tasks)
(Marcus & McDermott, 1989). The RLM approach can be characterized as a shell
approach. Such a shell cemwith an implementation of a specific PSM and thus can
only be used to solve a task for which the PSM is appropriate. The given PSM also

defines the generic roles that knowledge can play during the problem gmiooess.

Strong Points

From the charderization of the PSM (ProposadRevise) for SALT, one can see that

the PSM is described in generic, domain independent terms. Thus, the PSM may be
used for solving design tasks in different domains by specifying the required domain
knowledge for the diérent predefined generic knowledge roles. For exampBAIST

(Leo, 1995) is an enhancement of SALT system and implements the Resubse
Revise problem solving method-SALT has been successfully applied to solve the
VT-Sisyphusll problem, an elevatoctonfiguration task that is used in the knowledge
acquisition community as a benchmark. WitsALT, the domain expert uses a form
oriented user interface for entering domain specific design extensions. That is, the
generic terminology of the knowledge relevhich is defined by object and relation

types, is instantiated with \Bisyphusll specific instances.

Weak Points

A problem faced with RLMs is how to determine whether a specific task may be solved
by a given RLM. Such task analysis is crucial. Meexp RLMs have a fixed structure

and do not provide a good basis when a particular task can only be solved by a
combination of several PSMs. The probisolving strategy is fixed and cannot be
adapted or augmented. In order to overcome this inflexibifiigldVs, the concept of
configurable RLMs (CRLMs) was developed. CRLMs (Poeck & Gappa, 1993; Fensel
& Poeck, 1994) exploit the idea that a complex PSM may be decomposed into several

28

Chapter 2: Literature Revie

subtasks. Each of these subtasks may be solved byirsgeatethod from a predefined

set of different methods within the CRLM framework. CRLM provides this kind of
flexibility but still comes with a fixed set of knowledge types. Further, there are no clear
examples of where CRLMeveloped systems have beerdito solve complex (real

world) tasks.

2.2.1.1 Generic Tasks and TaskStructures

The knowledge engineering literature has identified a number of problem types-(Hayes
Rothet al, 1983; Clancey, 1985) such as diagnosis, design etc. and identified for each
problan type a number of problem solving methods (PSMs). Following the work of
HayesRoth and Clancey, the notion of a Generic Task (GT) (Chandrasekaran, 1986)
evolved. GTs can be viewed as building blocks thatbearused for the construction

of different KBS. The basic idea of GTs may be characterized as follows
(Chandrasekaran, 1986; Stueeal, 1998):

1 A GT is associated with a generic description of its inputcarplut.

1 A GT comes with a fixed set of knowledge types specifying the structure of
domain knowledge needed to solviask.

1 A GT includes a fixed problem solving strategy specifying the inference steps
the strategy is composed of and the sequence in which tlegsehstve to be
carried out.

Strong Points

GTs provided a larger vocabulary of taghated terms, and additionally, related the
knowledge to how it was going to be used. The-tas provided important points of
leverage in the generation of explanasiai problem solving. The GTs also appeared

to have computationaldvantages

Weak Points

The GT approach is based on the hypothesis that the structure and representation of
domain knowledge is completely determined by its use (Bylander & Chandrasekaran,
1987). Analysis of the GT approach in more detail led to identification of two main
disadvantages (Chandrasekagaal, 1992):

29

Chapter 2: Literature Revie

1 No clear distinctions exist between the notion of a task and the notion of the
PSM used to solve the tashnce each GT includes a piletermined problem
solvingstrategy.

1 The complexities of the proposed GTs are very different, i.e. the appropriate

levels of granularity for the building blocks are ot#ar.

Based on this insight into the disadvantages of the notion of a GT, the so called Task
Structure approach was proposed (Chandrasekai@n 1992). The Task Structure
approach makes a clear distinction between a task, which is used to refer to a type of
problem, and a method, which is a way to accomplish a task. In that way a task
structure may be defined as follows: a task is associated with a set of alternative
methods suitable for solving the task. Each method may be decomposed into several
subtasks. fie decomposition structure is refined to a level where elementary subtasks
can be directly solved by using available knowledge. This basic notion of task, PSM
and the decomposition structure are perspectives that are shared among most of the

knowledge engieering methodologies in recent years.

2.2.1.2 Overviewof RLMs andGTs

RLMs are methods that strongly guide knowledge collection and encoding
(McDermott, 1988). They specify the roles various types of knowledge play in the
operation of each method. The majdfatence between the releniting method
approach and most of the other approaches is the requirement that a RLM be
completely specified (i.e., that all tasks and subtasks bspa@fied down to the

level of primitive operations). A problem faced withMs is how to determine

whether a specific task may be solved by a given RLM. Such task analysis is crucial.
A GT defines a task of general utility (such as classification), a method for doing the
task and the kinds of knowledge needed by the method. @rngsks are

decomposed into generic tasks and the required knowledge is directly described for
any domain in which the task is performed. GTs grouped both task and method
together with each task having a{oletermined problem solving strategy. The Task
Structure approach was then proposed that makes a clear distinction between a task

and amethod.

30

Chapter 2: Literature Revie

222 The PROTEGE Approaches

Includes OKBC Knowledge Model | — —
Runs under Java VM | Protégé-2000 >

Integrated Tool Set | — .
Based on MS Windows | Protégéiin_>

Multiple PSM - Domain-Independent
T PSM and automated form generation
Protégé| " Defined thres classes of entology:
* Domain, Methad and Application

Single PSM - Episedic Skeletal-Plan Refinement (ESPR)
PSM defines semantics

Knowledge bases are problem-specific
Based on Xerox LISP Machine

Protégé

Translated expert's case entry into Oncocin's infermal representation
Pre- ' 0 a|> « Structural domain concepts,
Protégeé | P +oneokgy protocals
+asa data exerdsa the aexpert system dedsion capability

1986 1988 1900 1062 1984 1086 1988 2000 2002

Figure 2.3: The Protégé Approaches
Source: Hengl (2004)

The Protégé approach has evolved over the years (Gebvsao 1999). Figure 2.3
illustrates the evolution of Protégé approaches. Protégé was developed with the aim to
reduce the knowledgacquisition bottleneck by minimizing the role of the knowledge
engneer in constructing knowledge bases. This was achieved by usingpeskic
knowledge to generate and customize knowledge acquisition tools. The original Protégé
was then modified to explicitly separate the probkstving method from the domain
knowledge. This led to the Protédiéapproach. The Protegéapproach (Puertat al,

1992; Museret al, 1993; Rothenflulet al, 1994; Erikssomet al,

31

Chapter 2: Literature Revie

1995b; Gennariet al, 1995; Rothenfluhet al, 1996) aimed at supporting the
developmat of KBSs by the reuse of PSMs and ontologies. In addition, Prttkge
emphasis on the generation of custtamored knowledge acquisition tools from
ontologies (Eriksson & Musen, 1993; Eriksseinal, 1994; Erikssoret al, 1995a).
Protegell relied on the taskmethoddecomposition structure as followed in Generic
Tasks and Task Structures. The ProtBg@proach introduced declarative mappings
to enable reuse of both ontologies and PSMs. Mapping relations could be formed to
connect the applicatioand method ontologies. In addition, Protégécluded the
Adownhi | | flowdo assumption of <classes over
were more durable than instances. It was expected that knowledge engineers would use
one tool to define classeand then domain experts would use a separate tool (KA tool)
to create and edihstances.

The ProtégdVin approach emerged later with the goals of:
() making knowledge bases more reusable and maintainable by splitting them into
modular components that cae imcluded in onanother.
@ making software tools more usable by porting them to a standard platform. Protégé
tools became executable in a Windows environment (earlier, they ran on NeXT
workstations). Protég@/in became a useful tool for building modelssofall domains
and experimenting with various types of KBSs. However, it suffered from three
limitations:
a) the standard set of userterface widgets was too limited for many envisioned users.
b) interoperability with other modelling frameworks wamsited
c) flexibility was not enough for manyomains.

The recent model adopted is that of Prot2g80 (Grosset al, 1999; Noyet
al., 2000). However, the most recent implementation (at the time of writing this thesis)
is Protégé 3.2°1 The goals here are to make knowledge bases reusable across
modelling frameworks by adopting standard representation languages and lay
groundwork for addressing scalability issues in knowledge engineering. RPES@gé
adoptsa new OKBC knowledge model that offers three major advantages of greater
expressivity, clean modéheoretic semantics and the possibility of reuse with

distributed ontology servers. Protég@00 provides support for modellets

®Protégé Ontology Editaand knowledgdase framework, version 3.2.1, Accessed online 02 July 2007 at
http://protege.stanford.edu/download/registered.html

32

http://protege.stanford.edu/download/registered.html

Chapter 2: Literature Revie

customise and extend Protégé ask and domain specific ways. Prot&§®0 also
introduces the explicit notion of a project. Projects contain knowledge base and
configuration information.

A knowledge base is simply a collection of frames (it also contains things like
reified slots, facetand axioms). The configuration information contains description of
all the widgets that have been added to the project, information about the knowledge
base server being used and a list of all the projects that are included by the current
project. Protég-2000 is highly customisable, and has recently been adapted to the new
world of semantic web by reusing its user interface, internal representation, and
framework (Noyet al, 2001). The most recent version of Protégé 3.2.1 supports the
Web Ontology Langage (OWL) of the semantic web (Knublawettal, 2004). Protégé
3.2.1 has been used to develop ontologies

Workbench and ConEditor/ConEditor+, that are described later in this thesis.

223 The CommonKADS Approach

CommonKADS (Common Knowledge Acquisition and Design Support) (Kingston,
1998; Schreibert al, 2000; Brombyet al, 2003) is a methodology to support
structured knowledge engineering. It supports most aspects of a KBS development

project, such as:

A Projed management

A Organisational analysis (including problem/opportuidgntification)
A Knowledge acquisition (including initial projestoping)

A Knowledge analysis andodelling

A Capture of user requirements

A Analysis of system integratidasues

A KBS design

CommonKADS provides a clear link to modern objedgented development and uses
notations compatible with UML. CommonKADS consists of the following predefined

set of models:

33

Chapter 2: Literature Revie

A Organization model: The organization model supports the asalyie major
features of an organization. The deficiencies or problems faced by the current
business processes are identified with opportunities to improve these processes
by introducingk BSs.

A Task model: Tasks are the relevant subparts of a business process. The task
model analyzes the global task layout, its inputs and outputs, preconditions and
performance criteria, as well as needed resourcesampetencies.

A Agent model: The agent modelesjifies the capabilities of each agent involved
in the execution of the tasks at hand. In general, an agent can be a human or
some kind of softwarsystem.

A Knowledge model: The purpose of the knowledge model is to describe in detail
the types and structis®f the knowledge used in performing a task. It provides
an implementatioindependent description of the roles that different
knowledge components play in problem solving, in a way that is understandable
for humans. This makes the knowledge model an rtapb vehicle for
communication with experts and users about the problem solving aspects of a
KBS.

A~ Communication model: Here the various interactions between the different
agents are specified. Among others, it specifies which type of information is
exchamged between the agents and which agent is initiatingtéeaction.

A Design model: The design model gives the technical system specification in
terms of architecture, implementation platform, software modules,
representational constructs and computatiomaéchanisms needed to
implement the functions laid down in the knowledge and communication

models.

The Knowledge Model has three parts, each capturing a related group of knowledge
structures. Each part is called a knowledge category. The first catedgbeydemain
knowledge; this category specifies the domain specific knowledge and information
types required to solve the task at hand. This includes a conceptualization of the domain
in a domain ontology, and a declarative theory of the required domawmiddge. The
second category is the inference knowledge. The inference knowledge describes the
basic inference steps to be made using the domain knowledge. The third category is the

task knowledge. Task knowledge describdsat

34

Chapter 2: Literature Revie

goal(s) anapplication pursues, and how these goals can be realized through

decomposition into

subt asks

and

of the dynamic behaviour of tasks, i.e., their internal control.

224 The MIKE Approach

nferences

In MIKE (Model-based and Incremental Knowledge Engineering) (Fensel & Poeck,
1994; Landes, 1994; Studetral, 1998), the entire development process is divided into

the following sub activities (Figure 2.4):

—_—

Implemen- \ ~
tation

knowledge
protocols

Interpretatio n\

_ | =

_——.'-
=== ﬁ

Structure
Maodel

Formalization

Operationalizaticr'l’/

e — s —]

Design | ==~—"==2
Model == ==

e
== =

=

=

—

activity evaluation document

Figure 2.4: The MIKE Approach

Source: Studeret al (1998)

KARL Model

Elicitation: Methods like structured interviews are used for acquiring informal

descriptions of the knowledge about the specific domain and the problem solving

processes. The resulting knowledegxpressed in natural language is stored-inated

knowledge protocols.

35

Chapter 2: Literature Revie

Interpretation: During this phase, the knowledge structures identified in the knowledge

protocols are represented as the structure model. All structuring atfonmn this

model, like the data dependencies between two inferences, is expressed in a fixed,
restricted language while the basic building blocks, e.g., the description of an inference,
are represented by unrestricted texts. The knowledge enginedreaexpert can use

this representation to communicate with eaitter.

Formalization/Operationalization: The structure model is the foundation for the
formalization/operationalization process that results in the model of expertise known as
the KARL model. The KARL model has the same conceptual structure as the structure
modelwhile the basic building blocks represented as natural language texts are now
expressed in the formal specification language KARL (Festsal, 1998). The formal
specification describes the functionality of the system precisely, yet abstracting from

implementation details.

Design: The Design phase is performed on the basis of the KARL model after it has
been evaluated with respect to the required functionality. This phase captures all the
functional as well as the ndanctional requirements of the KBShe nonfunctional

requirements include e.g., efficiency and maintainability, and the constraints imposed

by target software and hardware environments.

Implementation: This is the final phase in which the design model is implemented in

the target hardwarand software environment to form the KBS.

225 The MOKA Approach

MOKA (Callot et al, 1999; Klein, 2000; Stokes, 2001) is a methodology that has been
developed for knowledge modelling in design and engineering. From a knowledge
modelling point of view, the are two key issues that have been identified in
knowledgebased design (Klein, 2000): First, there is a close interaction in design
between object level knowledge (components, structures, behaviours, functions, etc.)
and problem solving knowledge (trémsmations, constraint solving, search). Second,
control of problem solving and strategic reasoning is essential in design. This results in

two challengesf knowledgemodellingin design(Klein, 2000):first, to develop

36

Chapter 2: Literature Revie

general knowledge modelling schemes that are expressive, powerful and flexible
enough; and second, to adapt these model requirements to the special requirements of
design. This will also allow us to reduce t
(Smithers, 1998).

Knowledge based engineering (KBE) is defined as the use of advanced software
techniques to capture anduee product and process knowledge in an integrated way.
KBE systems differ from other knowleddpased systems mainly in terms of geometry
and the highdegree of iteration within engineering design. The iteration here means
that building a design requires processing a little bit of knowledge in one area, then a
little in another, then maybe back to the original and so on and the process is far from
linear. The linking between the many parts of the process and, as a consequence, the
complicated linking with the product objects makes it difficult for a KBE (Stokes, 2001)
approach. This led to the development of the MOKA Approach (Methodology and tools
Orierted to Knowledge based engineering Applications). Retgce is currently

adopting the MOKAapproach.

The main objectives of the MOKA project are:

A Reduce the lead times and associated costs of developing KBE applications by
20-25%

A Provide a consistentay of developing and maintaining KBipplications

A Develop a methodology that will form the basis of an internatstaadard

A Provide software tools to support tmethodology

MOKA consists of the following elements:

1. Lifecycle: A description of the lifeycle for a KBE application (whether new
or being modified) as a MOKA Route Map to guide you through the life cycle
is provided. The life cycle is described by means of the following six steps:
IDENTIFY T This step aims to investigate the business neatitoagietermine
the type of KBE system that might satisfy thoseds.
JUSTIFYT This step involves the generation of a global Project Plan that is
used together with a business case to seek management approval for the steps

below.

37

Chapter 2: Literature Revie

CAPTURET This step aims to collect the domain knowledge in a raw form and
structure it into an informal model. Engineering design covers a wide variety of
knowledge including product specification, general constraints, conceptual
design knowledge, physicdesign knowledge, design rationales, and design
process knowledge.

FORMALIZE T This step builds a formal model in two distinct parts: the
product model and the design process model.

PACKAGET This step involves translation of the formal model into cadef
working KBE system.

ACTIVATE 1 This step involves the distribution, installation and use of the
KBE application.

2. Representation: A means of representing the knowledge associated with the
application using text and graphics is provided. MOKA uses layers of
representation. The first is designed to be very-fismdly and to represent the
many different ways in which engineers think about design. This first layer is
called the informal model. In this model, the knowledge is classified into five
types:
lllustrations i for recording past experiences, case histories, anecdotal
knowledge.

Constraintg restrictions on the objects or the attributes of an object.

Activities T the elements of the designocess.

Rulesi knowledge used to make choices between activities.

Entitiesi the objects that describe theoduct.

Each knowledge type has a specific template or form. The set of completed
forms, called ICARE (lllustration, Constraint, Activity, Rule, Entity)rfs,

holds the knowledge description for the KBE application.

The second layer of representation is the formal model. The knowledge engineer
takes the knowledge from the linked ICARE forms and converts it into a-UML
style of representation known as MML (M@ Modelling Language) (Brimble

& Sellini, 2000). The formal model has two key elements: the product model

and the design processdel.

38

Chapter 2: Literature Revie

3. Tool : A software tool known as @AMOKA t

representation and the route map is provided. The tool allows management of
the project and module details. It supports creation of both informal and formal
models. The tool avoids logitinconsistency when developing the product and
process models. The main functions managed by tharteol

1 Create, modify objects and navigate among the different models

(informal model and formal models for product gmdcess)
1 Provide different viewpaoits and levels adetails

Generate a knowleddmok

226 Discussion

The above sections have provided background information on the various knowledge
engineering methodologies. This thesis uses Protégé to develop ontologies in OWL for
use by systems, namelyelds i gner s Wor kbench and ConEdit
knowledge engineering methodologies reviewed in Section 2.2 have placed
considerable emphasis on the development of KBSs from sharable and reusable
knowledge components using a structured process. Wieentral activities in this

type of development are the engineering of reusable components and the acquisition of
domain knowledge. The basic notions of the task, PSM and the decomposition structure
from the Task Structure approach have been adoptext@mtr methodologies such as
CommonKADS and MIKE. The entire development process is divided into phases with
clearly defined roles in each phase. MOKA has been developed specifically to develop
KBE systems in the field of engineering and design. KBE systkfies from KBSs

mainly in terms of geometry and the high degree of iteration within engineering design.
Rolls-Royce currently adopts the MOKA approach. The knowledge engineering
process does not end after one successfully builds a KBS or KBE systemedaisdo
subsequently maintain the KBS or KBE system throughout its lifecycle. Knowledge

Maintenance is discussed further in the rsedtion.

39

Chapter 2: Literature Revie
2.3 KnowledgeMaintenance

Knowl edge Maintenance i s concernoweledgewi t h co
Maintenance is the process of reflecting over some knowdedged system in order to

handle a new situationo (Menzies, 1999) . T
contents of the KB so that they are consistent with (a) a set of prevepeslfied task

solution pairs (b) constraints known about the task (c) domain theory/background
knowledge. The importance of knowledge maintenance is often underestimated. A brief

review of this field is given below.

The issues faced in KB maintenance within engineering were first raised by the
XCON°configuration system at Digital Equi pme
assumed that knowleddmsed systems could be maintained gpyy adding new
elements or replacing existing elements. However this simplicity proved to be illusory
as indicated by the experience ofetaRl/ XCONDO
1987; Barker & O'Connor, 1989; McDermott, 1993) is a-hdsed expertystem that
configures computer systems. XCON has a very large rule set and underwent constant
change (50% of the rules in XCON were changed each year). Given the large number
of rules that had complex conditional parts, it became quite difficult to ufhdatales
in the light of new product announcements; it was hard to know if one had found all the
rules that need changing. A new methodology called RIME was developed to help in
the maintenance of XCON. RI MEOGs prbkenl osophy
down; in particular, multiple tasks need to be factored out and each task needs to be
made an explicit process. The objectives of these changes were to reduce the size and
complexity of an average rule, and hence better manage the increasing numlest o

RI ME6bs i mpact was felt dramatically in
methodology aided the management of large quantities of rules. When adding new
rules, one can now more easily take advantage of existing rules, and thus knowledge
reuse redts in a major productivity gain. Although the RIME methodology made it
easier to maintain, t he ¢ omp earlydnetiesu se of

Maintenancecontinuedto be a major unsolvedproblembecausef

%« nown earlier as OR16

40

Chapter 2: Literature Revie

the sheer quantity of rules and their size.

to maintain ito was a joke shared at Digit:;

A lesson learnt from the XCON system is that: The XCON system did not
provide a clear separation between component knowledge and processing knowledge,
since constraints on components are often expressed in the production rules. Moreover,
it is not clear how a newly added rule would interact with the existing rules in the
absewe of an explicit problem solving method (Frayman & Mitt&l87)

Enabling a domain expert to maintain his own knowledge base in a knowledge
based system has long been an ideal for the Knowledge Engineering community.
Bultman et al. (2000a) report theirxperience in trying to achieve this ideal in a
practical setting, by designing a maintenance tool for a KBS. The KBS considered is a
Company Classification System. The task of this KBS is to classify employers into one
of fifty -five sectors. Classificatioaf an employer is necessary to determine the level
of various insurance contributions for the Dutch social security system, and is based on
the primary activity of the employer. Because of a lack of consistency in the
classifications various people ma@ed a decreasing number of experts available in
this domain, this KBS was built. The users of this KBS often report bugs and
shortcomings of the system and hence, a lot of maintenance is performed on the system.
The objective here is to develop a mainte®atool to help domain experts directly
implement the required changes in the system without repeatee;dimaming and
errorprone interaction with a knowledge engineer. The approach adopted here is to
provide domain experts with a conceptual model (@asing both tasimodel and
domain ontology of the system to be maintained) that is close enough to the concepts

familiar tothem.

Coenen (1992) discusses a methodology for the maintenance of KBSs, which
consists of a number of distinct stages. Initidllg heed for maintenance is passed on
to the maintainers in the form of bug reports and change requests. Having established
that some maintenance is required, the next stage is to identify, from a global
perspective, the section of the KB that will requateention and determine the nature
of the maintenance action that will be required. Having determined the immediate
nature of the required action, the next stage is to identify, locally, the elements in the
KB that will also require attention as a resultiee proposed change. The next stage is

to consider further maintenance actions required with respect to these eldments.

41

Chapter 2: Literature Revie

example, the removal of a rule may require the modification of the rules that call it and
are called by it. The next stage is the implementation stage that should be carried out in
a consistent and sequential manner. The final stage is the testing plesetieh
implemented changes are verified and validated. The above methodology was
developed as a result of work carried out on MAKE (Maintenance Assistance for
Knowledge Engineers) project that was concerned with the specification and
development of softwa tools to support knowleddgemsed system maintenance.
Coenen concludes that the field of KBS maintenance has been sorely neglected and that
this is the principal reason why KBSs have failed to gain the general acceptance that

was expected when they fitsime tgprominence.

Qian et al (2005) present principles and approaches for knowledge base
maintenance in an expert system. Development and implementation of maintenance
modules for the expert system for fault diagnosis of an industrial fluid catakytikicg
unit are reported in detail. During the application of the expert system to fluid catalytic
cracking unit, new rules need to be added into the existing expert knowledge base from
time to time, according to the changes in operating conditions had@tcumstances.

The new rules added could conflict with the existing rules. Hence, the new rules added
are verified and screened by an integrality verification module. Algorithms are
proposed for detection of inconsistencies, namely, contradiction,naeday,
subsumption, circulation and reclusion. This improves the efficiency of the knowledge
base and ensures that the inference engine works properly and effectively. The
following two sub sections present a review of literature, specifically in thas fal

verification and validation, and knowledge refinement respectively.

231 Verification and Validation

Verification and Validation of KBs is at the heart of knowledge maintenance.
Knowledgebased systems (KBS) are being used in many application areas where their
failures can be costly because of the losses in services, property, or even lieg (Tsai
al., 1999). To ensure their reliability and dependability, it is therefore important that
these systems are verified and validated before they are deployed. There is much
confusion about the distinction between Validation and Verification kug

conventionalview is that Verification is a processaimed at demonstrating

42

Chapter 2: Literature Revie

whethera system meets its specified requirements; this is often called "building

the system right". Validation is a process aimed at demonstrating whether a system
meets the ser's true requirements; this is often called "building the right system"
(Meseguer & Preece, 1995). There have been several systems developed to verify and

validate rulebased systems. A brief review of work done in this area is ¢jekaw:

ONCOCIN: The ONCOCIN Rule Checker (Suwet al, 1982) can be considered as

the first verifier referenced in the literature. It detects the following issues in attribute
value rule bases: conflict, redundancy, subsumption and missing rules. Rules are
grouped by theirconcluding attribute, forming a table for each group. Verification

issues are tested on each table, by static comparison of rules.

CHECK: The CHECK (Nguyeret al, 1985) system was developed to verify the
consistency and completeness of knowlebdgsed systems built using the Lockheed
Expert Systems development environment. In addition to conflicts, redundancy and
subsumption, the system detected unnecessargnditions, circular rules, illegal
attributevalues, unreachable conclusions, dead ifconditions and goals.

ONCOCIN Rule Checker and CHECK perform only a partial analysis of
inconsistency (conflict) and redundancy because they test these issues locally,
comparing static pair of rules and ignoring rule chaining. This problem was solved by
subsequent systems such asRBDUCER (Ginsberg, 1988) and COVADIS (Rousset,
1988). The KBs considered by all these systems were forebaiting propositional

rule bass.

COVER: COVER (Preecet al, 1992) was another tool for verification of rubased
systems that detected a wider range of anomalies. COVER carries out seven verification
checks: redundancy, conflict, subsumption, unsatisfiable conditions (rulesiimaitt c

be fired, missing values), deatd rules, circularity and missing rules. The rules had to

be written in, or converted to, a language based ondidsr logic. The worstase
complexity after theoretical analysis for rule checks is?Ofgr n rules, as every rule

in KB is compared against all other rules. This system was appliedngreal world

KBs andit detectedgenuineandpotentiallyseriousfaultsin each

43

Chapter 2: Literature Revie

KB to which it was applied. This system was extended to verifying fagént systems
and became known as COVERAGE (Preece, 1999).

232 Knowledge Refinement

One of the main aims of knowledge refinement is to improve the performance of an
imperfect (faulty) KB There have been various tools developed to enable knowledge

refinement. Some examples are given below:

TEIRESIAS: TEIRESIAS (Davis, 1979) helped domain experts detect shortcomings
and also make refinements in the KB of one of the earliest expert sysfef@sN
(Shortliffe, 1981). If the expert (physician) did not agree with the output (diagnosis) of
MYCIN, TEIRESIAS enabled the expert to identify the discrepancies by systematically
tracing the line ofeasoning.

T T
T L R
m
I —
y

Frerrsersd CoOarEilic iy
RENINENFLE DT
GIINITE: A TOIR

ey men

ERLLE
CHAMGING
ME CHANISN

M ODULE -

Figure 2.5: KRUST Refinement System
Source: Craw & Sleeman (1995)

44

Chapter 2: Literature Revie

KRUST: KRUST (Craw & Sleeman, 1990, 1995) is an automated refinement system

for knowledgebased systems. The system is presented with a training case, where the

ex pecrotnécsl usi on conflicts with the KBS6s con
possible refinements to the KB so that the
Various filters use evidence suggested by otherdakkion pairs to remove ineffective

refinements. When KRUST terminates, the expert is usually given a single refined KB

that KRUST has judged to be the best. A flowchart showing the process in KRUST is

given in Figure 2.5. An important assumption is that the KB needs only minor

At we ak i nhama nrajartoveraaul. t

STALKER : STALKER (Carbonara & Sleeman, 1999) is an extension of KRUST. It

has two major enhancements. Firstly, the refinement suggested has been augmented by
the introduction of inductive refinement operators. Secondly, the testasghas been
greatly speeded up by using a Truth Maintenance System. STALKER was tested on

two realworld rule bases and proved to be 50 times fasterKRAST.

CONREF: CONREF (Winteret al, 1998) is a system that was developed to help
British Aerospace make efficient use of their inventory of fasteners. Constraint
satisfaction techniques are used to determine which fasteners are suitable for a particular
application, given a design KB. Atidnally knowledge refinement techniques are used

to refine the KB, if the domain expert (an Airbus designer) disagrees with the retrieved
fasteners. The system is also able to generate reports, describing the frequency of

retrieval of specific fasteneesd the contexts of thaise.

TIGON: TIGON (Sleeman & Mitchell, 1996) is a system that helps in the diagnosis of

turbine faults by providing diagnostic information which helps an engineer detect the

nature and location of faults. The system consists of fowpeoating subsystems

i a Learmng Module which learns the fault detection and diagnosis models; a
Monitoring Module that monitors the turbi
behaving abnormally; a Diagnosis Module that tries to determine what is causing the
abnormality; and a Transfmation Module that modifies the knowledge bases so that

they are applicable to further turbines. If any inconsistencies are reported by the system,

the expert is asked to suggest changes to the set of cases, the causal graph or the

descriptors in the datset.

45

Chapter 2: Literature Revie

REFINER++: REFINER++ (Aiken & Sleeman, 2003) is a system that has been
developed to help domain experts classify data, and has largely been applied in the
medical domain. The domain expert is required to specify which categdrycase
belongs to; Refiner++ then infers a description for each of the categories and reports
inconsistencies that exist in the dataset. An inconsistency occurs when a case matches
a category other than the one to which the expert has assigned it. Hfigtenaies have

been detected, the system suggests ways of dealing with the inconsistencies by refining
the dataset; however, it is the domain expert who selects the actual refinements to be

applied.

ReTAX++: ReTAX++ (Lamet al, 2005; Lamet al, 2008) § a system that has been
developed to help knowledge engineers browse and resolve inconsistencies present in
ontologies. The system uses grdyased algorithms to detect which relationships
among concepts cause inconsistencies and provides the knowlegigeeerwith

various options to correct them.

2.3.3 Discussion

The review of literature in the field of knowledge maintenance has reported on issues
faced during maintenance and also on some systems that have been developed to
support the verification, validat and refinement of rulbased systems. Verification,
validation and refinement are three important activities in knowledge maintenance. An
important lesson that can be learnt is that the initial phases of knowledge acquisition
and knowledge modelling iknowledge engineering have considerable effects on the
maintenance phase. This is particularly evident from the problems faced by the
R1/XCON configuration system. It is important to explicitly record the contexts in
which each rule is applicable, duririgetKA phase. Recording the contexts should help
identify all the rules that need to be updated during maintenance. This thesis investigates
how an explicit representation of contexts together with the engineering design rules
can help in the maintenance @fKB. Knowledge modelling also plays an important

role in the maintenance phase. As indicated in the R1/XCON system, if no clear
separation is provided between component knowledge and processing knowledge, it

can cause serious problems during the maimis:af a system.

46

Chapter 2: Literature Revie

The following section provides a review of work in the field of engineering

design. The thesis has used engineering design as an application domain.

2.4 Engineering Design

In engineering design literature, three phases of design are generally identified:
conceptual design, embodiment design and detailed design (Pahl & Beitz, 1995;
O'Sullivan, 2002b; Ullman, 2003). During conceptual design, the designer searches for
a set ofbroad solutions to a design problem, each of which satisfies the fundamental
requirements for the desired product. The embodiment phase of design is traditionally
regarded as the phase in which an initial physical design is developed. This initial
physicaldesign requires the determination of component arrangements, initial forms
and other part characteristics. The detailed phase of design is traditionally regarded as
the phase during which the final physical design is developed. The final physical design
requires the specification of every detail of the product in the form of engineering

drawings and productigolans.

241 Constraints in EngineeringDesign

Most decisions in daily life involve considering some form of restriction on the choices
that are availde. For example, the destination to which someone travels has a direct
impact on their choice of transport and route: some destinations may only be accessible
by air, while others can be reached using any mode of transport. Formulating decision
problems interms of parameters and the restrictions that exist between them is an
intuitive approach to modelling them. These general restrictions can be referred to as
Aconstrai nt2002b).(O' Sul | i van,

Engineering Design is constraiotiented and much of the dgsi process
involves the recognition, formulation and satisfaction of constraints (Serrano &
Gossard, 1992; Lin & Chen, 2002). A constraint here refers to a design rule that needs
to be satisfied. Constraints are continually being added, deleted and ohodifie
throughout the development of a new product. Design begins with a functional
specification of the desired product: a description of properties and conditions that the
product should satisfy (i.e. constraints). The original set of functional requireiaents

augmentedchangedand/orrefined asthe designsolution evolves.The resulting

47

Chapter 2: Literature Revie

constraint set may contain conflicting and/or unrealizable requirements. The
management of these constraints throughout the evolving design involving all the
phases is a nemivial task. The constraints are often numerous, complex and
contradictory.

Particularly, in more complex designs, where form, function and physics
interact strongly, it is difficult to keep track of all relevant constraints and parameters,
and to understand the basic design relationships and tradeoffs. Cotisisidt
approachet supporting conceptual design have been reported in the literature for quite
a number of years (Gross$ al, 1988; Serrano & Gossard, 1992; O'Sullivan, 2002b).
Effective tools for constraint management are of great importance in knowledgd
systemdor conceptual design. They provide designers with assistance during the early
stages of design. In addition, they will help close the gap between novice designers and
experienced designers. The interactive constiased approach presented in
O'Sulliven (2002b) is based upon an expressive and general technique for modelling:
the design knowledge which a designer can exploit during a design project; the life
cycle environment which the final product faces; the design specification which defines
the set 6requirements that the product must satisfy; and the structure of the various
schemes that are developed by the designer. A computational reasoning environment
based on constraint filtering (Bowen & Bahler, 1992; Bowen, 1997) is proposed as the
basis of a interactive conceptual design support tool. Using such a tool, the designer
can be assisted in developing and evaluating a set of schemes that satisfy the various
constraints that are imposed on the design. In particular, the designer can be assisted in
synthesising a number of alternative schemes for the required product. The consistency
of each scheme is constantly monitored, as is the consistency of each scheme with
respect to the design specification and the other schemes that have been developed.

There have been several constradaised applications that involve constraint
solving during postonceptual phases of design. The CADET system was developed
as a computer tool to support embodiment design (Thorton, 1996; Yao, 1996). CADET
consists of a generdatabase of components that can be used to develop a constraint
based model of the geometry of the product being designed. The IDIOM system uses
constraint solving on geometric parameters for fiplanning (Lottazet al, 1998).
SpaceSolver uses thetimm of solution spaces, defined by sets of constraints on

continuous domains, as a basis for supporting interactive désitiaz

48

Chapter 2: Literature Revie

et al, 2000). Many constraifiiased systems reported in the literature have been
developed for supportinreasoning about purely geometric aspects of design for use
with CAD systems (Bhansaét al, 1996; Shimizu & Numao, 1997; Gao & Chou,
1998a, 1998b). These systems have been developed to address aspects of the design
process that are too specific to getnic CAD to be reviewed in depth here. However,

to solve constraints in design, representation of constraints still remains a challenge
facing the design engineers (Lin & Chen, 2002).

One of the first attempts to manage constraints for automation of tatopu
in engineering applications was the work done by Harry (1962) and Steward. Since then
there has been considerable amount of work done on the representation, use and
management of constraints including the development ofbaged systems. Rule
baed (expert) systems have been applied to assist in a variety of engineering design
tasks such as: design for VAX computer systems by Digital equipment Corporation
(this company was acquired in June 1998 by Compagq, which subsequently merged with
HewlettPakard in May 2002): Ra (McDermott, 1982); design system for small
computers: M@ (Brown & Chandrasekaran, 1985); design of VLSI circuits:
VEXEDA (Mitchell et al, 1985); configuration of microcomputer systems:
COSSACKd (Frayman & Mittal, 1987); design of aiykinders: AIRCYLd (Brown
& Chandrasekaran, 1989); design of facilities on construction sites: SightPlan
(Tommeleinet al, 1991); design of elevators: ¥T(Marcuset al, 1992), design of
buildings: HIRISEd (Maher, 1988); CONGESMI (Sriram, 1997); design ofaper
feeding mechanisms of photocopiers: PREDE oo et al.,, 1998), design of pneumatic
systems: PNEUDES (Shin & Lee, 1998). Rule based systems have been shown to be
very difficult to maintain and in many cases had tocbepletely rewritten so as to
function in a production environment (Solowalal., 1987).

Frayman & Mittal (1987) classified constraints into explicit constraints and
implicit constraints. Explicit constraints enumerate a set of possibilities to be selected
from, for example, the word pressing package WRITER requires the operating
system DOS version 2.1 or 3.1. Implicit constraints do not contain explicit enumeration
of alternatives but contain enough information to reconstruct such a set of all currently
available components, for exampilee word processing package WRITER requires the
operating system DOS version 2.1 or later versions. They pointed out that processing

of implicit constraints is more complicated thte

49

Chapter 2: Literature Revie

processing of explicit constraints, but has besédr the maintainability of the
system.

It became important to represent the defaults and preferences declaratively as
constraints, rather than encoding them in the procedural parts of the program (Borning
et al, 1989). In most cases, domairiented ® methodoriented tools (in the form of
templates) were provided to capture constraints/rules from the domain experts. The cost
of developing such tools was high and became an issue, especially when their restricted
scope is taken into account (Erikssdl., 1995a).

The use of constraint processing techniques for supporting configuration design
has been widely reported in the literature (Barker & O'Connor, 1989; Wielinga &
Schreiber, 1997; McGuinness & Wright, 1998b, 1998a; Sabin & Weigel, 1998;
Carnduff& Goonetillake, 2004). Configuration can be regarded as a special case of
engineering design. The key feature of configuration is that the product being designed
is assembled from a fixed set of predefined components that can only be connected in
predefired ways. The core of the configuration task is to select and arrange a collection
of parts in order to satisfy a particular specification. The growing interest in
configuration systems is reflected by the level of interest reported from industry. The
role of constraintbased configurators has been reported in a number of reviews (Sabin
& Weigel, 1998). The configuration problem can be naturally represented as a CSP. In
general, a configuration problem can be formulated as a CSP by regarding the design
elemants as variables, the sets of predefined components as domains for each of the
design elements and the relationships that must exist between the design elements as
constraints.

Constraints can also be used to state the compatibility of particular arrangements
of components and connections. One of the earliest works in the field of constraint
based support for configuration was based on dynamic constraint satisfaction (Mittal &
Fadkenhainer, 1990). The key characteristic of dynamic constraint satisfaction problems
is that not all variables have to be assigned a value to solve the problem. Depending on
the value of particular variables, other variables and constraints may be ¢etiadto
the network. Inspired by this approach, the use of constraint processing for
configuration problems in complex technical domains emerged (Haselbock &
Stumptner, 1993; Fleischandetlal , 1998). The Designersdo Wor
with problemsthat lie in the domain of configuration (Fowlet al, 2004). The

Designersodé6 Wor kbenrepreseatses an ontol ogy to

50

Chapter 2: Literature Revie

el ements in a configuration task. The Des
checking that the constraints are dats by a configuration produced by a human

designer, rather than finding a solution. This has implications for tractability, in that

solving a CSP is a NPomplete problem, whereas checking a solution can be done in
polynomial time. The system has beemlemented so that the human designer is free

to use his or her engineering expertise to override constraints that are not deemed
applicable to the current situation.

Description logics have been used to develop commercial configurators in
telecommunicatiorand automotive industries (McGuinness & Wright, 1998b, 1998a;
Rychtyckyj & Reynolds, 2000). Concepts can be defined corresponding to the classes
of an ontology and individuals correspond to instances. Forward chaining rules can be
defined, which are assated with concepts but are applied only to individuals. These
rules are used to enforce constraints that are generic, i.e. defined on classes of objects,
rather than to specific individual objects. Description logics provide logical completion
of informaton and can detect any inconsistencies formed in the knowledge base.
However, description logics have limited expresgigever.

Some of these description logiased systems (Prose, DLMS) have been used
in industries since the 1990s. One such systemid a8 Di r ect Labor Ma n
System in the very dynamic domain of process planning for vehicle assembly. The
maintainability of the systems can become very difficult over time due to changes in
the following areas: the external business environment, theegges and physical
concepts being modelled, and the underlying hardware and software architecture. The
experience of using DLMS indicated that user editing of the knowledge base has not
been very successful either from the user viewpoint or from the ajmreside. The
editing of the KB requires a deeper understanding of the knowledge representation
scheme than is needed for updating a spreadsheet or database. This necessitated the
creation of a complex user interface that many users found difficult tteemas
addition, most of the user changes to the system consisted of lexical information, which
required properties such as parts of speech to be specified. This was often done
incorrectly and introduced errors into the system. This meant that the deredhayl to
spend time reviewing and correcting user edits in order to catch these types of errors.
Other problems were caused by users adding misspelled terms, alternate spellings, and
different abbreviations for the same terminology. The process of clgettis kind of

errors was manualiyptensive.

51

Chapter 2: Literature Revie

Another approach to develop configurators was to combine constraints and
ontologies. Junker & Mailharro (2003) describe a system, ILOG Configurator, that
combines the power of description logic (to describe the parts used in a configuration),
with constrant programming (to solve the configuration problem). The description
logic uses classes that are either abstract or concrete. Concrete classes correspond to
actual parts (e.g., bolt) while abstract classes represent features (e.g., hole). Properties
are ugd to describe the instances of a class. Generic constraints can be defined in a
constraint language that allows numeric and symbolic constraints. To solve a
configuration problem, a description logic representation of the class hierarchy and the
constraits are converted into a constraint satisfaction problem. Laburthe (2003)
extends CSPs to cases where variables have domains that are taken from a hierarchy.
This differs from the approach of other
ILOG (Junker & Maharro, 2003) and Prose (McGuinness & Wright, 1998b, 1998a) in

that these systems are concerned with constraints over values of properties of instances.

Sy

Laburtheds approach aims to find the enti

constraints.

Increased complexity and size of configurator knowledge bases can make the
user of a configuration system increasingly challenged to find the source of the problem
whenever it is not possible to produce a working configuration, i.e., the configuration
process isaborted. Ultimately, the cause of an abort is either an incorrect knowledge
base or unachievable requirements. Automated support of the debugging process of
such KBs is a necessary prerequisite for effective development of configurators.
Felfernig et al (2004) show that this task can be achieved by consisteassd
diagnosis techniques. They basically employ mddeled diagnosis techniques using
positive and negative examples for this purpose. This means that positive configuration
examples should be @epted by the configurator whereas negative examples should be
rejected. The examples therefore play a role much like what is called a test case in
software engineering, i.e. they provide an input such that the generated output can be

comparedtothetestetb s expectati ons. Once a test has

locate the parts of the KB responsible for the failure. Such parts will typically be
constraints that specify legal connections between components, or domain declarations
that limit legal @signments to attributes. These constraints and declarations, written as
logical sentences will serve as diagnosis components when the problem is mapped to

the model based diagnosigproach.

52

Chapter 2: Literature Revie

A second type of situation where diagnosia b& used is the support of the
actual end wuser where the userds requiren
knowledge base is correct, e.g., because she/he placed unrealistic restrictions on the
system to be configured. An algorithm has been propasedmputing diagnoses. The
overall time for diagnosing a problem is split into time needed for consistency checking
(solution search for the configuration problem), time for conflict generation and
diagnosis time. The experimental results showed thebdititaof the approach to
commercial configurator development environments. It has to be noted that systems
such as the Designersd6 Workbench differ f
approach because Designerso Woankdoeatch perf
involve constraint solving (solution search for the configuration problem). An
interesting outcome of their experiments is that in typical declarative configuration
knowledge bases, there are only few interdependencies among constraintssize th
of the minimal conflicts is typically very small (up to three or four constraints).

Goonetillake & Wikramanayake (2004) propose a framework for the
management of evolving constraints in a computerized engineering design
environment. The evolving cetraints are embedded in a class definition. There is a
facility to incorporate constraint evolution. The framework is based on a Constraint
Version Object (CVO). Each CVO contains a set of integrity constraints. CVOs are
affected by (i) modification(s) texisting constraints (ii) introduction of new constraints
(iif) omission of previously used constraints (iv) any combination df (ili). A new
CVO (child) contains only the changes made to its parent CVO constraint set. There is
a mechanism in the ddiCVO to inherit constraints from the parent, redefine and alter
constraints that were already defined in the parent and leave out constraints defined in
the parent. Thus, a chain of CVOs is generated with the latest CVO usually becoming
the default CVO.This facilitates the maintenance of constraint evolution history.
Automatic validation is performed when a new CVO is produced. One can retrieve the
set of constraints applicable to a particular version. The versions are stored and managed
by a DBMS. Thusthe framework to manage the evolving constraints in an engineering
design environment is proposed. Constraints are updated and not overwritten when they
evolve. However, the framework has limited expressivity. One cannot express
declarative firstorder Igic quantified constraints and it is highly domain specific. A
considerable amount of work would hateebe investedto adaptthe frameworkto

anotherdomain.No informationabout

53

Chapter 2: Literature Revie

the context in which the constraints are applicable is recorded by the system. This could
lead to problems during maintenance and may result in inappropriate constraints being
applied. Also, there is no maintenance support provided to detect any conflicts,

redundancy or subsumption between constraints. The research work reported in this

thesis aims to address such problems.

242 Concurrent Engineering and Integrated ProductTeams

Concurrent Engineering which is sometimes called Simultaneous Engineering or
Integrated Product Development (IPD) was defined by the Institute for Defense
Analysis (IDA) in its December 1988 report 'The Role of Concurrent Engineering in

Weapons System Acquisitiono as

AConcurrent Engineering i s aconswrentdesigati ¢ ap
of products and their related processes, including manufacture and support. This
approach is intended to cause the developers, from the outset, to consider all elements

of the product life cycle from conception through disposal, includjnglity, cost,
schedul e and user etralelPdB8jQlelmmde260d)s . 0 (Wi nner

Increasingly, it is being realised that success of product development in industry
requires integration between the various phases of the product life cycle. Onkeyf the
aspects of this integration is that, during the design of an artefact, due consideration
should be given to facilitating the dowetream phases of the life cycle. This is
frequently known as fADesign for Xoas(or DFX
manufacturability, serviceability, assembly and so on (Bowen, 2001). For example, the
design for manufacture (or DFM) is defined as establishing the shape of components to
allow for efficient, highquality manufacture. For argomponent, many manufaciig
processes could be used in its manufacture. For each manufacturing process, there are
design guidelines that, if followed, result in consistent components and little waste. A
detailed literature survey conducted on the state of the art of the conemgereering
technique in automotive industry revealed that the technique is very powerful in
achieving successful products in the automotive industry (Saiwn2006). Sapuan

and his colleagues stated thia¢

54

Chapter 2: Literature Revie

companies who adoptehis technique have gained tremendous benefit in terms of
reduced timeo-market, low cost and improved quality.

Concurrent Engineering attempts to maximise the degree to which design
activities are performed in parallel. A number of researchers irotisraint processing
community have developed constradiatsed technologies that support integrated
approaches to product development (Bowen & Bahler, 1992; Bowen, 2001; O'Sullivan,
2002a). The analogy between the computational concept of a constraitbheand
concurrent engineering concept of mutually constraining influences between different
phases of the product life cycle suggests that constraint networks may be the right basis
on which to develop a generic architecture for software to support concurrent
engineering. Constraints can be used to express in an explicit way the mutual
restrictions exerted on each other by artefact functionality, component/material
properties, and lifeycle processes (Bowen, 2001).0One of the critical issues that must
be addessed in supporting integrated design is the issue of conflict resolution and
negotiation. Constrairtased approaches to managing conflict in collaborative design
systems have been reported (Baldeal, 1994; Haroucet al, 1995; Abdalla, 1997,

1998; Lottazt al., 2000). Traditional conflict resolution techniques in constiaased
models of the design process use backtracking and consglaixdtion.

The Designerso Workbench has been deve
concurrent engineering. I n the Designerso
to incorporate different aspects of a product-d¢§ele. Design rules are expressed as
constraints over alomain ontology. Typically, complex engineering artefacts are
designed by teams who may not be located in the same building or even city. Designers
in RollsRoyce, as in many large organizations, work in teams. Thus, it is important
when a group of desigins are working on aspects of a common project, that the
subcomponent designed by one designer is consistent with the overall specification, and
with those designed by other members of the team. Additionally, all designs have to be
consistent with the conmpny 6 s desi gn rul e book(s). Ma k i
constraints ar e complied with i s a compl
Workbench seeks to support these activities. Constraint violaéiangeported to the
human designer together with alito the source document describing the constraint.

The designer could then adjust the appropriate property values using the GUI to resolve

the constraint violations. The system has been implementdto

55

Chapter 2: Literature Revie

the human designer is freeuse his or her engineering expertise to override constraints
that are not deemed applicable to the current situation (Fewdtr 2004). Hence, the
mai n di fference bet ween Designersodo Workbe
constrairtbased systems to gp or t concurrent engineering
Workbench does not perform constraint solving or employ any conflict resolution
strategi es. The Designersod Workbench perf
constraint violations and facilitates the humaesigner to resolve the constraint
violations.

Collaborative engineering design activities are influenced not only by the
technological factors, but also by the social interactions among various stakeholders
with different perspectives. An article by Lu &aC(2001) describes a generic
collaborative design process model based on a-secimical design framework that
is suitable to represent, analyse and evaluate the collaborative design activities. Lu and
Cai describe collaborative design process as geetigse evolution process. They
emphasise that while the technical deci si o
social interaction, which is about Awhyo at
among the collaborative design decisions. Theytpmimh that most of the conflicts in
t he coll aborative design ar e caused by t
perspectives. Hence, i n coll aborative desi
making in a specific dondiferentsubprobemssieould 6 deci
be represented, analysed and evaluated. They use Petri nets as topological process
representation tools and adapt them for collaborative design process modelling. A
methodology of design conflict management is developed thihdesign process
representation model. After that, a prototype collaborative design support system,
which is a computer implementation of the methodology, is discussed. Similarly, the
paper by Veeket al (2006) defines a conceptual interdisciplinargdal that can be
used by all domains involved in the design of an industrial system. The model serves as
a common frame of reference to support communication and decision making by
different mono disciplinary approaches. The model is also used to recutiti@as,
decisions and assumptions that lead to the final design.

The article by Crowdeet al (2003) presents a future sod¢exhnical scenario
to capture, share and reuse knowledge within the engineering design environment. In

the scenario, it is asswu that the technical elements of the future design

56

Chapter 2: Literature Revie

environment have been embodied in an application termed KTfD (Knowledge Tools
for Designers). KTfD includes tools such as Tablet PCs with handwriting recognition
software and software tresolve sketches. KTfD also provides interfaces to specific
engineering packages. KTfD is able to access information including the full range of
office and data analysis tools from anywhere in the design office through the local
wireless network. The us# KTfD would increase accountability by making the input

of a designer visible to other designers and allow decisions to be traceable. However,
the presumption that all processes in the future should be based on IT systems was
strongly resisted during éir discussions with designers. It was felt that there is a
preference for faceo-face interaction and social support, rather than using technology,
such as teleconferencing. One of the key issues for them was for any system to be
accurate and reliablen laddition, in many cases the designer may not fully understand
exactly what is required and therefore may not know what type of expertise or
information is required to resolve the problem. With a human based system, the
question and problem can be disagssind interpreted for the user, making it more
likely to proceed with maximum trust. Wallace & Ahmed (2003) and Aurisicehid

(2006) have performed studies on how engineering designers obtain information. Two
main questions are addressed: how dogihess currently obtain their information and
what is the best way to help novice designers obtain appropriate information. The
studies showed that documents were very seldom used as a source of design information
and for around 90% of information requedtssigners contacted another person. In
addition, novice designers were unaware of the strategies adopted by experienced

designers and failed to ask the right questions to thepegigle.

Recent work done by Fruchtet al (2007) at Stanford present amegrated
framework that enables collaborative design exploration, knowledge reuse and decision
making. A working prototype, called CoMeiRoom that leverages and integrates two
software environments, CoMem and iRoom is presented. CoMem (Fruchter & Demian,
2002) is a collaboration technology that facilitates corbasted reuse of corporate
knowledge in a singleiser setting for the architecture, engineering, construction teams
and individuals in the design process. CoMem allows for context based visomlisat
and exploration of large hierarchical project databases. CoMem uses a map metaphor
for the overview. The area on the map allocated to each item is based on a measure of

how much knowledge this item encapsulates, that is, how

57

Chapter 2: Literature Revie

richly annotated it is, how many times it is versioned, how much external data is linked
to it. Each item on the map is colour code:
current task. Currently, this relevance measure is based on textual analffsts of
corporate memory using the latent semantic indexing (LSI) algorithm (Landauer &
Dumais, 1995; Demian & Fruchter, 2005). The iRoom architecture (Johahsdn
2002) is a technology that enables communication between disespiugfic control
applications running on multiple machines. By making CoMem the nodal application
of the iRoom architecture, they extend the contextual visualisation and exploration
functionality provided by CoMem from a singliser to a multuser interactive setting,
therebyenabling collaborative exploration in project group meetings and knowledge
reusediscussions.

Other recent work includes a general type-bveted collaborative product
design support system called CoDesign Space system designed &t @iaf2007).

The ystem aims to satisfy the requirements of geographically dispersed collaborative
design by integrating several collaborative design support tools that can be used
independently. The several collaborative design support tools that can be integrated
includea collaborative virtual assembly tool, a collaborative viewing and markup tool,

a conflictmanagement tool, a visual documeamnagement tool, a collaborative task
management tool and a collaborative design resource repository management tool. The
sharingand visualisation of product information are the foundation of Intdrastd
collaborative design and manufacturing (Zhatgal, 2004). CoDesign Space uses
XML and VRML technologies to resolve the sharing and integration problem of
heterogeneous produanodel information. VRML is a language that enables
information sharing and integration among geometry models from heterogeneous CAD
systems. VRML is more suitable for transfer over the internet when compared to STEP
based CAD model files that are oftemyt&arge. Collaborative work can also be realised

by the communication and management mechanism of agents (Cuikaaky1993;
Anumbaet al, 2001; Wuet al.,, 2006).

Ontologies are increasingly becoming important in the fields of intelligent
searching o the web, knowledge sharing, reuse and management. There has been an
increasing number of research projects applying ontological techniques in the context
of product development (Moot al, 1999; Roche, 2000; Ciocoat al, 2001; Lin &
Harding, 2003Leeet al, 2009). The paper by Cheuetal (2006) reports on utilizing
ontologies to share manufacturing knowledge during product development in

58

Chapter 2: Literature Revie

a collaborative and distributed manner. Ontologies are particularly useful in a
collabordive and distributed environment because they provide a shared and common
understanding (or agreed vocabulary) of a domain that can be communicated between
people and application systems. Apart from providing a common understanding,
Valarakoset al. (2004)states that ontologies can be used to facilitate dissemination and
reuse of information and knowledge. The research work reported in this thesis uses an
ontology to represent domain knowledge. Design rules are expressed as constraints over
the domain ontogy. Inferencing over the domain ontology is done to detect various
refinements (inconsistency, subsumption, redundancy and fusion) between pairs of
consraints. Thus, ontologies play an important role in supporting the maintenance of
constraints. More dails regarding the use of ontologies in supporting the maintenance

of constraints can be found in subsequent chapters dhdsss.

243 Design Rationales

A large amount of design information that is generated during design does not get
recorded in formal design documentation. Some of this information is often referred to
as design rationale, but can include any sort of knowledge of the who, what , when,
where, why, and how of design (Richter & Abowd, 1999). Rationale can include
assumptions made about the system, the alternatives considered and the reasoning
behind decisions. Some other definitions of design rationale from literature are as

follows:

i D e sratignale means information that explains why an artefact is structured the way

that i1t is and has the behaviour that it h;
AA design rationale is an explanation of h
i's designed the way it is0 (Gruber & Russe!
AA design rationale Iis a representation of

(Shum & Hammond, 1994)

fiDesign rationale means statements of reasoning underlying the design process that

explain, derive and | uetd,il93) design deci si ol

ADesign rationales include not only the re
justification for t, the other alternatives considered, the tradeoffs evaluated, and the
argumentation that | ed to the decisiono (L

59

Chapter 2: Literature Revie

Whil e al/l these definitions have their
description covers all aspects of desigtianale. The study of design rationale spans a
number of diverse disciplines, touching on concepts from research communities in
mechanical design, software engineering, artificial intelligence, civil engineering,
human factors and humaomputer interactin research (Hwet al, 2000). It is
commonly accepted that the IBIS (IsdBased Information System), proposed by Rittel
(1972) is the first formal presentation of design rationale (Shum, 1991). The initial IBIS
was based upon planning and social polayiulation problems. However, the demand
for a for mal met hod of system analysis and
Ahuman computer interactionodo communities a
rationale research and its application sin@80k (Conklin & Burgess, 1991). It was
subsequently introduced into the engineering design community due to the demand for

computer support in engineering design (Guibaual., 2002).

The paper by Clarkson & Hamilton (2000) discusses the need for computer
support in aerospace design. They propose a parabated model of design that has
been founded on the assumption that a design process can be constructed from a
predefined set of task§hey have stressed the importance of capturing the implicit
knowedge that refers to the order in which th
a knowledgebased system to support the engineer in aerospace design, the capture and
modelling of explicit knowledge is itself not sufficient. The context in which the
knowledge should be applied is of equal importance. A knowledge based system must
include not only the explicit knowledge required but also provide guidance on the order

in which the information is used. o0 (Clarks:

Various tools have beenedeloped to capture design rationales. This
information is valuable for design evaluation, reuse and maintenance. A brief review of

work done in the area of design rationales is given below:

Regli et al (2000) provide a survey of recent research in tlea af design
rationale. This survey has discussed design rationale systems from five perspectives:
knowledge representation, rationale capture, rationale retrieval, technical approach and
application domain. A number of recent design rationale systemadimg IBIS,
JANUS, COMET, ADD andREMAP areanalyzed A table providing a summaryof

60

Chapter 2: Literature Revie

the description of some of these systems is shown in Figure 2.6-based
representation involves articulating issues as questions, with each issue followed by one

or more positions that respond to the issue.

System Name Knowledge Knowledge Knowledge Approach Design Domain Year
Acronym Representation Capture Retrieval

IBIS [17] Issue-based UL Navigate PO Generic 1970
PHI [20] Extending IBIS UL Navigate PO Generic 1987
QOC [35] Design Space Analysis UL Navigate PO Generic 1990
DEL [1] Representing elements UL Navigate PO Generic 1991

of decision making

CRACK [16] N/A Auto Trigger FO Kitchen 1989
VIEWPOINTS [16] IBIS N/A Navigate FO Kitchen 1989
JANUS [21] PHI Auto Hybnd FO Kitchen 1989
IBIS-style browser IBIS Auto Navigate PO Generic 1991
il

COMET [23] LOOM Ul Navigate FO Sensor-based tracker 1992

software
ADD [24] Argumentation & Ul Trigger FO HVAC 1992
Model-based
REMAP [25] IBIS UL Query PO Genenic 1992
REMAP/MM [26] IBIS Auto Query PO Generic 1995
ADD+ [27] Rhetorical Structure UL Query PO HVAC 1997
HOS [18] PHI Auto Trigger PO Generic 1997
PHIDIAS [18] PHI Auto Trigger FO D, 3D 1997
PO
KBDS-IBIS [14.15] IBIS UL Query & FO Chemical Plant 1997
Nawvigate PO

DRIVE [28] PDN Ul Query FO Building 1997
DRARS [29] QoC N/A N/A FO Building 1995
KRITIK [30.9] SBF UL Query FO Mechanical 1993
IDIS [31] IBIS UL Navigate FO Chemical Plant 1998
RCF [32] N/A Auto N/A PO N/A 1999

Capture Method: User-Intervention (UI) or Automatic (Auto) Represenfation Method: Feature-Orented (FO) or Process-Onented (PO)
Retrieval Method: Navigate, Query, Trigger or Hybnd.

Figure 2.6: Summary of a survey of Design Rationale systems
Source: Regliet al (2000)

The capture methods are usstervention (Ul) (in which designers are required
to input or record the design discussions, decisions and reasoning themselves) and

secondly automatic (auto). The different retrieval mechanisms involve:

(a) navigation: allowing designers to explore design rationale by traversing from one

node to another through existiligks.

(b) automatic triggering: detecting or monitoring certain conditextording to the
design context and retrieving design rationale®matically.

61

Chapter 2: Literature Revie

(c) querybased: allowing designers to pose queries and retrieve the required design

rationales.

(d) hybrid: providing a combination of automatic triggering and navigation

mechanisms.
The two main approaches to building design rationale systems are:

(a) processoriented (PO): emphasize the design rationale as a history of the design
process; design rationaleare merely descriptive and generally informal; concerned
with the initial design stage, as design progresses from the requirements to a conceptual

design.

(b) featureoriented (FO): representation of artefacts and the body of established rules
governing thedesign process; design rationales have a logical structure and are
generally formal; concerned with the detailed design stage, when the design process is

more constrained by the rules in the field or dorkaiowledge.

Justification
an ancillary divider for the oscillator for the cpu should exist
because of the following constraint(s)
(49) every crystal oscillator must satisfy the following:
ideally, the oscillation frequency of the crystal oscillator =<
the maximum frequency testable at the facility where the hoard will be tested;
otherwise, an ancillary divider for the crystal oscillator
must exist and must be a frequency divider;
(50) every testfacility must satisfy the following:
the maximum clock frequency testable at the test_facility =
the maximum clock speed that can be handled by the equipment at the test_facility;

and because of the following parameter value(s):
the equipment at the facility where the board will be tested = Erdsys TX;
the oscillation frequency of the oscillator for the cpu = 250.

the maximum clock speed that can be handled by Erdsys TX = 98,

the equipment at the facility where the board will be tested
was established according to the perspective taken by test engineers.

(96) the oscillation frequency of the ocscillator for the cpu = 250
hecause yvou said so.

Figure 2.7: An example of a rationale generated by KLAUS4
[Source: Bowen (2001)]

62

Chapter 2: Literature Revie

Garcia & Howard (1992) discussed design rationale approaches that divides the
processoriented approach into two categories: actiased (e.g., RCF (Myget al,
2000)) and argumentatidrased (e.g., DRed (Bracewell & Wallace, 2003; Aurisicchio
et al, 2006)). When focusing on each component or phase of the design process, the
former corresponds to how it is done, and the latter corresponds to why it is done. The
advantages and shortcomings of the different design rationale systems depend on the
tradeoff between ease of capture and the explanatory power of the rationale.- Action
based design rationales are easy to capture and do not require much intervention of the

designer while argumentatidrased design rationales are difficultcepture.

Constraiits can form a part of the rationales associated with the design decisions
taken by designers. A typical rationale is
design because of the need to satisfy cons
type of design rationale in concurrent engineering has been referred to as Design
Rationale Management by Bahler & Bowen (1992) and Bowen (2001), who describe a
constrairtbased design advice system that generates magbimezated suggestions to
support coordinan among multiple design engineers. An example of this type of
rationale is shown in Figure 2.7. The design advice system called KLAUS4 is written
in a generic language, Galileo2, to assist in the concurrent engineering design of printed
wiring boards. Th system captures perspectives of several members of the design team,
including designers, manufacturing engineers, test engineers, and maintains a set of
dependency records to suppanegotiation between various members of a problem
solving team. The protol for negotiation is based on identifying alternative ways in
which conflicts can be overcome and suggesting these alternatives to the parties
involved, the suggestions being ranked in accordance with the relative preferences
(priorities) of the constiats involved in the conflict. By choosing among the
suggestions offered, the designer can disable a particular constraint. Whenever a
designer disables a constraint other than the one he/she previously asserted, he/she is
required to enter a frelext ratonale for his/her action, which is saved for possible use

in a desigrreview.

Bracewell & Wallace (2003) and Aurisicchet al (2006) describe DRed
(Design Rationale editor), an IBlisased software tool that allows designers to record
their design ratioales at the time the design issues are being considered. DRed

63

Chapter 2: Literature Revie

consists of a graphical structure to present the issues addressed, options considered and
associated arguments for and against each one. Figure 2.8 shows an example of a DRed
document capturing the design rationale of an-aegine internal gearbox. The design
rationale is displayed in a document as a graph of nodes linked with directed arcs. The
user creates the nodes by choosing from a predefined set of element typesgribkidi

iIssue, answer, pro and con argument. Any element on a work plane can be linked
without restriction to any other, and any element can easily be converted from its
existing type to another. Each element type has a predefined set of statuses, signified
by changes in colour and geometry of the background shape or font style of the text.
There is only a single type of link, a unidirectional arrow, which represents a
dependency of some sort. The precise meaning of that dependency is inferred from the

typesof the elements at each end of éneow.

E]antle igh - scavenge =lElx]

File Project Edit Select Help
[DEE ¢ 2@ A QM RM00E =] seecion [14/07/200 by [|

antle igh - scavenge o
in C:/Program Files/DRedlexamples/Antle IGB Design Issues
last mod 22:35 Sun 13 Mar 2005 (7 Ans 2
Security classification: Unclassified An_
What measures can be used
to improve scavenge / avoid
oil leaks? —=—___Remove floor of IGB sump
s 10 LETER nd 1P to allow SAGB to be new
eparate pn IGB sump Issue 1
oil chambers and sgglige / %e igh - scav - lower sump floor
. . / . jsk of increased windage
Partial separation of May bedifficulitocreate gy simplification / is left unshrouded
chambers already achieved weiight & cost reduction
via 1P / HP haffle previously New cast iron-type seal arngt

desighed/manufactured 1S THIS HEEDED?
for Trent 500 development test

ed as splines at greater

puggested by b, oo ter than quill shaft

oil systems
ms':a“"g” route May be possible to use Risk of high HTO as IGB
ed existing lower scav. plate st pgaﬁ through
/ \ as new sump floor vane 6.
InEfeasing the shaft diameter
Privious piped scavenge r may help the whirl margin -
Spare scavenge pump arfangement may be useful (currently 27%, should be 30%).
capacity available starting point for designing Can avoid?

new scavenge route

Use of fabricated vane
inner shroud to provide
thermal insulating air gap

Could-bo-mado-using mindage if RDS
existing-casling-{ro-workod} shrouded

- ot Space may be limited to
with-axisting scav-/shroud e shroud in hetween
fittings on lower sump plate

vane wall and RDS

| | e

| DRed w0 .4.13 Engineering Design Centre, University of Cambridge

Figure 2.8: An example of DRed document capturing the design rationale of an aero
engine internal gearbox
Source: Aurisicchioet al. (2006)

64

Chapter 2: Literature Revie

RCF (Rationale Construction Framework) (Myess al, 2000) acquires
rationale information automatically for the detailed design process without disrupting a
designer s nor mal activities. The underl yi
interactions wih a commercial CAD tool to produce a process history. This history is
subsequently structured and interpreted, relative to a background theory of design that
enables explanation of certain aspects of the process. RCF extracts two different types
of ratiorale-related information. The first is a series of hierarchical abstractions of the
design history: what the designer did and when. In addition, RCF reasons about intent
as to why the designer performed certain actions. A set of design metaphors, which
descibe temporally extended sets of designer operations that constitute meaningful
episodes of activity, drives the extraction of rationale related to designer intent. Design
metaphors provide the basis for inferring intent on the part of the designer iog link
observed activities to explanations for them. However, the authors report that automatic
generation of complete rationale for all aspects of a design is clearly infeasible.
Certainly, designers make many critical decisions and assumptions that explioat
in the designs or in the design process. The work reported by (Blyats2000) seeks
to automate documentation of important but low level aspects of the design process in
a time and cost effective manner, thus freeing designers to focusldcamentation
efforts on the more creative and unusual aspects of the design. Ideally, the methods
presented by them would be complemented by interactive rationale acquisition methods

that would enable designers to extend or correct automatically geniefatetation.

Burge & Brown (2000) investigated the use of design rationales by building
Il nf oRat, a prototype system that draws i nf
inconsistencies in the decisions made and to assess the impact of changes.o&lel appr
can be described as follows: The process begins with a set of requirements for the
system being designed. These requirements are then mapped to goals and, if required
sub goals. Goals and sgbals can then be satisfied by one or more alternativeb. Ea
alternative then maps to an artefact, or a requirement for the next design stage. The
rationale for each choice is represented as arguments, expressed as claims, for or against
each alternative. Figure 2.9 from Burge & Brown (2000) shows an overvithe oke

of design rationale in the design process. The verification

65

Chapter 2: Literature Revie

involves ensuring that the design is consistent and complete, i.e., all requirements

correspond to goals and all goals have selected alternatives.

— Requiremant
aquiremEnt Space
= - - . Rationals
Alternative am Space
Artifact Design
Space

Figure 2.9: The use of Design Rationale in the design process by InfoRat
Source: Burge & Brown (2000)

Design rationales are invaluable in the reuse of design information. Design reuse
can make an important contribution towards design efficiency (Samrglae 2007).
Given the competitive pressures in business environments, the reuse of previous designs
has significant value for shorter delivery times and lower production costs. For
example, research has identified that up to 90% of all design astiatBebased on the
variants of existing designs (Fletcher & Gu, 2005). However, design information is
often difficult to retrieve (Sanghest al, 2007). There is limited support in recognising
the existence of the reusable information and designers ddt@ot attempt to reuse.
Sangheet al (2007) propose a task model based approach that systems could adopt to
suggest recommendations and aid reuse of past design information. They have used
DRed to demonstrate the approach. A task model is acquiresbg obv i ng a desi gn
activities. The design rationales captured by DRed are represented as a directed graph
of elements. The elements are chosen from a predefined menu of types, at the core of
which are Issue (1), Answer (A), ProArgument (PA) and Con AmguinCA). Each
element is associated with a label that is a textual description in natural language. A
DRed path is the list of links starting from a specific element and finishing at a specific
element. In the context of a design process, the designsrtliseDRed path for
exploring solutions for a given tasuch a DRed path is a task model and the

proposedapproaclrecommendshe

66

Chapter 2: Literature Revie

next likely element that the designer will employ. The proposed approach recommends
using two strategie¢l) a DRed path similarity: The strategy examines the sequence in
which a current designer has invoked particular elements and uses this as a basis of
calculating the prediction of a new element. (2) Content similarity: the strategy uses
shallow Natural enguage Processing (NLP) techniques to analyse the DRed document.
The NLP techniques include term identification, paErspeech tagging and term
normalization. Terms are identified as words lying between two spaces including a full
stop. Although Sangheet al (2007) 6s approach cl aims to
assuming relevance between tasks and suggesting recommendations, the approach fails
to enable a system to understand and interpret the textual content of the rationales.
Representing rationales ammachine interpretable format should enable a system in
making recommendations that are more accurate, detecting inconsistencies among
rationales and design decisioat;.

Burge & Brown (2003) researched the benefits of reusing design rationales for
a largescale maintenance task. They report that one of the chief difficulties in
maintaining a large system is knowing the reasons behind the choices made by the
developers during design and implementation. The presence of rationale would serve
as a fAeorneomoa yo by capturing design infor
developers left the company or if they were inaccessible to the maintainers. Karensty
(1996) also showed the i mportance of reusi
information need are related to the questions that could be answered by reusing the
rationales. Thus, design rationale would enable both easier maintenance of artefacts
over their lifecycles and more effective reuse of designs by making it easier for
downstream engineets understand how a design works (Myetsal, 2000). For
example, Brazieet al (1997) present an example of stored rationale being used in the
redesign of a model passenger aircraft to accommodate changes in the overall design

requirements.

244 Discussion

Engineering design is constraimtiented and constraiitased systems are applicable
in all phases of design. Constraints have been used to assist in a variety of engineering
design tasks including the development of fodesed systems. Maimtability of rule-

based systems in industries became very difficult because of the need to constantly

67

Chapter 2: Literature Revie

make changes to the knowledge base. Since rules were encoded into the procedural

parts of the program, it was hard to determine which rules needed changing. Description

logic and ontology based systems have been used in industries, particularly in
configuration-based design tasks. These systems have made the maintenance task easier
when compared to rieased systems. However, they are still faced with maintenance

iIssues. Constraint management systems have been developed mainly to detect conflicts
amongcoet raints during constraint solving. 1In
expressed as constraints over the domain o
constraint checking instead of constraint solving. This has implications for tractability,

in tha constraint solving is a NBomplete problem, whereas checking a solution can

be done in polynomial time. This thesis proposes a methodology and reports on a system

that has been developed to detect inconsistencies and suggest appropriate refinements
between pairs of constraints prior to constraint solving or constraint checking by

systems such as the Designersdé Workbench.

Concurrent Engineering and Integrated Product Development have become
increasingly important in the success of product developmeninwitustries. They
provide tremendous benefits in terms of reduced-tor@aarket, low cost, considering
the entire product lifecycle and improved quality. By considering the effects of all the
other phases in the product lifecycle such as manufactumamgtenance, etc. during
the design phase, one can optimise the cost, quality and time of product development.
Collaborative design support systems play a key role in concurrent engineering. There
are different aspects to collaborative design such adictamhétection and resolution,
sharing, social interactions, integration and visualisation of information. The
approaches adopted to tackle these aspects include corAsasaad, agertiased,
modetbased and ontologies. Constrairised systems are widelged and particularly
useful in collaborative design for conflict detection and resolution. Collaborative
engineering design activities are influenced not only by the technological factors, but
also by the social interactions among various stakeholdénstffierent perspectives.
These perspectives of various stakeholders constitute a part of the design rationale. It is
important to capture these perspectives (rationales) of various stakeholders and analyse

them in concurrergngineering.

68

Chapter 2: Literature Revie

The knowledge of the who, what, when, where, why, and how of design
constitute the design rationales. Rationale can include assumptions made about the
system, the alternatives considered and the reasoning behind decisions. Recording
design rationales isiseful for both current and future designers. The prooéss
capturing design rationales supports the designer in clarifying deciskimg. It may
also relieve the designer from the burden of retrospectively documenting the design at
the end of a taslResearch has indicated that most of the design activities involve reuse
of previous design. Hence, capturing design rationales would be invaluable for future
designers. Although design rationales are useful, they are often extremely hard to
capture,mail because the process is very intrusi
time. Various design rationale systems have been developed to enable the capture of
rationales. The advantages and shortcomings of the different design rationale systems
depend orthe trade off between ease of capture and the explanatory power of the
rationale. Actiorbased design rationales are easy to capture and do not require much
intervention from the designer while argumentati@sed design rationales are difficult
to captue. However, argumentatidmsed design rationales provide more useful
explanation when compared to actioased rationales. Most design rationale systems
represent the rationales in a human readable format (natural language). Although the
information may hve some structure, the information cannot be understood, interpreted
and used by systems to provide immediate benefits to the designers. In addition, design
rationale systems have not concentrated on capturing information pertaining to when a
particular gction of the design knowledge is applicable. Design rationales are also often
difficult to retrieve and hence rarely used. This thesis investigates the capture of
information pertaining to when a particular constraint is applicable (referred as
application conditions). The thesis argues that it is important to concentrate on
representing design rationales (application conditions) in a matherpretable
format. This would enable systems to use the rationales and provide immediate benefits
to the designes by detecting inconsistencies and suggesting refinements among design
decisions taken by the designers. The immediate benefits provided by the system should
encourage designers to capture design rationales. In particular, the thesis investigates
how an eplicit representation of rationales (referred to as application conditions)
together with the corresponding constraints and the domain ontology can be used to

support the maintenance of constraints in engineei@sggn.

69

Chapter 2: Literature Revie

2.5 Summary

This dhapter provides a review of the work done in the area of knowledge acquisition,
the issues involved and the different types of tools that have been developed to support
knowledge acquisition. This is followed by a review of some of the prominent
knowledge engineering methodologies. Taken together, the review describes the
issues/problems faced by knowledggsed systems over the past few decades and how
the latest methodologies and tools have dramatically changed the way in which
knowledgebased systems ameveloped. Building knowledgeased systems now
focuses on reusing and adapting existing resources, rather than building them from
scratch. Moreover, the emphasis has been in facilitating domain experts to build and
maintain knowledge bases, and henceimmize or eliminate the role played by a
knowledge engineer. This thesis reports on the design and construction of a system that
has been developed to facilitate domain experts in capturing and maintaining constraints
in engineering design.

Further, the chater reviews work done in the area of knowledge maintenance
that involves verification, validation and refinement of knowledge. This is followed by
a review of engineering design. Maintenance is a critical phase in knowledge
engineering that can be complard timeconsuming. It is important to explicitly
record the contexts in which each rule is applicable, during the KA phase. Recording
the contexts should help identify all the rules that need to be updated during
maintenance. This thesis investigateiéssin maintenance by usingngineering

design as an applicati@omain.

Engineering design is constraimtiented and involves the identification of new
constraints or the modification or deletion of existing constraints. The evolutionary
nature of constraints establishes the need to provide support for maintenance. Constraint
management systems have been developed mainly to detect conflicts among constraints
during constraint solving. It would be useful to develop tool(s) that can detect
inconsistencies among constraints prior to constraint solving, suggest appropriate
refinements and help in the maintenanceafstraints.

Concurrent Engineering and Integrated Product Development have become
increasingly important within industries by providing tremendous benefits in terms of

reduced timao-market, low cost, considering thetee product lifecycle and

70

Chapter 2: Literature Revie

improved quality. Collaborative engineering design activities are influenced not only
by the technological factors, but also by the social interactions among various
stakeholders with different perspectivesheTperspectives of various stakeholders
constitute a part of the design rationale. It is important to capture these perspectives
(rationales) and analyse them in concurrent engineering. Rationales can include
assumptions made about the system, the alteesatonsidered and the reasoning
behind decisions. Although design rationales are useful, they are often extremely hard
to capture, mainly because the process is very intrusive and requires considerable
amount of the desi gn eteshow anexplieit repredemtagsiont hesi s
of rationales (referred to as application conditions) together with the corresponding
constraints and the domain ontology can be used to support the maintenance of
constraints in engineering design. More details abountrestigation can be found in

subsequent chapters.

71

Chapter 3

Constraint Capture and Maintenance in
Engineering Design: A Proposal

6 Most of the effort in the sof
i nto the maintenance of code t

- Wietse Venema

This chapter sets the scene for the research work reported in this thesis. The chapter is

di vided into four main sections. Section 3.
describes the problems encountered while capturing knowledger(aakg) for this

system. Section 3.2 describes the proposed approach to capturing constraints to address

the problemsfacedby systemssuchasthe D e s i gWaogkbenah.Section

3.3 describes the issues/problems faced during the maintenance of constraints in an
engineering design environment. Finally, Section 3.4 describes the proposed approach

to tackle the various issues/problems faced during the maintenance of constraints. The
chapter concludes by summarising the key points in Section 3.5.

31l ntroducti on Workbenche Desi gner so

Typically, complex engineering artefacts are designed by teams who may not be located

in the same building or even city. Designers in RBig/ce, & in many large
organizations, work in teams. Thus, it is important when a group of designers are
working on aspects of a common project, that thecsubponent designed by one

designer is consistent with the overall specification, and with those desigrater

members of the team. Additionally, all desi
design rule book(s). Making sure that these various constraints are complied with is a
complicated process, and so previous research has developed the Be8igner

Workbench (Fowleet al, 2004) which seeks to support these activities.

72

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A P

1 Designers’ Workbench [test] EE|"
File View Tools

PEEE LY DE

[“IFeature

9 OAbstract Feature
[} Hole

/ [Material
f [Temperature Limit

),
: N [Measurement
perating Temperature ?\ // é’ [Concrete Feature
\-'_, & \Q & Seal
4 '/\ oCINut
. s} ‘.". o Sealing Ring

operating_temp [DiametralRing Seal Housing
dingring o Flange

7y . /" e &3 Farrule
4 /‘, & .1“"::, Bsc::edloim
N ol
/ .'\'0
h,
('/~ O Property Value
LY \
inner_diameter i}(ﬁﬁ‘ '\\ inner_diameter housing ID
. "'/c £l 4 L.
Dack_land_width © /‘i/; PPN 7 has_material EAK: Jethete
R 7 d@ :
%. %ﬂ s’ source_doc
—— .
has_coating
ousing 1D| tback land width
A name housing
[owner dfowler
operating_temp Operating Temperature
_l I drawing_marker

Figure 3.1: A screenshot of the Designer s¢

The Designersd6 Workbench (Figure 3.1) wu
in a configuration task. The system supports human designers by checking that their
configurations satisfy both physical and organizational constraints. Configurations are
composedf features, which can be geometric or {gmometric, physical or abstract.

The following example from Fowlest al. (2004) illustrates the use of an ontology to
describe a configuration.

The class hierarchy of a simple ontology is shown in Figure 3&.cbhcept
OFeaturedé is the root of that ontology. Th
featured6 (@ompphorsercta))l asmud 6Abstract Featur et

73

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A P

Feature

Concrete Feature Abstract Feature

Bolt Nut Clamped part Material Environmental
temperature

Self-locking nut

Figure 3.2: The class hierarchy of a simple configuration ontology

[Source: Fowleret al (2004)]

o1k

nuak1

Figure 3.3: A bolted joint

[Source: Frenchet al (1993)]

6Concrete Featured is further di vided into

O6Abstract Featured is divided into-

74

6Mat er i

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A P

l ocking Nuté is a specific type of O&é&Nutd.
of a bolted joint, subject to a particular environmental temperature and Figure 3.4
(below) shows a configuration of the bolted joint, described using an ontology.

has_material
|
has_helt holil:Boli operating_ iemp em'Temp: TemperatureLimit
length = 285 tenip = 400
has_clamped part paril: ClampedPart operating iemp
thickness = 100
has_material
Aluminium: Maierial
holtedJoint:BoltedJoint has_material maxOpTemp = 450
has_clamped _part paril: ClampedPart operating_temp
thickmess = 100
has_nut nutl:Mut operating temp
thiclmess = 35
has material
Sieel: Makerial

maxOpTemp = 450

Figure 3.4: A configuration of the bolted joint in Figure 3.3 described using an ontology

Constraints defined over this ontology (Figure 3.4) include:

A The value of the maximum operating temperature of the material of each

concrete feature must be greater than the prevailing environmental temperature;

A The length of the bolt in a bolted joint must exceed the sum of the thicknesses

of the clampedparts,plus the thicknessof the nut. For simplicity, issuessuch

75

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A P

as tolerances of dimensions have been ignored. Tolerances and dimensions can
be dealt with, for exampl e, by defining

6di mensiond and O6tol eranced containing |

The first constraint above applies to all comcee f eat ures t hat have ¢
property and an Oenvironmental _temperature
is more complicated, and applies to all bolts, nuts, and clamped parts that are parts of a
boltedjoint.

311 Functional i t WorkhbéhchDesi gner s o

In the Designers' Workbench, the designer can select a feature class from the ontology
and create an instance of that class. The property values of the instance can then be
filled with: (i) datatype values by literals of the appropriate typel, @) object type

values by selecting an instance from a list of instances of the appropriate type.

Constraints are handled in a two stage process:
A Identify feature values that should tenstrained:;

A Formulate a tuple(s) of values for each set of fearalues, and check
that the constraint is satisfied by thesdues.

The constraint processing uses RDQL to find the constrained features and values. After
using RDQL to extract the constrained features and values, Sicstus Prolog is used to
check that the constraints hold. For example, the RDQL query that locates features

affected by the material temperature constraint is:

SELECT ?argl,?arg2 WHERE
(?feature,<dwOnto:has_material>,?mat),
(?mat,<dwOnto:max_operating_temp>,?argl),
(?feature,<dwOnto:operating_temp>,?optemp),
(?optemp,<dwOnto:temperature>,?arg2)
USING dwOnto FOR <namespace>

76

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A P

The values of the returned variables ?argl aralr g 2

are the

mat er i

al

operating temperature, and the environmental operating temperature, respectively. The

check that the values must satisfy is represented by the Sicstus predicate:

op_temp_limit(MaterialMaxTemp, EnvironTemp) :-

EnvironTemp =< MaterialMaxTemp.

Using the values of ?argl and ?arg2, the predicate op_temp_limit(MaterialMaxTemp,

EnvironTemp) is formed, and checked. This process is repeated for each set of values
returned by the RDQL query, and for each constraint that has peeified

AT Feature
49 [Abstract Feature
: [Hale
|j| hlaterial
|j| Temperature Limit
: D Measurerment
‘1@ [concrete Feature
: @ [hut
[Captive Mut
[Boled Joint
D Clamped Part

[Bont

: Propery | Valye |
{has_standard_boft ype
{has_material il
eperating ey . 4
{owner Aluminium .
narme Coramic
Mickel Alloy
Sitver
Steal i
Steel-2 -
Steel-3 v

Figure 3.5: Closeups of the Designers' Workbench panels: the feature ontology
(left), and properties of selected feature (right)

[Source: Fowleret al.(2004)]

Addi

0 Graphbased display of configuration: A graphical user interface enables the

ti onal

featur es

of t

he

Designerso

Wor k|

designer to import a drawing, annotate it with features, assign property values, and

perform constraint checks. The drawing is actually a visual aid i.e. the designer can

mark upan existing drawing or construct a configuration without a drawing. Features

canbe selectedrom an ontology.Featureghat are addedby the designerare shown

77

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A P

as labels overlaying the background drawing. Properties that connect features are
represented by arcs. Features can be selected, and their properties viewed and modified
using the table displayed beneath the ontology. Datatype properties are set by typing
values into the field, whereas object properties are set using a drop down list of values
representing the valid possibilities for the property. For example, if the property
has_bolt is specified to have range of cldaslt, the list will consist only oinstances

of Bolt.

If a constraint is violated, the affected features are highlighted and a report is
generated. The report gives the designer a short description of the constraint that is
violated, the features affected by that violation, and a linkéstiurce document that
contains the design rule. The designer can often resolve the violations by adjusting the
property values of the affected features. On selecting the affected feature from the
ontology, a table is displayed with the corresponding ptigseand values (as shown
in Figure 3.5). These property values can then be adjusted to resolve the constraint

violations.

® Checking incomplete configurations: Before checking constraints, it is not
necessary to specify values for every defined propdriyaoh feature. Instead, the
designer can fill in values for whichever properties he or she desires, and request a
constraint check. The RDQL query will only return results for the features that have
sufficient values specified, so that only certain camsts will be checkedThis allows
designers to operate in an exploratory way, defining small parts of a configuration,

checking them, and then gradually extending the configuration untdaniplete.

@ Constraint rationales: Each constraint has an associated rationale (currently a short
text string, but which in future may have more structure), and an (optional) URI for a
source document explaining the rationale in more depth. When a constraint viglation
reported, the designer is presented with a list of the features involved in the violation,
the rationale, and the link that can be clicked on to read the source document. In this
way, the designer can learn more about the constraint, and decides initfact
appropriate. As the constraint checking proceeds, an experienced designer may decide

to override theonstraint.

78

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A P

9.3.2 Internally trapped nuts (see Fig 4 Table 4) | 1

TABLE 4 L
PCD

ABOVE O M

mm [THTH mm

150 - 180 1,00

180 - 300 0,80

300 0,60

PCD NOM,
N MIN,= PCD (NOM) + 2M + MAX.NUT WIDTH TOLERANCE
(SEE TABLE 5)
GRADE IT.8
FIGURE 4
TABLE 5
THREAD SIZE MAX. NUT WIDTH
mim
0.1900-32 10,13
0.2500-28 11.56
0.3125-24 12,33
0.3750-24 15,37
0.4375-20 17,53
" 0.5000-20 19.05

0.5625-18 20,78
0.6250-18 23,02

Figure 3.6: Constraint as expressed in a rule book
[Source: Joint Design Standards (JDS) No: 805.04, RolRoyce]

79

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A P

3.1.2 Capturing the knowledge in the design ruldook(s)

As noted above, the Designersd Wor kbenc!
constraints, including those inherent in t|
this information, a design engineer (domain expert) works with a knowledge engineer
to identify theconstraints, and it is then the task of the knowledge engineer to encode
these into the Workbenchds KB as a query i
Prolog. This is a laborious, errprone and timeonsuming task. The constraints are
formulated succingl in the design rule book(s) and hence a-egpert in the field
often finds it very difficult to understand the context and formulate constraints
directly from the design rule book, and so a design engineer has to help the
knowledge engineer in this press. An example of such a constraint is shown in
Figure 3.6.The design rule book(s) gives the description of constraints, in the form of

tables and figures in mosases.

3.2 A Proposed Approach to the Capture ofConstraints

As noted in the previous seatiothere are many issues/problems faced when a
knowledge engineer seeks to capture knowledge from the design rule book(s) and
encodes them as constraints in the Designe]
The thesisbs proposed approachtatd o t he

domain experts in formulating a constraint by selecting classes and properties from the
domain ontology, and combining them with predefined keywords and operators from a
high-level constraint language. This should relieve the knowledge engineerHeom t
errorprone and time&onsuming process of capturing constraints. This would also
enable designers to have greater control over the definition and refinement of
constraints, and presumably, to have greater trust in the results of the constraint
checkingprocess. In order to embody the proposed approach, the thesis outlines the

following tasks:
A Development of a system comprising of the followdognponents/features:

(i) A graphical user interface that enables a user to formulate a constraint by
means of a f@ mouse clicks. The graphical user interface contains the

following subcomponents:

80

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A P

a) A scrollable list of keywords from a high level constradamguage.

b) A scrollable tree structure of classes and properties from the
domainontology.

C) A tool bar containing appropriate arithmetic, logical and relational
operators.

d) A result panel to display the constraint being formulated and the
results of a syntagheck.

The user formulates a constraint by selecting entities from (a), (b) and (c) for
display in the result panel.

(i) Use a higHevel constraint language with good expressivity to represent

the constraint.
(i) Perform syntax checking of the formulatsahstraint.
(iv) Display details of any syntacticatrors.

(v) Facilitate the user in editing a constraint, creating a table of constraints,

and reading/writing constraints from/to a tébd.

(vi) Allocate each constraint with a unique identification number that also

denotes its versionumber.
(vii) Provide a search faciitto retrieve constraints from tteB.

(viii) Convert the constraint into a standard (semantic web enabled) format
that enables other systems such as

solvers, agents, etc. to processdbestraint.

A Perform a preliminary eWaation by demonstrating the system to domain
experts (RollsRoyce desigengineers).

A Run an experiment to evaluate the usability ofsystem.

More details on the system developed are provided in the subsequent chapter (Chapter

4). Information regarding the preliminary evaluation and experiments carried out are

81

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A P

provided in Chapter 7. The research question that the proposedeipaims to
address is as follows:

Research Question I:

A Examine whether it is possible to design and construct a system to facilitate
(domain) experts in capturing and maintaining constraints in engineering

design. This question can be detailed into the following sn@liestions:

a) Can (domain) experts succhsly perform the allocated tasks within
acceptable timémits?

b) Did the (domain) experts perform the tasks accurately? What kind of

mi stakes did they make? Can the sy
eliminate or minimize theserrors?
c) How easy and intuitive di(Homain) experts find the system to use?
d) Is the speed of the system on realistic tasks viable for (domain)
experts taise?
The thesis aims to examine whether it is possible to design and construct a system to
facilitate domain experts in capturing and maintaining constraints in engineering
design. Systems such as the Designerso Wor k

constraints captured by the domain experts. This would eliminate the knowledge
engineer from the errgerone and timeonsuming task of capturing design rules for
the Designersd Workbenchdés KB. The next
faced duringmaintenance of these constraints and the proposed approach to address

these issues/problems.

3.3 Maintenance of Constraints in EngineeringDesign

The engineering design process has an iterative nature as designed artefacts often
develop through a series ohanges before a final solution is achieved. A common

problem encountered during the design process is that of evolution, wiagh

82

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A P

involve the identification of new constraints or the modification or removal of existing
constraints. Ta reasons for such changes include developments in the technology,
changes to improve performance, and changes to reduce development time and costs.

Typically, maintenance involves varioissues/problems:

A Original experts are unlikely to be available:eTlansient nature of modern
organizations and workforces, and the rapid flow of knowledge and experience
out of companies due to staff leaving, make it difficult for new designers to

effectively use stored design knowledge and subsequently to matintain

A Insufficient documentation provided: Some constraints may be applicable only
in particular contexts. These contexts are often implicit to the designer
formulating them but are not documented. In addition, many constraints will be
based on assumptions timaay not be true later on. These assumptions are often

not madeexplicit.

A Maintenance is timeonsuming and complex: Maintenance of constraints in an
engineering design environment is a complicated process and is very difficult to
do manually. Thus, there is a pressing need for tools to support maintenance of
this kind ofknowledge.

A The evolutionary nature of constraints establishes the need to constantly update,
revise, and maintain them. One needs to identify the constraints that require
modification. In addition, one needs to make sure the knowledge base is

consistent after aking achange.

Verification in KBSs plays a very important role. As we automate more processes, the
need for verification becomes even more critical. Many automated processes perform
incorrectly for a long time, as no person is responsible for checking the process (Hicks
2003). Additionally, as the KB evolves, constant addition/revision of rules can result in
high levels of redundancy. It is important to prevent/minimize redundant rules in the
KB. Removing/reducing redundancy in a KB will make it eagdemaintain thekB.

83

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A P

Constraints are continually being added, deleted and modified throughout the
development of a new product. Design begins with a functional specification of the
desired product: a description of properties and conditions that thecprsisiould
satisfy (i.e. constraints). Constraints themselves form a rationale associated with the
design decisions taken by designers. A typ
X exists in the design becausittootapturbe need
and use this type of design rationale in concurrent engineering has been referred to as
Design Rationale Management by Bahler & Bowen (1992), who describe a constraint
based design advice system that generates magaimexated suggestis to support
coordination among multiple designetengi nee
al., 2004) provides similar functionality by checking if the design satisfies all the
relevant constraints, providing details of the violated constraints aaldlieg the

designers to resoltbem.

Much research has been done to develop systems that capture and represent the
rationales associated with design knowledge. Design rationales considered so far refer

to the information containing either one or all lnéfollowing:

a) the reasons behind the design decisions taken (why a decisitakenls
b) the design alternatives considered and rejected with reasaegefdron.
c) how certain design actions grerformed.

However, design rationale systems have not concentrated on capturing information
pertaining to when a particular section of the design knowledge is applicable.
Constraints may be formulated based on a number of assumptions and may be relevant
onlyincerta n contexts. Designers often tend to
2006). They tend to make assumptions about the match between the current design
situation and one where their chosen technique worked well before. They tend to make
abstractions acrosd| the situations where particular techniques worked well before,

by assuming that some key detail is relevant or irrelevant. These assumptions are not
deliberate, but form the tacit knowledge underlying expert skill. In order to support
maintenance ofe@bkign knowledge, it is important to make these assumptions visible.
One needs to find ways to capture the assumptions and contexts as part of the rationale
associated with a constraint. The thesis refers to this type of rationaleagplibation

conditionsassociatedavith a constraint(Ajit etal., 2008a;Sleemaretal.,

84

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A P

2008). A recent article by Hooey & Foyle (2007) reported on the requirements for
design rationale capture tool to support ;
systans. They stressed the need to capture the assumptions and contexts as the rationale
for a given design element, particularly in the conceptual design phase. The paper
describes how this information is rarely captured in a systematic and usable format
becase there are no tools that adequately facilitate and support the capture and use of
this critical information. An example quot e
the Crew Exploration Vehicle cockpit is based on an assumption of a specific crew
sized . The above example is a constraint tog
design element or a constraint is modified, there is no easy way to propagate that change
to understand the implications and consequences of those changes.

Thus, it is impotant to capture information pertaining to when a particular
section of the design knowledge is applicable and enable systems to use this information
to support maintenance. This thesis proposes an approach to capture application
conditions associated wittonstraints and use these application conditions together
with the constraints and domain ontology to support the maintenance of constraints.

The next section (section 3.4) describes the proposed approach with an example.

3.4 A Proposed Approach to the Maintenance o€onstraints

Due to restricted availabiltyof RoHRoy ce desi gnersdé ti me and b
domain, the kite domain was initially investigated to elicit equations and constraints
together with the corresnding application conditions. The sources referred to study
the kite domain include Yolen (1976), Streeter (1980), Eden (1998), AKA (2006),
CEKS (2006), Leigh (2006), Lords (2006) and WardR806).

For a successful kite design, one has to make surthehdesign complies with
all the appropriate rules/constraints. There are different types of constraints associated
with the design of a kite. The analysis of kite domain showed that several constraints
were applicable only to particular types of kitesdaunder specific conditions.
Appendix A provides a list of equations and constraints elicited from the kite domain
together with the corresponding application conditionssaoices..

85

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A P

The context in which a constraint is applicable is referred to as an application
condition in this thesis. Application conditions form a part of the rationales associated
with the constraint. Consider the following example of a constraint together with its

associated application condition:

Constrainfii The density of the cover materi al 0 |
kilograms per square metreo
Applicationconditof A Thi s i s applicabl e otwprgducehen t he

low cost kites for beginners. Kites for experts use lighter materials that are of higher
qualityandhence ost | i er . o

As shown in the example above, the application condition specifies the context
in which the constraint is applicable. Ofteme information of application conditions is
implicit to the person who formulates the constraint. The assumptions/conditions on
which a constraint is based may no longer be true and in such cases, it becomes
necessary to deactivate or remove those conttrimom the KB. Further, an application
condition may not be relevant to a particular design task. Hence, in order to apply
constraints appropriately and support maintenance, it is important to make the
application conditions explicit.

Although design radnales can provide a lot of information about the reasoning
involved in making a design decision, rationales are extremely hard to collect mainly
because the process is very intrusive and
work has been cagd out on how this information can be used by machines. Although
the information may have some structure, the information cannot be understood,
interpreted and used by machines to provide immediate benefits to the designers.
Capturing large amounts of da¢al rationales is not useful if it is never looked at again.

If rationales are useful to the designers, there is a greater incentive for designers to assist
in the capture of the information, particularly if the designer who is recording it can
immediatey use the rationale. As Grudin (1996) and Brown (2006) have pointed out,
there cannot be a disparity between who invests effort in a groupware system, and who
benefits. No designer can be expected to altruistically enter quality design rationale
solely forthe possible benefit of a possibly unknown person at an unknown point in the
future for an unknown task. There must be immediatie. In addition, knowing

how the information will be usedprovides

" http:/ivww.cuttingedgekites.com/fag.hticcessed on 28 June 2006.

86

http://www.cuttingedgekites.com/faq.htm

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A P

guidance about what information should be captured and how it should be represented.
Thus, it is important to concentrate on the use of such information. Representing
rationales in a machinaterpretable format would enable systems to immediately use
the rationales to detect inconsistencies, redundancy, subsumption, fusion and suggest
appropriate refinements betwesmnstraints.

The thesis hypothesises that an explicit representation of the context information
(referred to as application conditions) togathvith the corresponding constraints and
the domain ontology can be used to support the maintenance of constraints. In order to
tackle the wvarious mai ntenance i ssues/ pro

approach can be summarized as follows:

AbCapture the fAcontexto in which-a const
interpretable form, as an application condition and associate this information
(rationale) with theonstraint.

A Use the application condition together with the constraint and thespomding

domain ontology to suppomaintenance.

Maintenance of constraints includes (i) detecting inconsistencies, redundancy,
subsumption and fusion (ii) reducing the number of spurious inconsistencies and (iii)
preventing the identification of inapgoate refinements of redundancy, subsumption
and fusion, between pairs of constraints. More details regarding the proposed approach
to capture and use application conditions together with the corresponding constraints
and the domain ontology can be foundChapter 5. The proposed approach should
encourage the designers to capture the application conditions together with the
constraints because the system can immediately use them to provide benefits to the
designers. If application conditions are usefulthe designers, there is a greater
incentive for designers to assist in the capture of the information, particularly if the
designer who is recording it can immediately use the application condition. It is also
important to ensure that the speed of theéesydor realistic tasks is viable for domain
experts to use. The research question that the proposed approach aims to address is as

follows:

87

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A P

Research Question i

A Examine whether capturing application conditions associated with
constrants, in a machinénterpretable format can provide significant
benefits to the maintenance of constraints in engineering design. In
particular, can an explicit representation of application conditions together
with the corresponding constraints and the dionontology be uset:

a) Detect inconsistencies, redundancy, subsumptioriusiah,

b) Reduce the number of spurious inconsisteneied,

c) Prevent the identification of inappropriate refinements of
redundancy, subsumption and fusion between paierwdtrains?

Application conditions are captured in the same language as that of the
constraints. More details about the representation of these application conditions
together with the constraints are explained in Chapter 5. The thesis investigates the kite
design domain and proposes four main types of knowledge refinement rules, namely,
redundancy, subsumption, inconsistency and fusion. The rules make use of the
application condition together with the constraint and the domain ontology to detect
inconsistencies, suggerefinements (subsumption, redundancy and fusion), and hence
support the maintenance of constraints. In addition, the knowledge refinement rules are
expressed in a formal notation and it has been proved that they are logically sound. In
order to embodyhte proposed approach and implement the refinement rules, the thesis
outlines an algorithm and reports on a system developed to implement the algorithm.
More details regarding the outlined algorithm and the system developed can be found
in Chaptel6.

3.5 Summay

This chapter describes the proposal for the research work reported in this thesis. The
chapter provides a description of the Desi
previous research to support designers in large organizations, such aRdyoksto

ensure that the design is consistent with the specification for the particular design, as

we l | as with the companydés design rule bool

engineerduring the captureof constraintor theD e s i gWoekbenah

88

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A P

have motivated the author to propose an approach to facilitate domain experts
themselves in capturing and maintaining constraints. The proposed approach involves
providing an intuitive way to facilitate domain experts formulating a tcaimé by
selecting classes and properties from the domain ontology, and combining them with
predefined keywords and operators from a Heglel constraint language. The tasks
that need to be done to embody the above approach have been outlined.

Further, he chapter describes the various issues/problems faced during
maintenance of constraints. The chapter reports that it is important to capture the context
in which a constraint is applicable and refers to this context as an application condition
associateavith the constraint. The thesis hypothesises that an explicit representation of
application conditions together with the corresponding constraints and the domain
ontology can be used to support the maintenance of constraints. In particular, supporting
the maintenance of constraints refers to: (i) detecting inconsistencies, redundancy,
subsumption and fusion, (ii) reducing the number of spurious inconsistencies and (iii)
preventing the identification of inappropriate refinements of redundancy, subsumption
ard fusion, between pairs of constraints. It is also hypothesised that the speed of the
system for realistic tasks is viable for domain experts to use. The following chapter
describes the design and construction of the system that has been developethte facil

domain experts in capturing and maintaining constraints in engineering design.

89

Chapter 4
ConEditor

6The true creator i s
who is the mother of
- Plato

This chapter describes the design, implementation and functionality of ConEditor. The
chapter also presents an overview of the constraint representatigunages (CoLan

and CIF) used by ConEditor. The chapter is structured as follows: Section 4.1 provide
an overview of the highevel constraint language (CoLan) used for the research work
reported in this thesis. Parts of the description in Section 4.1 have been extracted from
Bassiliades & Gray (1995) and Grayal (2001). Section 4.2 describes theigeof
ConEditorobés GUI . Section 4.3 describes
ConEditor. Section 4.4 describes the principles involved in the conversion of OWL
ontology into a Daplex Schema. Section 4.5 provides an overview of the XML
Constraint Iterchange Format used by ConEditor and the principles involved in
converting CoLan into CIF. Section 4.6 summarises the chapter.

4.1 Overview of CoLan

CoLan (Bassiliades & Gray, 1995; Grayal, 2001) is a constraint language based on

an Object Data ModeFully quantified constraints can be expressed in a very readable
form of first order logic, including functions, which can be computed over data values
expressed in the ER diagram (or UML class diagram). Hence, the underlying data model
is called the Fuctional Data Model (FDM). The FDM, P/FDM (Prolog/Functional Data
Model) is a semantic data model based o
1981). The semantics of the objects referred t€ahan constraints are described in
terms of this extendedREdata model, which is of the kima widespreadisein UML

andin databasschemasCoLanhasfeaturesof both

90

ne:

i n:

t h

C

~

Chaper 4: ConEdito

first-order logic and functional programming, and is intended for scientists and

engineers to express constraints.

congtrain each t in tutor
auch that astatusi{t)l="ressarch"
no 2 in adwvisee(t) has grads(2) =< 30;

congtrain each r in residue to have

digtance (atomix, "ag™] .,
atomidisulphide{xr),"sg™)) = 3.7;

peracn]

fname -» Btring

id -= =tring |
|, surname - string
..

- -

e " A ™,
| tutor | — atudent

astatus -= string student id -» string
, adwiszes - studsantc ’ grade -> intagsr y,
e L "]

Figure 4.1: Examples of CoLan constraints from different application domains. The ER diagram
models the relationships between entitglasses in the first constraint

[Source: Gray et al (2001)]

Two example constraints from different application domains are shown in
Figure 4.1. An ER diagram that models the relationships between entity classes in the
first constraint is also shown.h& first example shows a ColLan constraint an
university database containing student records. The same constraint language is
applicable to the domain of protein structure modelling, as shown by the second
example restricting bond lengths. In the firsamwle, a variablé ranges over the
entity type tutor that is populated with stored object instances. Eaclthete
instances may be related to instances of student entities through the relationship
advisee , which delivers a set of related entities as in an olgeented language.
These entities can be restricted by the values of attributes sgechdes. There are
also other entity types such as residue (representing parts of protein chains) which have
method functions for determining distances by computation. Thus, functions may also
represent a derived relationship, or method. The entity classes can form part of a subtype

hierarchy, in which case all properties and methods on the supeactass

91

Chaper 4: ConEdito

inherited by each subclass. Method definitions may be overridden, but not constraints.
This is significant for semantic web applications, since it means that information
represented in this way is not restricted to human inspection. It can becpeutdied
mechanically, transformed by symbol manipulation, or sent to a remote constraint
solver. Moreover, given a standardised interchange format, data and attached
constraints from multiple sources can be gathered together, checked for compatibility,
and usedd derive new information. Because the P/FDM data model is an extended ER
model, it maps very easily onto the RDF schepecification.

ColLan is as expressive as the subset of-dirder logic that is useful for
expressing integrity constraints: namelyngerestricted constraints. This class of
constraints includes those fistder logic expressions in which each variable is
constrained to be a member of some finite set of values. CoLan provides a precise
denotation for constraints but it does not fouseo evaluate them as integrity checks.
The constraint expresses a formula of logic which is true when applied to all the
instances in a database, but it is also applicable to instances in a solution database which
is yet to be populated with constructadutions by a solver process (Getyal, 1999a;
Grayet al, 1999b). Here, it is behaving more like a specification than as an integrity
check. The power of this in the context of the semantic web is that constraints can be
passed as a form of mobiledkmledge between agents and processes and they are no
longer tied to a piece of database software. For more details of P/FDM, ColLan and
related work, the reader is encouraged to wsitv.csd.abdn.ac.ukpfdm or refer the

relevant technical papers that have been refereatoede.

42 ConEdiQUbr 6 s

ConEditor has been designed to facilitate domain experts in capturing and maintaining
constraints. A screenshot of Conskani t or 6s
expression can be created by selecting entities from a domain ontology and combining
them with a preadefined set of keywords and operators from the Hegll constraint

language, CoLan. An example of a simple constraint expressed in CoLan, Hgainst
domain ontology (a et engine ontology)

follows:

92

u

http://www.csd.abdn.ac.uk/~pfdm

Chaper 4: ConEdito

constrain each fin ConcreteFeature

to have max_operating_temp(has_material(f)) >= operating_temp(f)

The above constraint states that for guvastance of the class ConcreteFeature, the
value of the maximum operating temperature of its material must be greater than or

equal to the environmental operating temperature.

Figure 4.2: A screenshot of ConEditoréds

ConEditords GUI essentially consists of fiwv
(B) Taxonomy Panel, (C) Central Panel, (D) Tool Bar and (E) Result Panel. These

components provide the user with entities required to form a constraint

93

