
Capture and Maintenance

of

Constraints in Engineering Design

A thesis presented for the degree of

Doctor of Philosophy

at the University of Aberdeen

by

Suraj Ajit

(B. E. Computer Science and Engineering, Bangalore University, India)

Department of Computing Science

University of Aberdeen

United Kingdom

2009

i

Abstract

The Designersô Workbench is a system, developed by previous research to support

designers in large organizations, such as Rolls-Royce, to ensure that the design is

consistent with the specification for the particular design, as well as with the companyôs

design rule book(s). The evolving design is described against a jet engine ontology.

Design rules are expressed as constraints over the domain ontology. To capture the

constraint information, a domain expert (design engineer) has to work with the

knowledge engineer to identify the constraints, and it is then the task of the knowledge

engineer to encode these into the Workbenchôs knowledge base. This is an error-prone

and time-consuming task. It is highly desirable to relieve the knowledge engineer of

this task, and so this thesis proposes a novel approach to facilitate domain experts in

capturing and maintaining constraints. The approach has been embodied by developing

a system, ConEditor that facilitates domain experts in combining selected entities from

the domain ontology with keywords and operators of a constraint language to form a

constraint expression. Further, this thesis reports that in order to appropriately apply,

maintain and reuse constraints, it is important to know the assumptions and context in

which each constraint is applicable. This is referred to as the ñapplication conditionò

and this forms a part of the rationale associated with the constraint. The central

hypothesis of this thesis is that an explicit representation of constraints together with

the corresponding application conditions and the appropriate domain ontology can be

used to support the maintenance of constraints. The thesis investigates two domains,

initially the kite domain and then part of a more demanding Rolls-Royce domain (jet

engine design). Four main types of refinement rules that use the associated application

conditions and domain ontology to support the maintenance of constraints are

proposed. The refinement rules have been implemented in ConEditor and the extended

system is known as ConEditor+. With the help of ConEditor+, the thesis demonstrates

that an explicit representation of application conditions together with the corresponding

constraints and the domain ontology can be used to detect inconsistencies, redundancy,

subsumption and fusion, reduce the number of spurious inconsistencies and prevent the

identification of inappropriate refinements of redundancy, subsumption and fusion

between pairs of constraints.

ii

Notes

Parts of the research work reported in this thesis have been published previously in:

Book Chapter:

Â Ajit, S, Sleeman, D, Fowler, D.W., Knott, D and Hui, K (2005): Capture and

Maintenance of Engineering Design Constraints, Advanced Knowledge

Technologies (Selected Papers 2005), Nigel Shadbolt and Yannis Kalfoglou

(ed), pages 309-322.

Journals:

Â Ajit, S, Sleeman, D, Fowler, D.W., Knott, D and Hui, K (2008): Constraint

Capture and Maintenance in Engineering Design, Journal of Artificial

Intelligence in Engineering Design and Manufacturing (AIEDAM), Special

Issue on Design Rationales, Rob Bracewell and Janet Burge (ed), Volume 22,

Issue No. 4, pages 325-343.

Â Sleeman, D, Ajit, S, Fowler, D.W. and Knott, D (2008): The role of ontologies

in creating & maintaining corporate knowledge: a case study from the aero

industry, Journal of Applied Ontology, Roberta Cuel and Roberta Ferrario (ed),

Volume 3, Issue No. 3, pages 151-172.

Conferences/Workshops:

Â Ajit, S, Sleeman, D, Fowler, D.W., Knott, D and Hui, K: ConEditor+ (2007):

Capture and Maintenance of Constraints in Engineering Design, Rose Dieng

and Nada Matta (ed), IJCAI-07 Workshop on "Knowledge Management &

Organizational Memories", Hyderabad, India, pages 6-11.

Â Sleeman, D, Ajit, S, Fowler, D.W. and Knott, D (2006): The role of ontologies

in creating & maintaining corporate knowledge: a case study from the aero

industry, Roberta Cuel and Roberta Ferrario (ed), FOMI-06 Workshop

Proceedings, Laboratory for Applied Ontology, Trento, Italy.

Â Ajit, S, Sleeman, D, Fowler, D.W., Knott, D and Hui, K (2005): Capture and

Maintenance of Engineering Design Constraints, Proceedings of the 2nd AKT

Doctoral Symposium, January 2006, Aberdeen, pages 4-13.

Â Ajit, S, Sleeman, D, Fowler, D.W., Knott, D and Hui, K (2005): Capture and

Maintenance of Engineering Design Constraints, The Twenty-fifth SGAI

International Conference on Innovative Techniques and Applications of

Artificial Intelligence, CD Proceedings of AI 2005, Cambridge, UK.

Â Ajit, S, Sleeman, D, Fowler, D.W., Knott, D and Hui, K (2005): Acquisition

and Maintenance of Constraints in Engineering Design, Third International

Conference on Knowledge Capture, Proceedings of KCAP 2005, Banff,

Canada, pages 173-174.

iii

Â Ajit, S, Sleeman, D, Fowler, D.W. and Knott, D (2004): ConEditor: Tool to

Input and Maintain Constraints, 14th International Conference on Engineering

Knowledge in the Age of the Semantic Web, Proceedings of EKAW 2004,

Northampton, UK, pages 466 - 468.

iv

Declaration

I declare that this thesis has been composed by myself and describes my own work. It

has not been accepted in any previous application for a degree. All sources of

knowledge have been specifically acknowledged.

Suraj Ajit

27th May, 2009

Department of Computing Science

University of Aberdeen

Aberdeen

United Kingdom

v

Acknowledgement

This work is supported under the EPSRCôs grant number GR/N15764, and the

Advanced Knowledge Technologies Interdisciplinary Research Collaboration, which

comprises of the Universities of Aberdeen, Edinburgh, Sheffield, Southampton and the

Open University.

I would like to thank Mr. David Knott (Head of Design Technology), Dr.

Michael Moss and other people at the Rolls-Royce plc, Derby, UK for all their support.

In particular, I would like to specially thank Mr. Colin Cadas (Head of Knowledge

Management) and Mr. Stephen Docherty in the Transmission and Structures division

of Rolls-Royce plc, Derby, UK for all the important discussions and contributions,

relevant to the work reported in this thesis.

This thesis would not have been possible without the support of my colleagues,

friends and family. In particular, I would like to thank my supervisor Professor Derek

Sleeman for providing me the opportunity to do a PhD. I deeply appreciate his

continuous support, encouragement and guidance over the years. I would like to thank

Dr. David Fowler for all his support. I am grateful to Dr. Wamberto Vasconcelos and

Professor Peter Gray for reviewing parts of my research work and giving me useful

comments. I have received support from my former colleague Dr. Kit Hui and am

extremely grateful to him for providing the translator that converts CoLan into CIF. I

would like to thank all the subjects involved in the evaluation of ConEditor+ for taking

part and contributing. I would also like to thank my examiners (both internal and

external) for their constructive comments in improving the thesis.

Lastly (but not in any way least), on a personal note, I would like to thank my

parents and sister for their love and support.

vi

Contents

ABSTRACT i

NOTES ii

DECLARATION iv

ACKNOWLEDGEMENT v

CONTENTS vi

1 INTRODUCTION 1

1.1 Knowledge Management 1

1.1.1 Ontologies and the Semantic Web 3

1.2 Engineering Design 5

1.2.1 Designersô Workbench 6

1.3 Problem Description and Motivation 7

1.4 Research Aims and Hypotheses 9

1.5 Thesis Overview 11

1.6 Thesis Structure 12

2 LITERATURE REVIEW 15

2.1 Knowledge Acquisition 16

2.1.1 Interviewing 19

2.1.2 Protocol Analysis 20

2.1.3 Document Analysis 20

2.1.4 Card Sorting 21

2.1.5 Construct Elicitation (Repertory Grid) 21

2.1.6 Laddering 22

2.1.7 Use of Computer-assisted/Computer-based Tools 23

2.1.8 Discussion 27

vii

Contents

2.2 Knowledge Engineering Methodologies 27

2.2.1 Role Limiting Methods (RLM) 28

2.2.1.1 Generic Tasks and Task Structures (GT) 29

2.2.1.2 Overview of RLMs and GTs 30

2.2.2 The PROTÉGÉ Approaches 31

2.2.3 The CommonKADS Approach 33

2.2.4 The MIKE Approach 35

2.2.5 The MOKA Approach 36

2.2.6 Discussion 39

2.3 Knowledge Maintenance 40

2.3.1 Verification and Validation 42

2.3.2 Knowledge Refinement 44

2.3.3 Discussion 46

2.4 Engineering Design 47

2.4.1 Constraints in Engineering Design 47

2.4.2 Concurrent Engineering and Integrated Product Teams 54

2.4.3 Design Rationales 59

2.4.4 Discussion 67

2.5 Summary 70

3 CAPTURE AND MAINTENANCE OF CONSTRAINTS

IN ENGINEERING DESIGN: A PROPOSAL 72

3.1 Introduction to the Designersô Workbench 72

3.1.1 Functionality of Designersô Workbench 76

3.1.2 Capturing the knowledge in the design rule book(s) 80

3.2 A Proposed Approach to the Capture of Constraints 80

3.3 Maintenance of Constraints in Engineering Design 82

3.4 A Proposed Approach to the Maintenance of Constraints 85

viii

Contents

3.5 Summary 88

4 CONEDITOR 90

4.1 Overview of CoLan 90

4.2 ConEditorôs GUI 92

4.3 Functionality of ConEditor 96

4.4 Conversion of OWL ontology into Daplex Schema 97

4.5 XML Constraint Interchange Format (CIF) 99

4.6 Summary 104

5 VERIFICATION AND REFINEMENT OF

CONSTRAINTS 105

5.1 Analysis of the Kite Domain 105

5.2 Knowledge Refinement Rules 109

5.2.1 Redundancy 109

5.2.2 Subsumption 110

5.2.3 Inconsistency 112

5.2.4 Fusion 113

5.3 Formal Notation and Logical Proof 116

5.3.1 Redundancy 117

5.3.2 Subsumption 119

5.3.3 Inconsistency 123

5.3.4 Fusion 124

5.4 Summary 128

6 CONEDITOR+ 129

6.1 Evolution from ConEditor to ConEditor+ 129

6.2 ConEditor+ôs GUI 131

6.3 Functionality of ConEditor+ 134

6.4 Algorithm 136

ix

Contents

6.5 CIF Interpretation by ConEditor+ 139

6.6 Summary 148

7 EVALUATION 150

7.1 Preliminary Evaluation 151

7.1.1 Overview of Results 153

7.2 Experiments using ConEditor+ 154

7.3 Extension/Evaluation of Jet Engine Ontology and Maintenance of a 173

More complex set of constraints

7.4 Summary 176

8 CONCLUSIONS AND FUTURE WORK 179

8.1 Research Contributions 179

8.2 Limitations 182

8.3 Future Work 184

BIBLIOGRAPHY 188

APPENDIX A Equations and Constraints in Kite Design 203

APPENDIX B Evaluation of ConEditor+-Questionnaire 209

APPENDIX C Annotated Walkthrough of Capturing

a constraint Using ConEditor+ 210

APPENDIX D Scanned copies of the Questionnaires that

were answered by subjects during

Evaluation of ConEditor+ 219

APPENDIX E Sample Refinements of Constraints and

Application Conditions by ConEditor+ in

the Rolls-Royce domain 229

xi

List of Figures

Figure 2-1. Laddering Method 22

Figure 2-2. A screenshot of the English-based method editor used here to

acquire problem solving knowledge to compute the time to

transport an item in a ship

26

Figure 2-3. The Protégé Approaches 31

Figure 2-4. The MIKE Approach 35

Figure 2-5. KRUST Refinement System 44

Figure 2-6. Summary of a survey of Design Rationale systems 61

Figure 2-7. An example of a rationale generated by KLAUS4 62

Figure 2-8. An example of DRed document capturing the design rationale

of an aero-engine internal gearbox

64

Figure 2-9. The use of Design Rationale in the design process by InfoRat 66

Figure 3-1. A screenshot of the Designersô Workbench 73

Figure 3-2. The class hierarchy of a simple configuration ontology 74

Figure 3-3. A bolted joint 74

Figure 3-4. A configuration of the bolted joint in Figure 3-3 described using

an ontology

75

Figure 3-5. Closeups of the Designersô Workbenchôs panels 77

Figure 3-6. Constraint as expressed in the design rule book 79

Figure 4-1. Examples of CoLan constraints from different application

domains

91

Figure 4-2. A screenshot of ConEditorôs GUI 93

Figure 4-3. A screenshot showing constraints expressed in tables

using ConEditor

94

Figure 4-4. Process flow within ConEditor 96

Figure 4-5. Framework of ConEditor and Designersô Workbench 97

Figure 4-6. (a) Modelling using multiple inheritance 98

xii

Figure 4-6. (b) Modelling without using multiple inheritance 98

Figure 4-7. P/FDM Daplex definitions for entity and property metaclasses 100

Figure 4-8. RDF Schema definitions for the objmet and entmet classes 101

Figure 4-9. RDF Schema definitions relating to the ósetmemô metaclass 102

Figure 4-10. XML -CIF fragment corresponding to the CoLan fragment

(p in pc)

103

Figure 5-1. Basic parts of a flat diamond kite 106

Figure 5-2. The Kite Domain ontology developed in Protégé 108

Figure 6-1. A screenshot of ConEditor+ôs GUI 130

Figure 6-2. Taxonomy Panel of ConEditor+ 133

Figure 6-3. Framework of ConEditor+ and Designersô Workbench 135

Figure 6-4. A screenshot of ConEditor+ showing subsumption between

a pair of constraints

138

Figure 6-5. Constraints in RDF make references to the CIF language

definition and the domain ontology in OWL

139

Figure 7-1. Constraint as expressed in the design rule book 152

Figure 7-2. Graph showing results of an experiment to evaluate usability

of ConEditor+

163

Figure 7-3. Graph showing average refinement time taken by ConEditor+

versus number of constraints in KB

171

Figure 7-4. Extended/Evaluated Jet Engine Ontology of a part of the

Rolls-Royce domain in Protégé

173

Figure 8-1. Proposed System Architecture 184

Figure 9-1. A screenshot of ConEditor+ showing inconsistency between

constraints

232

xiii

List of Tables

Table 7-1. Time taken by ConEditor+ to detect inconsistencies and

refinements for various KB sizes 170

xiv

List of Acronyms & Abbreviations

AI Artificial Intelligence

AKT Advanced Knowledge Technologies

API Application Programming Interface

Auto Automatic

CAD Computer Aided Design

CIF Constraint Interchange Format

CommonKADS Common Knowledge Acquisition and Design support

CRLM Configurable Role Limiting Method

CVO Constraint Version Object

DEC Digital Equipment Corporation

DFX Design for X

DR Design Rationale

DRed Design Rationale editor

DTI Department of Trade and Industry

FO Feature Oriented

FOL First Order Logic

GT Generic Task

GUI Graphical User Interface

HCI Human-Computer Interaction

HVAC Heat, Ventilation and Air Conditioning

ICARE Illustration, Constraint, Activity, Rule, Entity

ID Identification Number

IDA Institute for Defence Analysis

IPD Integrated Product Development

IPAS Integrated Products and Services

JDS Joint Design Standards (specific to Rolls-Royce)

KA Knowledge Acquisition

KB Knowledge Base

KBE Knowledge Based Engineering

KBS Knowledge Based System

KE Knowledge Engineering

MAKE Maintenance Assistance for Knowledge Engineers

MOKA Methodology and Tools Oriented to Knowledge Based

Engineering Applications

OKBC Open Knowledge Base Connectivity

OWL Web Ontology Language

PO Process Oriented

PSM Problem Solving Method

RDF Resource Description Framework

RDQL RDF Query Language

RLM Role Limiting Method
UI User Intervention

UK United Kingdom

UML Unified Modelling Language

W3C World Wide Web Consortium

Chapter 1

1

Introduction

óKnowledge Management is the Major Enabler of

Enterprise Performance.ô

- Karl Wiig

This thesis presents original research in the field of knowledge management with

engineering design as an application domain. The research proposes a novel approach

to facilitate domain experts in capturing and maintaining constraints in engineering

design. The thesis further embodies this approach with the design and construction of a

system. This chapter provides a background on the topics relevant to this thesis,

describes the motivation for the research work, outlines the research questions and also

provides an overview of the thesis. The chapter is organised as follows: Section

1.1 provides a background to knowledge management including ontologies and the

semantic web. Section 1.2 introduces engineering design, and describes a system

developed by previous research (Fowler et al., 2004) to support engineering designers

in large organisations such as Rolls-Royce. Section 1.3 describes the motivation for the

research work reported in this thesis. Section 1.4 outlines the research questions that the

thesis aims to address. Section 1.5 provides an overview of the thesis. The chapter

concludes with Section 1.6 describing the thesis structure.

1.1 Knowledge Management

We live in a world where there has been an explosion of data, information and

knowledge. However, knowledge is only of value when it can be used effectively and

efficiently. The management of knowledge is increasingly being recognised as a key

element in the organization of companies and institutions (Dieng et al., 1999; Dieng &

Corby, 2000). The forms of knowledge have grown in terms of both complexity and

applications. People often work for a number of employers during their lifetime. Loss

2

Chapter 1: Introduction

of knowledge can be a major factor in reducing an organisationôs productivity and

effectiveness. Organisations have experienced many changes to the way they operate.

The nature of work has changed enormously with the shift from an industrial economy

(where commercial products were the main business focus) to a knowledge economy

(where service and expertise are the main business outcomes) (Debowski, 2006). The

shift in focus from products to services has encouraged greater recognition of the

importance of the knowledge held within an organisation. Knowledge management is

concerned with the acquisition, modelling, use, reuse, retrieval, publishing and

maintenance of knowledge. Knowledge engineering techniques have been known to

bring significant benefits to knowledge management (Preece et al., 2001). More details

of the various knowledge engineering techniques can be found in Chapter 2.

The challenges relevant in the context of this thesis are knowledge acquisition

and maintenance. Knowledge acquisition is about extracting knowledge from sources

of expertise and transferring it to a knowledge base (KB). Knowledge acquisition is

well known to be a ñcritical bottleneckò in expert system development. The traditional

approach to knowledge acquisition is mainly an interaction process involving the

domain expert and knowledge engineer. This approach can be laborious, time-

consuming and error-prone, especially if the knowledge engineer is unfamiliar with the

domain. The challenge here is to develop tools and methodologies that facilitate domain

experts in capturing and maintaining knowledge. In other words, the challenge is to

eliminate or minimize the role of a knowledge engineer.

Knowledge maintenance is concerned with the process of controlling change in

a knowledge-based system. Knowledge maintenance normally involves the following

activities:

Â Verification and validation of knowledge based systems: Verification and

validation of the content of knowledge repositories is at the heart of knowledge

maintenance. Verification is a process of ensuring that the knowledge base is

consistent and complete within itself. Validation is the process of determining

if a KBS meets its usersô requirements (Meseguer & Preece, 1995).

3

Chapter 1: Introduction

Â Updating/refining of knowledge bases: The challenge is to keep the knowledge

repository functional and consistent. This may involve the regular

updating/refining of content as it changes (e.g., as price lists are revised).

Updating/refinement of KBs can make them inconsistent and further they can

accumulate redundant knowledge. It is important to discard the redundant

knowledge and make sure that the KB remains consistent.

Â Dealing with the obsolescence of knowledge: Certain sections of the knowledge

may be based on assumptions/conditions, which later become untrue. One has

to identify and shelve/remove such sections, when necessary. This may involve

a deeper analysis of the knowledge content. Some content has a considerable

longevity, while other knowledge dates very quickly. If a repository of

knowledge is to remain active over a period of time, it is essential to know which

(and when) parts of the knowledge base must be discarded.

1.1.1 Ontologies and the Semantic Web

An ontology is a core element in knowledge management. The word ontology has been

taken from Philosophy, where it is used to describe the existence of beings in the world

and referred to as the theory of existence. The most commonly used definition of

ontology in Artificial Intelligence (AI) is that of Gruber (1993): ñAn ontology is an

explicit specification of a conceptualizationò. Borst (1997) and Borst et al. (1997)

slightly modified Gruberôs definition saying that: ñOntologies are defined as a formal

specification of a shared conceptualization.ò Both the above definitions have been

explained by Studer et al. (1998) as: ñA óconceptualisationô refers to an abstract model

of some phenomenon in the world by having identified the relevant concepts of that

phenomenon. óExplicitô means that the type of concepts used, and the constraints on

their use are explicitly defined. óFormalô refers to the fact that the ontology should be

machine readable, which excludes natural language. óSharedô reflects the notion that an

ontology captures consensual knowledge, that is, it is not private to some individual,

but accepted by a group.ò

Large organizations are more likely to face the problem of integrating

heterogeneous and distributed information expressing the specificity of the sub-

4

Chapter 1: Introduction

communities which, altogether constitute the organization itself (Sanghee et al., 2008).

The integration problem is due to the lack of shared and globally consistent

terminologies. Ontologies facilitate knowledge sharing and reuse by providing a

commonly agreed domain model. The main differences between an ontology and a

database schema, as listed in Fensel (2004) are:

Â A language for defining ontologies is syntactically and semantically richer

than common approaches for databases.

Â The information that is described by an ontology consists of semi-structured

natural language texts and not tabular information.

Â An ontology must be a shared and consensual terminology because it is used

for information sharing and exchange.

Â An ontology provides a domain theory and not the structure of a data

container.

Ontologies provide the backbone technology for the semantic web (Fensel, 2004). The

semantic web is an evolving extension of the world wide web in which web content can

be expressed in a form that can be understood, interpreted and used by computers to

find, share and integrate information more easily (Berners-Lee et al., 2001; Shadbolt et

al., 2006). According to the World Wide Web Consortium (W3C)1, the semantic web

is about two things: ñIt is about common formats for integration and combination of

data drawn from diverse sources. It is also about language for recording how the data

relates to real world objects. That allows a person, or a machine, to start off in one

database, and then move through an unending set of databases which are connected not

by wires but by being about the same thing.ò

The main uses of ontologies and semantic web technologies can be summarized as

follows:

Â To enable integration of heterogeneous data sources. A common task is to

pose queries that require data from more than one source.

1 http://www.w3.org/2001/sw/. Accessed online on 12 May 2008.

http://www.w3.org/2001/sw/

5

Chapter 1: Introduction

Â To ensure people and software agents have a shared understanding of the

terms and relationships used in a domain.

Â To annotate documents and other resources with terms from the ontology, and

then to use these annotations to retrieve documents. Using the structure of the

ontology, documents that are related to those originally sought can be explored.

For example, a document may be about one engine part, and by using the

ontology, documents about parts that are similar to, or adjacent to, that part may

be found.

Â To allow reasoning to take place (deduce new statements that were not

explicitly stated) and reveal inconsistencies in the data.

Â To enable reuse of domain knowledge.

Â To make domain assumptions explicit.

Â To separate domain knowledge from the operational knowledge.

Ontologies are now in widespread use as a means of formalizing domain knowledge in

a way that makes it accessible, shareable and reusable (Darlington & Culley, 2008). The

research work reported in this thesis uses ontologies and semantic web technologies for

knowledge management in engineering design. Engineering design is used as an

application domain and this topic is discussed in the next section.

1.2 Engineering Design

ñKnowledge management has been identified as one of the key enabling technologies

for distributed engineering enterprises in the 21st Century. Central to the application and

exploitation of knowledge in engineering is the engineering design processò (McMahon

et al., 2004). Engineering Design is constraint-oriented and much of the design process

involves the recognition, formulation and satisfaction of constraints (Serrano &

Gossard, 1992; Lin & Chen, 2002). A constraint here refers to a rule that a successful

design must satisfy. Constraints are continually being added, removed and modified

throughout the development of a new product.

Engineering design is an important phase in product development that is known

to have a significant impact on the life cycle characteristics (e.g. cost, reliability) of the

product (Newnes et al., 2008; Salonen et al., 2008). Design begins with a functional

specification of the desired product: a description of properties and

6

Chapter 1: Introduction

conditions that the product should satisfy (i.e. constraints). Engineering designers

typically have to find a configuration of parts that implements a particular function. To

assist them, most organizations have built up a large number of design rules and

standards, usually held as large volumes of text. Designers must try to ensure that their

configurations satisfy these constraints, but it is easy to overlook some. Novice

designers may have a hard task in finding and appreciating relevant constraints.

Additionally, in a collaborative environment, where many designers are working on

subsections of a common component, it is common for changes made by one designer

to affect the options available to another, and for this to go unnoticed until much later,

thus causing expensive and time-consuming redesigns. It would clearly be useful to

have some way of automating the design checking process, so that all applicable

constraints are checked, without the designer having to manually initiate a search and

check if all the constraints are satisfied. Hence previous research has developed a

system known as the Designersô Workbench (Fowler et al., 2004) to support

engineering designers in large organisations such as Rolls-Royce. The following section

introduces the Designersô Workbench.

1.2.1 Designersô Workbench

The Designersô Workbench uses an ontology to describe elements in a configuration

task. Configurations are composed of features, which can be geometric or non-

geometric, physical or abstract. The design rules are expressed as constraints over the

ontology. The system allows the designers to build a configuration, and to check that

all the constraints hold. In a real engineering situation, there may be many thousands of

constraints, which means that it is easy to overlook some of them. Constraints are often

defined generically, in that they apply to particular types of sub-configurations of

features, rather than to specific features. Therefore, it is not necessary to have any actual

features specified in the design before defining a constraint. For example, one may need

to define a constraint that applies to all pairs of neighbouring features such that if one

feature is made of copper and the other feature is made of zincalume® steel then the

features are incompatible2. This constraint could be added without any knowledge that

such a pair of features exists in a design. Constraint checking becomes

2 http://www.bluescopesteel.com.au/go/howto/avoid-incompatible-metals. Accessed online on 7 May 2009.

http://www.bluescopesteel.com.au/go/howto/avoid-incompatible-metals

7

Chapter 1: Introduction

a process of finding such sub-configurations by posing a query and checking that they

satisfy the constraints.

The system has been implemented so that the human designer is free to use his

or her engineering expertise to override constraints that are not deemed applicable to

the current situation. A graphical user interface (GUI) enables the designer to import a

drawing, annotate it with features, assign property values, and perform constraint

checks. When a constraint is violated, the designer is presented with a list of features

involved in the violation and a link to the source document that contains the design rule.

The reader is encouraged to read Section 3.1 in this thesis and Fowler et al. (2004) for

a more detailed description of the Designersô Workbench. The issues concerning

acquisition and maintenance of knowledge (design rules) for systems such as the

Designersô Workbench are the main topics of this thesis. The problems faced by the

Designersô Workbench have been the motivation for the research work reported in this

thesis and the following section describes this in some detail.

1.3 Problem Description and Motivation

The motivation for this thesis has been largely inspired by the observation of problems

faced by the Designersô Workbench (Fowler et al., 2004), developed to support

designers in large organizations, such as Rolls-Royce, by ensuring that the design is

consistent with the specification for the particular design, as well as with the companyôs

design rule book(s). The process of acquiring design rules for the Designersô

Workbenchôs KB consists of the following phases:

(i) A domain expert (design engineer) works with a knowledge engineer to

identify the design rules.

(ii) The knowledge engineer encodes the constraints in the Designersô

Workbenchôs KB as a query in RDQL (RDF Query language) (Seaborne,

2004), and a predicate in Sicstus3 Prolog.

3 Swedish Institute of Computer Science, version 3.10, Accessed online on 29 May 2008 at

http://www.sics.se/sicstus/

http://www.sics.se/sicstus/

8

Chapter 1: Introduction

This process is laborious, error-prone and time-consuming. As design rules are

described succinctly in the design rule book(s), a non-expert in the field finds it very

difficult to understand the context and formulate constraints directly from the design

rule book(s), and so a design engineer has to help the knowledge engineer in the process.

It is highly desirable to relieve the knowledge engineer of this task and to facilitate

domain experts themselves inputting design rules into the Designersô Workbenchôs KB.

It would be useful if a new constraint could be formulated in an intuitive way, by

selecting classes and properties from the ontology, and somehow combining them using

a predefined set of operators. This would enable designers to have control over the

definition and refinement of constraints, and presumably, to be able to have greater trust

in the results of constraint checks. This thesis proposes a novel approach to facilitate

domain experts in capturing and maintaining constraints. The approach involves the use

of a graphical interface to facilitate domain experts in selecting classes and properties

from the appropriate domain ontology and combining them with predefined keywords

and operators from a highïlevel constraint language to form a constraint. The approach

has been embodied by developing a system known as ConEditor (Ajit et al., 2004; Ajit

et al., 2005a, 2005b, 2005c; Ajit et al., 2006). The thesis provides a detailed description

of the adopted approach and the implemented system, ConEditor, in Chapters 3 and 4.

The engineering design process has an iterative nature as designed artefacts

often develop through a series of changes before a final solution is achieved. A common

problem encountered during the design process is that of constraint evolution, which

may involve the identification of new constraints or the modification or removal of

existing constraints. The reasons for such changes include development in the design

and manufacturing technology, changes to improve performance and changes to reduce

development time and costs. The evolutionary nature of constraints establishes the need

to constantly update, revise, and maintain them. Maintenance of constraints involves

various issues/problems. An overview of the issues and problems encountered during

maintenance is provided below:

The constraints formulated by experts are generally applicable only in particular

contexts, as the constraint may be based on specific assumptions. These contexts and

assumptions are often implicit to the expert who formulates them and are not well

documented or represented explicitly. When the experts who have formulated the

constraints leave the company or become unavailable, it becomes extremely

9

Chapter 1: Introduction

difficult for other experts to maintain the knowledge base. One needs to identify all the

constraints that require modification and make sure that all the constraints are applied

in the right contexts. After making any change(s) to the KB, one has to make sure the

KB is consistent. In addition, constant addition/revision of constraints can result in

considerable redundancy in the KB. It is important to prevent/remove such

redundancies as part of the maintenance of the KB. Maintenance is an important task

that can be both complicated and expensive (Barker & O'Connor, 1989).

In order to reduce/overcome the various maintenance issues/problems, the thesis

proposes a methodology and incorporates it into ConEditor to support the maintenance

of constraints. The methodology involves: (i) the capture of the context in which a

constraint is applicable as an application condition (Ajit et al., 2008a; Sleeman et al.,

2008) together with the constraint in a machine-interpretable format and (ii) the use of

the application condition together with the constraint and the domain ontology to

support the maintenance of constraints. The thesis proposes four main types of

knowledge refinement rules to detect redundancy, subsumption, inconsistency and

fusion between pairs of constraints using the associated application conditions and

domain ontology. The term ñapplication conditionò is used throughout the thesis to refer

to the context and underlying assumptions associated with a constraint. The application

conditions form a part of the rationales associated with the constraint. Further

discussion of application conditions with examples, the proposed methodology,

knowledge refinement rules and the support provided for the maintenance of constraints

can be found in Chapters 3, 5 and 6. The following section describes the research aims

and hypotheses of the research work.

1.4 Research Aims and Hypotheses

One of the aims of the knowledge engineering community has been to

minimize/eliminate the role of a knowledge engineer. ñEnabling domain experts to

maintain the knowledge in a knowledge-based system has long been an objective of the

knowledge engineering communityò (Bultman et al., 2000b). This thesis identifies a

situation where it is highly desirable to eliminate the knowledge engineer from doing a

laborious, error-prone and time-consuming task. The thesis aims to explore how the

design and construction of a system can facilitate domain experts in capturing and

maintaining constraints. Further, the thesis reports that, in order to appropriately

10

Chapter 1: Introduction

apply, maintain and reuse constraints, it is important to capture the context in which a

constraint is applicable in a machine- interpretable format. The thesis hypothesises that

this context information, referred to as application conditions, together with the

corresponding constraints and the domain ontology can be used to support the

maintenance of constraints. Maintenance of constraints includes (i) detecting

inconsistencies, redundancy, subsumption and fusion (ii) reducing the number of

spurious inconsistencies and (iii) preventing the identification of inappropriate

refinements of redundancy, subsumption and fusion, between pairs of constraints. It is

also important to ensure that the speed of the system for realistic tasks is viable for

domain experts to use. Hence, the main research aims and hypotheses of the thesis can

be posed as the following research questions:

Research Question I:

1. Examine whether it is possible to design and construct a system to facilitate

(domain) experts in capturing and maintaining constraints in engineering

design. This question can be detailed into the following smaller questions:

a) Can (domain) experts successfully perform the allocated tasks within

acceptable time limits?

b) Did the (domain) experts perform the tasks accurately? What kind of

mistakes did they make? Can the systemôs GUI be modified to eliminate

or minimize these errors?

c) How easy and intuitive did (domain) experts find the system to use?

d) Is the speed of the system on realistic tasks viable for (domain) experts

to use?

Research Question II:

2. Examine whether capturing application conditions associated with constraints,

in a machine-interpretable format can provide significant benefits to the

maintenance of constraints in engineering design. In particular, can an explicit

representation of application conditions together with the corresponding

constraints and the domain ontology be used to:

a) Detect inconsistencies, redundancy, subsumption and fusion,

11

Chapter 1: Introduction

b) Reduce the number of spurious inconsistencies, and

c) Prevent the identification of inappropriate refinements of redundancy,

subsumption and fusion between pairs of constraints?

The next section provides an overview of the research work reported in this thesis.

1.5 Thesis Overview

The context for the research work reported in this thesis is the Designersô Workbench

system that has been developed by previous research to support designers in large

organisations, such as Rolls-Royce, to ensure that the design is consistent with the

specification for the particular design, as well as with the companyôs design rule

book(s). The knowledge engineering process to capture and maintain constraints for the

Designersô Workbench is tedious, error-prone and time-consuming. It is highly

desirable to relieve the knowledge engineer from the above task. The thesis proposes a

novel approach to facilitate domain experts in capturing and maintaining constraints in

engineering design. The thesis embodies the proposed approach with the design and

construction of a system known as ConEditor. ConEditor facilitates basic maintenance

by enabling domain experts to detect and resolve syntax errors, edit, delete and store

constraints. The thesis reports on a preliminary evaluation of ConEditor conducted at

Rolls-Royce. Further, the thesis reports that in order to appropriately apply, maintain

and reuse constraints, it is important to capture the underlying assumptions and context

in which each constraint is applicable. These assumptions and context are referred to as

the ñapplication conditionsò. The application conditions form a part of the rationales

associated with a constraint. The thesis proposes an approach to capture the use these

application conditions in a machine-interpretable format together with the domain

ontology to support the maintenance of constraints.

The thesis analyses the kite design domain and proposes four main types of

refinement rules to detect inconsistencies, subsumption, redundancy and fusion

between pairs of constraints using application conditions and the domain ontology. The

refinement rules have been proved to be logically sound. The thesis extends ConEditor

to implement the proposed refinement rules and provide additional support to the

maintenance of constraints. The extended system that was developed to provide

additional support for maintenance became known as ConEditor+. The central

12

Chapter 1: Introduction

hypothesis of the thesis is that an explicit representation (machine-interpretable format)

of application conditions together with the corresponding constraints and the domain

ontology can be used to support the maintenance of constraints. Supporting the

maintenance of constraints includes detecting inconsistencies, subsumption,

redundancy and fusion, reducing the number of spurious inconsistencies, and

preventing the identification of inappropriate refinements of subsumption, redundancy

and fusion between pairs of constraints. The thesis reports on experiments, usability and

scalability studies that apply ConEditor+ to support the capture and maintenance of

constraints from a kite design KB. The usability studies demonstrate that ConEditor+

can facilitate domain experts in capturing and maintaining constraints in engineering

design. The scalability studies demonstrate that the speed of ConEditor+ on realistic

tasks is viable for domain experts to use. Further, the thesis investigates part of the

Rolls-Royce domain, and demonstrates that the proposed approach can be applied to a

more complex KB consisting of real world design constraints. The logical proofs of

refinement rules together with the results of experiments in the kite domain and part of

the Rolls-Royce domain demonstrate that an explicit representation (machine-

interpretable format) of application conditions together with the corresponding

constraints and the domain ontology can be used in: i) detecting inconsistencies,

subsumption, redundancy and fusion, ii) reducing the number of spurious

inconsistencies, and iii) preventing the identification of inappropriate refinements of

subsumption, redundancy and fusion between pairs of constraints.

1.6 Thesis Structure

Theses usually adopt a structure in which they first provide background material to the

field(s) of research, i.e., a literature review, and then explain the main problems/issues

tackled, before presenting, discussing and evaluating the proposed solution or new

approach. This thesis is no exception.

Chapter 1 provides a background to knowledge management including

ontologies and the semantic web. This chapter introduces engineering design and

describes the motivation for the research work reported in this thesis. The research aims

and the hypotheses of the research work are then outlined. The chapter concludes by

providing an overview of the thesis and its structure.

13

Chapter 1: Introduction

Chapter 2 provides a literature review of the principal fields relevant to this

thesis. The review highlights some of the key issues in knowledge acquisition,

knowledge engineering methodologies, knowledge maintenance (including

verification, validation and refinement), constraints and engineering design. In addition,

it provides a brief overview of some of the prominent systems that have been developed

in these areas over the last couple of decades. The strengths and limitations of systems

that have helped motivate the research work reported in this thesis have been indicated

wherever appropriate. Finally, the chapter concludes by summarizing the key points

from the literature review.

Chapter 3 presents a proposal for the research work reported in this thesis. The

chapter starts by describing the Designersô Workbench and the problems faced in the

capture of constraints for this system. The chapter then outlines the proposed approach

to facilitate domain experts in capturing and maintaining constraints. Further, the

chapter describes the issues/problems faced during the maintenance of constraints in an

engineering design environment. The chapter outlines the proposed approach to support

the maintenance of constraints. The chapter concludes with a summary.

Chapter 4 describes the design, implementation and functionality of ConEditor.

The chapter presents an overview of the constraint representation languages (CoLan

and CIF) used by ConEditor. The chapter also describes the principles involved in

converting the domain ontology in OWL into a Daplex Schema and converting CoLan

into CIF. The chapter concludes with a summary.

Chapter 5 introduces the concept of an application condition associated with a

constraint. The chapter analyses the kite domain and describes how the application

conditions together with the constraints and the corresponding domain ontology can be

used to support the maintenance of constraints. Four main types of knowledge

refinement rules are described with examples from the kite design KB. Further, the

refinement rules are expressed in a formal notation (first order logic), and it is proved

that they are logically sound. The chapter concludes with a summary.

Chapter 6 describes the design, implementation and functionality of

ConEditor+. The chapter highlights the main changes made in extending ConEditor to

ConEditor+. The chapter outlines the algorithm used by ConEditor+ to support the

maintenance of constraints. The chapter also describes how ConEditor+ interprets the

constraints in CIF to support maintenance. The chapter concludes with a summary.

14

Chapter 1: Introduction

Chapter 7 describes the evaluations performed during the research work. The

chapter reports on a preliminary evaluation performed using ConEditor at Rolls- Royce.

The chapter then describes experiments, usability and scalability studies conducted in

the kite domain using ConEditor+ together with a discussion of the results obtained.

The chapter concludes by describing the application of the proposed approach to part

of the more complex Rolls-Royce domain together with the results obtained. The

chapter concludes with a summary.

Chapter 8 provides an overview of the results and research contributions of this

thesis. It also discusses some limitations of the work. The chapter concludes by

presenting possible directions for future work and the significance of the major

contributions.

Additionally, there are five appendices. Appendix A presents a list of the

constraints obtained from the kite domain together with explanations of the

corresponding rationales and application conditions. Appendix B lists the questionnaire

that was used to evaluate the usability of ConEditor+. Appendix C presents an annotated

walkthrough of constraint capture using screenshots of ConEditor+. Appendix D

contains scanned copies of questionnaires that were answered by subjects during the

evaluation of ConEditor+. Appendix E presents sample refinements of constraints and

application conditions by ConEditor+ in the Rolls-Royce domain.

15

Chapter 2

Literature Review

óThe important thing is not to stop

questioning.ô

- Albert Einstein

This chapter presents a literature review of the principal fields relevant to the research

work reported in this thesis. The review on knowledge acquisition, engineering and

maintenance mainly provides a background and sets the context for the research work

reported in the thesis. The sections on constraints in engineering design and design

rationales present a review of literature that is more closely relevant to the work reported

in the thesis. The chapter is divided into five main sections: Section 2.1 introduces the

field of knowledge acquisition, including the various approaches to knowledge

acquisition and a brief description of some of the tools developed to support knowledge

acquisition. Section 2.2 reviews some of the prominent knowledge engineering

methodologies developed over the years. Section 2.3 provides background information

on knowledge maintenance with an overview of work done on verification and

validation of KBS, and in the area of knowledge refinement. Section 2.4 provides

background information on engineering design, and provides an overview of work done

in the areas of constraints in engineering design, concurrent engineering and integrated

product teams, and design rationales. A discussion of the key points of the review is

provided at the end of each main section. Section 2.5 summarizes the literature review

presented in this chapter. A brief introduction to knowledge engineering is provided

below.

Knowledge Engineering is a field within Artificial Intelligence that refers to the

building, maintenance and development of knowledge-based systems (KBSs). Initially,

early descriptions of knowledge-based systems claimed that they consist of a

knowledge base (usually a set of rules) and an inference engine that executed the rules

by forward or backward chaining. This simple structure failed to distinguish the roles

of different kinds of knowledge in a KBS, such as defining terms, expressing domain

16

Chapter 2: Literature Review

facts, and supporting inference and problem solving. This confounding of different

kinds of knowledge resulted in poorly structured knowledge-based systems and made

them difficult to understand and maintain. It became clear that one needs to separate

out the different kinds of knowledge in KBSs. A knowledge-based system essentially

consists of two main components, a knowledge base and a problem-solving method

(PSM).

MYCIN is one of the earliest knowledge-based systems that were developed in

the early 1970s at Stanford University to diagnose infectious blood diseases. Its KB

comprised of approximately 400 rules relating possible conditions to associated

interpretations. MYCIN was highly domain specific and it became difficult to adapt the

system for related diagnostic applications. This led to a domain independent version of

MYCIN, known as the EMYCIN. EMYCIN allowed the inference engine of MYCIN

to be applied to new problem domains and provided an environment for building and

debugging knowledge bases. Subsequently, the notion of identifying the general

problem solving ability in a domain of expertise was introduced by Hayes- Roth et al.

(1983).

Clanceyôs (1985) identification of heuristic classification as the method

underlying MYCIN KBS and the analysis of a number of knowledge-based systems led

to the discovery of several general-purpose problem-solving components. Considerable

emphasis has been placed on the development of knowledge-based systems from

sharable and reusable, knowledge components. The development of this type of

knowledge-based system requires a knowledge-engineering process where the

developer selects, adapts, or constructs an appropriate problem solver, and supplies the

system with the knowledge it needs to operate (Puerta & Eriksson, 1996). The two

central activities in this type of development are the engineering of reusable

components, and the acquisition of domain knowledge. Knowledge Engineering also

involves the process of maintaining a KBS after it has been developed. Maintenance of

a KBS involves verification, validation and refinement of knowledge. More details

follow in subsequent sections of this chapter.

2.1 Knowledge Acquisition

Knowledge Acquisition is a field that deals with approaches to capture expert

knowledge, specifically for use in knowledge-based systems. A difficulty that became

17

Chapter 2: Literature Review

prominent during the development of MYCIN, and subsequent complex knowledge-

based systems, was the extraction of the necessary knowledge from the human experts

in the relevant fields. Knowledge Acquisition can be defined as follows:

óThe transfer and transformation of potential problem solving expertise from some

knowledge source to a program.ô (Buchanan et al., 1983).

Knowledge Acquisition may involve a wide range of sources such as human

experts, documents, the World Wide Web, etc. Knowledge Acquisition is referred to as

Knowledge Elicitation when the source of the knowledge acquired is specifically a

human expert. The traditional approach to Knowledge Acquisition involves the

following phases:

Â Knowledge Engineer learns about the domain: Terminology (Glossary and

Structured Glossary) and the dominant problem solving approaches.

Â Domain Expert gets a top-level view of Expert Systems technology.

Â Domain Expert solves tasks in the presence of the Knowledge Engineer; then

the Knowledge Engineer solves same/similar tasks and is corrected (if required)

by the Domain Expert.

Â Knowledge Engineer encodes knowledge in an Expert System shell and then

does gross debugging of the knowledge base.

Â Knowledge Engineer and Domain Expert together use the Expert System to

solve demanding tasks; debugging and modifying the knowledge base if

necessary.

Early attempts to acquire knowledge in this way proved to be so time-consuming and

intellectually demanding that knowledge acquisition was labelled the ñbottleneckò in

building knowledge-based systems (Feigenbaum, 1977). The reasons that can make

knowledge acquisition unsuccessful include:

Â Miscommunication between the knowledge engineer and the domain expert can

make knowledge acquisition an error-prone process. This can happen especially

when a knowledge engineer is unfamiliar with the domain or when the domain

is too specialised for a knowledge engineer to understand.

18

Chapter 2: Literature Review

Â It is not always possible to transfer a domain expertôs knowledge directly to a

system because the respective representations are too dissimilar. In addition, the

facts and principles underlying many domains of interest cannot easily be

encoded in the precise mathematical/logical way that is necessary for

subsequent processing and inference by a machine.

Â Human problem solving expertise often relies on ócommon senseô knowledge

about the everyday world. Such knowledge is so deeply rooted in our

experiences as humans that we may not even realise what we know, or what

knowledge we are using in our reasoning. The existence of this tacit knowledge

can make the knowledge acquisition task formidable.

Â The form of questions can affect the answers given by the experts.

Â The domain expert may be busy and hence unwilling to cooperate with the

knowledge engineer.

There are various methods that can be used for Knowledge Acquisition. These

methods can be classified in many ways depending on:

(i) the type of knowledge that is acquired, whether it is procedural or conceptual

(e.g., problem solving strategy, classification).

(ii) the type of interaction with the expert (Burge, 1998): Direct methods involve

directly questioning or observing a domain expert performing the job (e.g.,

interviewing). Indirect methods are those where the needed information is

not requested directly. Instead, the knowledge acquisition session is

analysed to obtain the needed information. (e.g., repertory grid).

(iii) whether knowledge is acquired ñmanuallyò or with the help of computer-

based tools (e.g., SALT, MORE).

(iv) whether it is uncontrived or contrived (White, 2000): An uncontrived

method seeks to observe an expert during problem solving without

interfering in the problem solving process. In a contrived method, the

knowledge engineer interacts directly with the domain expert, and can

therefore steer the knowledge acquisition process towards topics of

particular interest.

19

Chapter 2: Literature Review

The type of method chosen can have an effect on the knowledge that is acquired. For

example, adopting an indirect method can sometimes obtain additional information than

that provided by direct methods. There are many reasons why an indirect method might

produce more information. One reason is that the indirect method may end up probing

aspects of the problem that the knowledge engineer did not anticipate, and may not have

asked in the direct KA session. Another reason is that some subjects are not as verbal

as other subjects are and are unlikely to give full and detailed answers to direct

questions. A third reason is that some knowledge may be implicit. Implicit knowledge

is knowledge that was either learned implicitly and cannot be expressed explicitly, or

that was once explicit but has become implicit over time as the domain expert has used

it repeatedly and it became ñautomaticò (Berry, 1987).

The behaviour of the knowledge engineer can also play a significant part in the

effectiveness of the acquisition exercise, and can even harm the experiment by

introducing an unwanted bias. For example, when interviewing a domain expert, the

language used by the knowledge engineer can carry connotations, which influence the

domain expertôs answers. For example, consider the question, do you get headaches

frequently, and if so how often? as opposed to do you get headaches occasionally, and

if so how often?

When choosing a method, there should clearly be a good match between the

type of knowledge required and the type generally produced by the method. For

example, can the proposed method elicit class hierarchies, causal knowledge, examples,

constraints, facts, goals, explanations, justifications, preferences, procedures, or

relations? Cordingley (1989) states that although interviewing (see section 2.1.1) is a

good technique for eliciting conceptual structures, facts, and causal knowledge, its

efficacy for eliciting rules and assessments of weight of evidence is questionable.

Similarly, the repertory grid method (see section 2.1.5) is good for eliciting conceptual

structures, rules and weights of evidence, but bad for eliciting causal knowledge,

procedures, and an expertôs problem solving strategy. A brief review of some KA

methods is given below:

2.1.1 Interviewing

An interview of the domain expert by the knowledge engineer is a common knowledge

acquisition technique. There are several different types of interview

20

Chapter 2: Literature Review

(Diaper, 1989). In an unstructured interview, the knowledge engineer asks probing

questions and records the responses. The style of interviewing is flexible, so that the

domain expertôs reaction can be pursued if the direction looks fruitful. One alternative

is a focussed interview, which concentrates on a single aspect of problem solving, and

covers it in great depth. Another approach is a structured interview, in which the

knowledge engineer keeps strictly to an agenda, and prepares for the interview with a

list of specific questions.

2.1.2 Protocol Analysis

Protocol Analysis (Ericsson & Simon, 1984) involves asking the expert to perform a

task while "thinking aloud." The intent is to capture both the actions performed and the

mental process used to determine these actions. As with all the direct methods, the

success of the protocol analysis depends on the ability of the experts to describe why

they are making their decisions. In some cases, the experts may not remember why they

do things a certain way. In many cases, the verbalised thoughts will only be a subset of

the actual knowledge used to perform the task. One method used to augment this

information is Interruption Analysis (Olson & Reuter, 1987). For this method, the

knowledge engineer interrupts the expert at critical points in the task to ask questions

about why he/she performed a particular action.

2.1.3 Document Analysis

Document analysis involves gathering information from existing documentation. This

may or may not involve interaction with a human expert to confirm or enhance this

information. Some document analysis techniques, particularly those that involve a

human expert, can be classified as direct. Others, such as collecting artefacts of

performance, such as documents or notes, in order to determine how an expert organises

or processes information are classified as indirect (Cordingley, 1989). This method has

been adopted by systems such as the Designersô Workbench (Chapter 3 of this thesis)

to acquire design knowledge (rules).

21

Chapter 2: Literature Review

2.1.4 Card Sorting

Card Sorting is a specialised indirect method, used for eliciting further knowledge about

a pre-selected set of concepts. When sorting, each concept of interest is described on a

card (the card consists of a picture, name of a concept or a short description), and the

domain expert is asked to divide the pack of cards into separate, but meaningful, piles.

The knowledge engineer records the separation and asks the domain expert to explain

it. Then the process is repeated, and the domain expert is requested to provide a further

consistent separation. This continues until the domain expert can think of no more ways

to separate the concepts. Often, sorting acquires knowledge about classes, properties

and priorities. For example, if the task was sorting pictures of different types of houses,

a subject might sort them into groups ñbrickò, ñstoneò, ñwoodò, etc., with the criterion

being ñmain material of construction.ò The second time, the subject might divide the

cards into groups called ñoneò, ñtwoò, and ñthree,ò with the criterion being ñnumber of

floors in each building.ò

2.1.5 Construct Elicitation (Repertory Grid)

Construct Elicitation methods are used to obtain information about how the expert

discriminates between entities in the problem domain. The most commonly used

construct elimination method is Repertory Grid Analysis. The repertory grid is an

indirect method based on personal construct theory (Kelly, 1955). In this method, the

domain expert is presented with a list of domain entities and is asked to describe the

similarities and differences between them. These similarities and differences are

analysed to derive the important attributes of the entities. After completing the initial

list of attributes, the knowledge engineer works with the domain expert to assign ratings

to each entity/attribute pair. In some cases, attributes are rated as present/not present for

each entity, in others a scale is used where the attribute is ranked by the degree to which

it is present. The ratings are arranged in the form of a grid/matrix and subsequently

analyzed for any existing correlations. Numerical values in cells will allow more

complex numerical/statistical analysis to be done. The type of information acquired by

this elicitation method may be classification, dependencies/relationships or evaluation.

22

Chapter 2: Literature Review

2.1.6 Laddering

Laddering was first introduced by Hinkle (1965), a clinical psychologist, in order to

model the concepts and beliefs of people by an unambiguous and systematic approach.

Laddering is a structured questioning method (indirect method), enabling a hierarchy

of concepts to be established (Corbridge et al., 1994). The knowledge engineer starts

with a so-called seed concept and poses questions such that the domain expert justifies

the position of the concept in a hierarchy, and at the same time offers further knowledge.

For example, given the concept Apple, one might ask óCan you give examples that

belong to the concept Apple?ô This should acquire concepts that are lower in the

hierarchy (e.g. Cox, Gala). It is also possible to acquire concepts at the same level in

the hierarchy by asking for alternatives, e.g., óWhat alternative concepts are there that

are similar to the concept Apple?ô Concepts higher in the hierarchy may be obtained by

asking for commonalities, e.g., óWhat have Banana, Apple and Orange got in common?ô

An example of knowledge acquired using the laddering method is shown in Figure 2.1.

Figure 2.1: Laddering Method

23

Chapter 2: Literature Review

2.1.7 Use of Computer-assisted/Computer-based tools

KA methods can be error-prone, laborious and time-consuming when applied manually.

Additionally the acquired knowledge has to be encoded into a computer- based system.

Hence, some of the KA methods (e.g., repertory grid) have been incorporated directly

into computer programs with the aim of minimizing the role of a knowledge engineer.

ETS and AQUINAS (expanded version of ETS), both computerised extensions of the

repertory grid method, have been used to derive óhundredsô of small and medium-sized

knowledge-based systems in Boeing (Boose & Bradshaw, 1999) . Researchers have

also concentrated on harnessing the synergy of the different KA methods by building a

computerised workbench. One of the first was a research prototype called ProtoKEW

(Reichgelt & Shadbolt, 1992). This was subsequently re-implemented and has been

marketed as a commercial product, called PC-PACK4 (Goodall, 1996; Milton et al.,

1999; Milton, 2007, 2008). It contains a suite of integrated tools that allows the user to

create, inspect and edit XML knowledge bases. Each tool provides a different way of

viewing the knowledge base. The latest version is PCPACK5 and consists of the

following five acquisition and modelling tools, and five specialised tools:

Acquisition and Modelling Tools:

Protocol Tool ï allows the marking up of interview transcripts, notes and

documentation (protocols) to identify and classify knowledge elements to be added to

the KB.

Ladder Tool ï facilitates the creation of hierarchies of knowledge elements such as

concepts, attributes, processes and requirements.

Diagram Tool ï allows the user to construct compact networks of relations between

knowledge elements such as process maps, concept maps and state-transition diagrams.

Matrix Tool ïallows grids to be created and edited that show relations and attributes of

knowledge elements.

Annotation Tool ï allows sophisticated annotations to be created using dynamic html,

which include automatically generated hyperlinks to other resources in the KB.

Specialised Tools:

Admin Tool ï used to access and manage KBs.

4 www.epistemics.co.uk. Accessed online on 16 May 2008.

http://www.epistemics.co.uk/

24

Chapter 2: Literature Review

Publisher Tool ï allows creation of websites using a template driven approach.

Diagram Template Tool ï used to create templates for use in the Diagram Tool.

Equation Editor ï used to create equations for use in the Annotation tool.

Tool Launcher ï is a wizard tool allowing easy access to other tools.

PCPACK supports knowledge engineering methodologies such as

CommonKADS and MOKA (Milton, 2008). These knowledge engineering

methodologies are discussed in the next section. Other examples of computer-based

tools include tools driven by PSMs: SALT, S-SALT, MORE, MOLE, OPAL, a

grammar-driven tool known as COCKATOO, and a KA tool that generates expectations

to develop PSMs, known as EMeD of the EXPECT framework. Tools driven by PSMs

such as SALT, S-SALT, MORE, MOLE, etc, use a knowledge engineering

methodology called Role-Limiting Methods that is explained in section

2.2.1. A brief review of some of the computer-based KA tools is given below:

MORE : MORE (Kahn et al., 1985) is a system that acquires diagnostically significant

knowledge from domain experts by formulating a number of questions. MORE uses a

model-theoretic approach to the acquisition of diagnostic knowledge. It uses a

qualitative model of causal relations together with a theory of how causal knowledge

can be used to achieve more accurate diagnostic conclusions to guide the interview

process.

MOLE : MOLE (Eshelman et al., 1988) is a successor of MORE. It uses a method of

heuristic classification known as the Cover-and-Differentiate problem solving method,

which makes several heuristic assumptions and constructs an initial knowledge base

with the help of domain expert(s). Subsequent interactive problem solving detects errors

in the KB, suggests remedies to the domain expert and makes the required changes to

the KB. An important aim of MOLE is to minimise the number of questions a domain

expert is asked, by making intelligent guesses.

SALT : SALT (Marcus & McDermott, 1989) is a knowledge acquisition tool that uses

the Propose-and Revise problem solving method. In essence, three generic roles may

be identified for Propose-and-Revise (Studer et al., 1998):

¶ ''design extensions'' refer to knowledge for proposing a new value for a design

parameter, (a way of upgrading an existing entity)

25

Chapter 2: Literature Review

¶ ''constraints'' provide knowledge restricting the admissible values for

parameters, and

¶ ''fixes'' make potential remedies available for specific constraint violations.

For each type of role, a fixed menu (or schema) is presented to the domain expert to be

filled out.

OPAL : OPAL (Musen et al., 1988) is a custom-tailored KA tool which is driven by a

problem solving method known as skeletal plan refinement. OPAL allows medical

specialists to enter and review cancer treatment plans for use by an expert system called

ONCOCIN (Shortliffe et al., 1981) that provides therapy advice to physicians who take

care of cancer patients. The cancer therapy task model has been built into OPAL, and

OPALôs user interface primarily consists of graphical forms that facilitate instantiation

of the task model.

COCKATOO: COCKATOO (White & Sleeman, 2001) is a grammar-driven KA tool

that uses constraint technology to acquire knowledge from the domain experts. The

advantages of this approach include: (i) It provides concise specifications of tasks that

are more readable and save development time (ii) The required properties of each user

input can be checked at acquisition time rather than prior to problem solving or at

problem solving time. (iii) It provides a reactive user interface where the choice of a

particular value for one input might narrow the options for another.

EXPECT: EXPECT (Kim & Gil, 1999) provides a framework to develop KA tools.

EXPECT uses dependencies between factual knowledge and PSMs to find related

pieces of knowledge in their KBS and create expectations from them. To give an

example of these expectations, suppose that the user is building a KBS for a

configuration task that finds constraint violations, and then applies fixes to them. When

the user defines a new constraint, the KA tool has the expectation that the user will

specify possible fixes for cases when the constraint is violated, and helps the user do

so. EMeD (EXPECT Method Developer) is a KA tool that uses such expectations to

support users to develop PSMs.

26

Chapter 2: Literature Review

Figure 2.2: A screenshot of the English-based method editor used here to acquire problem

solving knowledge to compute the time to transport an item in a ship

Source: Kim & Gil (1999)

An English-based Method Editor (Blythe & Ramachandran, 1999; Blythe et al., 2001)

has been developed to help a user modify and add problem-solving knowledge to

existing KBs. The value of the tool lies in the fact that the user need not understand the

syntax of the expert system to make modifications. Two main steps are involved in this

approach: Firstly, the problem solving knowledge is converted into an English- like

structured text fragment and presented to the user. Secondly, selectable parts of the text

are modified by choosing among alternatives that are also presented to the user via an

English paraphrase.

A central theme of this KA research has been how KA tools can exploit

Interdependency Models that relate individual components of the knowledge base in

order to develop expectations of what users need to add next. A screenshot of the

27

Chapter 2: Literature Review

English-based Method Editor is shown in Figure 2.2. Figure 2.2 shows an English-

based front end that describes the method to compute the time to transport an item in a

ship, by dividing the distance to travel by the speed of the ship. The user can alter the

method by selecting a part of the sentence (ñspeed of the shipò) and choosing from a

set of alternatives provided (shown in the second window from the bottom).

2.1.8 Discussion

Knowledge Acquisition is a critical phase within Knowledge Engineering. The quality

(correctness) of the knowledge acquired affects the performance of a KBS. There are

various methods that can be used for knowledge acquisition, including manual and

computer-assisted tools. There is no single best method for knowledge acquisition. The

type of method to be adopted for knowledge acquisition depends on the type of

knowledge being acquired. Knowledge Acquisition is referred to as Knowledge

Elicitation when the source of knowledge acquired is specifically a human expert.

Several methods and tools have been developed with the aim to either minimize or

eliminate the role of a knowledge engineer in the Knowledge Acquisition process. The

underlying assumption here is that minimizing or eliminating the role of a knowledge

engineer would make the Knowledge Acquisition process less error-prone and less

time-consuming. The Designersô Workbench uses the KA method of Document

Analysis involving a knowledge engineer to acquire design rules. This thesis presents a

novel approach to relieve the knowledge engineer from doing the error-prone and time-

consuming task of acquiring design rules (expressed as constraints) in the context of the

Designersô Workbench. The thesis embodies the proposed approach with the design and

construction of a system that has been developed to facilitate domain experts in

capturing and maintaining constraints in engineering design. More details about the

proposed approach and the developed system can be found in Chapter 3.

2.2 Knowledge Engineering Methodologies

Several methodologies and tools have been developed over the years to efficiently

support all the phases of knowledge engineering. A brief review of some of the

knowledge engineering methodologies is given below:

28

Chapter 2: Literature Review

2.2.1 Role-Limiting Methods (RLM)

Role-Limiting Methods (Marcus, 1988) was one of the first attempts to support the

development of KBSs by exploiting the notion of a reusable problem-solving method

(PSM), where a PSM is a model of KBS problem solving behaviour (also known as the

inference system). Examples of PSMs are Cover-and-Differentiate (for solving

diagnostic tasks) (Marcus, 1988) and Propose-and-Revise (for parametric design tasks)

(Marcus & McDermott, 1989). The RLM approach can be characterized as a shell

approach. Such a shell comes with an implementation of a specific PSM and thus can

only be used to solve a task for which the PSM is appropriate. The given PSM also

defines the generic roles that knowledge can play during the problem solving process.

Strong Points:

From the characterization of the PSM (Propose-and-Revise) for SALT, one can see that

the PSM is described in generic, domain independent terms. Thus, the PSM may be

used for solving design tasks in different domains by specifying the required domain

knowledge for the different predefined generic knowledge roles. For example, S-SALT

(Leo, 1995) is an enhancement of SALT system and implements the Propose-and-

Revise problem solving method. S-SALT has been successfully applied to solve the

VT-Sisyphus-II problem, an elevator configuration task that is used in the knowledge

acquisition community as a benchmark. With S-SALT, the domain expert uses a form-

oriented user interface for entering domain specific design extensions. That is, the

generic terminology of the knowledge roles, which is defined by object and relation

types, is instantiated with VT-Sisyphus-II specific instances.

Weak Points:

A problem faced with RLMs is how to determine whether a specific task may be solved

by a given RLM. Such task analysis is crucial. Moreover, RLMs have a fixed structure

and do not provide a good basis when a particular task can only be solved by a

combination of several PSMs. The problem-solving strategy is fixed and cannot be

adapted or augmented. In order to overcome this inflexibility of RLMs, the concept of

configurable RLMs (CRLMs) was developed. CRLMs (Poeck & Gappa, 1993; Fensel

& Poeck, 1994) exploit the idea that a complex PSM may be decomposed into several

29

Chapter 2: Literature Review

subtasks. Each of these subtasks may be solved by selecting a method from a predefined

set of different methods within the CRLM framework. CRLM provides this kind of

flexibility but still comes with a fixed set of knowledge types. Further, there are no clear

examples of where CRLM-developed systems have been used to solve complex (real-

world) tasks.

2.2.1.1 Generic Tasks and Task Structures

The knowledge engineering literature has identified a number of problem types (Hayes-

Roth et al., 1983; Clancey, 1985) such as diagnosis, design etc. and identified for each

problem type a number of problem solving methods (PSMs). Following the work of

Hayes-Roth and Clancey, the notion of a Generic Task (GT) (Chandrasekaran, 1986)

evolved. GTs can be viewed as building blocks that can be reused for the construction

of different KBSs. The basic idea of GTs may be characterized as follows

(Chandrasekaran, 1986; Studer et al., 1998) :

¶ A GT is associated with a generic description of its input and output.

¶ A GT comes with a fixed set of knowledge types specifying the structure of

domain knowledge needed to solve a task.

¶ A GT includes a fixed problem solving strategy specifying the inference steps

the strategy is composed of and the sequence in which these steps have to be

carried out.

Strong Points:

GTs provided a larger vocabulary of task-related terms, and additionally, related the

knowledge to how it was going to be used. The task-view provided important points of

leverage in the generation of explanations of problem solving. The GTs also appeared

to have computational advantages.

Weak Points:

The GT approach is based on the hypothesis that the structure and representation of

domain knowledge is completely determined by its use (Bylander & Chandrasekaran,

1987). Analysis of the GT approach in more detail led to identification of two main

disadvantages (Chandrasekaran et al., 1992):

30

Chapter 2: Literature Review

¶ No clear distinctions exist between the notion of a task and the notion of the

PSM used to solve the task, since each GT includes a pre-determined problem

solving strategy.

¶ The complexities of the proposed GTs are very different, i.e. the appropriate

levels of granularity for the building blocks are not clear.

Based on this insight into the disadvantages of the notion of a GT, the so called Task

Structure approach was proposed (Chandrasekaran et al., 1992). The Task Structure

approach makes a clear distinction between a task, which is used to refer to a type of

problem, and a method, which is a way to accomplish a task. In that way a task

structure may be defined as follows: a task is associated with a set of alternative

methods suitable for solving the task. Each method may be decomposed into several

subtasks. The decomposition structure is refined to a level where elementary subtasks

can be directly solved by using available knowledge. This basic notion of task, PSM

and the decomposition structure are perspectives that are shared among most of the

knowledge engineering methodologies in recent years.

2.2.1.2 Overview of RLMs and GTs

RLMs are methods that strongly guide knowledge collection and encoding

(McDermott, 1988). They specify the roles various types of knowledge play in the

operation of each method. The major difference between the role-limiting method

approach and most of the other approaches is the requirement that a RLM be

completely specified (i.e., that all tasks and subtasks be pre-specified down to the

level of primitive operations). A problem faced with RLMs is how to determine

whether a specific task may be solved by a given RLM. Such task analysis is crucial.

A GT defines a task of general utility (such as classification), a method for doing the

task and the kinds of knowledge needed by the method. Complex tasks are

decomposed into generic tasks and the required knowledge is directly described for

any domain in which the task is performed. GTs grouped both task and method

together with each task having a pre-determined problem solving strategy. The Task

Structure approach was then proposed that makes a clear distinction between a task

and a method.

31

Chapter 2: Literature Review

2.2.2 The PROTÉGÉ Approaches

Figure 2.3: The Protégé Approaches

Source: Hengl (2004)

The Protégé approach has evolved over the years (Grosso et al., 1999). Figure 2.3

illustrates the evolution of Protégé approaches. Protégé was developed with the aim to

reduce the knowledge-acquisition bottleneck by minimizing the role of the knowledge

engineer in constructing knowledge bases. This was achieved by using task-specific

knowledge to generate and customize knowledge acquisition tools. The original Protégé

was then modified to explicitly separate the problem-solving method from the domain

knowledge. This led to the Protégé-II approach. The Protege-II approach (Puerta et al.,

1992; Musen et al., 1993; Rothenfluh et al., 1994; Eriksson et al.,

32

Chapter 2: Literature Review

1995b; Gennari et al., 1995; Rothenfluh et al., 1996) aimed at supporting the

development of KBSs by the reuse of PSMs and ontologies. In addition, Protege-II laid

emphasis on the generation of custom-tailored knowledge acquisition tools from

ontologies (Eriksson & Musen, 1993; Eriksson et al., 1994; Eriksson et al., 1995a).

Protege-II relied on the task-method-decomposition structure as followed in Generic

Tasks and Task Structures. The Protégé-II approach introduced declarative mappings

to enable reuse of both ontologies and PSMs. Mapping relations could be formed to

connect the application and method ontologies. In addition, Protégé-II included the

ñdownhill flowò assumption of classes over instances. The assumption is that classes

were more durable than instances. It was expected that knowledge engineers would use

one tool to define classes and then domain experts would use a separate tool (KA tool)

to create and edit instances.

The Protégé-Win approach emerged later with the goals of:

(i) making knowledge bases more reusable and maintainable by splitting them into

modular components that can be included in one another.

(ii) making software tools more usable by porting them to a standard platform. Protégé

tools became executable in a Windows environment (earlier, they ran on NeXT

workstations). Protégé-Win became a useful tool for building models of small domains

and experimenting with various types of KBSs. However, it suffered from three

limitations:

a) the standard set of user-interface widgets was too limited for many envisioned users.

b) interoperability with other modelling frameworks was limited

c) flexibility was not enough for many domains.

The recent model adopted is that of Protégé-2000 (Grosso et al., 1999; Noy et

al., 2000). However, the most recent implementation (at the time of writing this thesis)

is Protégé 3.2.15. The goals here are to make knowledge bases reusable across

modelling frameworks by adopting standard representation languages and lay

groundwork for addressing scalability issues in knowledge engineering. Protégé-2000

adopts a new OKBC knowledge model that offers three major advantages of greater

expressivity, clean model-theoretic semantics and the possibility of reuse with

distributed ontology servers. Protégé-2000 provides support for modellers to

5 Protégé Ontology Editor and knowledge-base framework, version 3.2.1, Accessed online 02 July 2007 at

http://protege.stanford.edu/download/registered.html

http://protege.stanford.edu/download/registered.html

33

Chapter 2: Literature Review

customise and extend Protégé in task and domain specific ways. Protégé-2000 also

introduces the explicit notion of a project. Projects contain knowledge base and

configuration information.

A knowledge base is simply a collection of frames (it also contains things like

reified slots, facets and axioms). The configuration information contains description of

all the widgets that have been added to the project, information about the knowledge

base server being used and a list of all the projects that are included by the current

project. Protégé-2000 is highly customisable, and has recently been adapted to the new

world of semantic web by reusing its user interface, internal representation, and

framework (Noy et al., 2001). The most recent version of Protégé 3.2.1 supports the

Web Ontology Language (OWL) of the semantic web (Knublauch et al., 2004). Protégé

3.2.1 has been used to develop ontologies in OWL for use by the systems Designersô

Workbench and ConEditor/ConEditor+, that are described later in this thesis.

2.2.3 The CommonKADS Approach

CommonKADS (Common Knowledge Acquisition and Design Support) (Kingston,

1998; Schreiber et al., 2000; Bromby et al., 2003) is a methodology to support

structured knowledge engineering. It supports most aspects of a KBS development

project, such as:

Â Project management

Â Organisational analysis (including problem/opportunity identification)

Â Knowledge acquisition (including initial project scoping)

Â Knowledge analysis and modelling

Â Capture of user requirements

Â Analysis of system integration issues

Â KBS design

CommonKADS provides a clear link to modern object-oriented development and uses

notations compatible with UML. CommonKADS consists of the following predefined

set of models:

34

Chapter 2: Literature Review

Â Organization model: The organization model supports the analysis of the major

features of an organization. The deficiencies or problems faced by the current

business processes are identified with opportunities to improve these processes

by introducing KBSs.

Â Task model: Tasks are the relevant subparts of a business process. The task

model analyzes the global task layout, its inputs and outputs, preconditions and

performance criteria, as well as needed resources and competencies.

Â Agent model: The agent model specifies the capabilities of each agent involved

in the execution of the tasks at hand. In general, an agent can be a human or

some kind of software system.

Â Knowledge model: The purpose of the knowledge model is to describe in detail

the types and structures of the knowledge used in performing a task. It provides

an implementation-independent description of the roles that different

knowledge components play in problem solving, in a way that is understandable

for humans. This makes the knowledge model an important vehicle for

communication with experts and users about the problem solving aspects of a

KBS.

Â Communication model: Here the various interactions between the different

agents are specified. Among others, it specifies which type of information is

exchanged between the agents and which agent is initiating the interaction.

Â Design model: The design model gives the technical system specification in

terms of architecture, implementation platform, software modules,

representational constructs and computational mechanisms needed to

implement the functions laid down in the knowledge and communication

models.

The Knowledge Model has three parts, each capturing a related group of knowledge

structures. Each part is called a knowledge category. The first category is the domain

knowledge; this category specifies the domain specific knowledge and information

types required to solve the task at hand. This includes a conceptualization of the domain

in a domain ontology, and a declarative theory of the required domain knowledge. The

second category is the inference knowledge. The inference knowledge describes the

basic inference steps to be made using the domain knowledge. The third category is the

task knowledge. Task knowledge describes what

35

Chapter 2: Literature Review

goal(s) an application pursues, and how these goals can be realized through

decomposition into subtasks and inferences. This ñhowò aspect includes a description

of the dynamic behaviour of tasks, i.e., their internal control.

2.2.4 The MIKE Approach

In MIKE (Model-based and Incremental Knowledge Engineering) (Fensel & Poeck,

1994; Landes, 1994; Studer et al., 1998), the entire development process is divided into

the following sub activities (Figure 2.4):

Figure 2.4: The MIKE Approach

Source: Studer et al. (1998)

Elicitation: Methods like structured interviews are used for acquiring informal

descriptions of the knowledge about the specific domain and the problem solving

processes. The resulting knowledge expressed in natural language is stored in so- called

knowledge protocols.

36

Chapter 2: Literature Review

Interpretation: During this phase, the knowledge structures identified in the knowledge

protocols are represented as the structure model. All structuring information in this

model, like the data dependencies between two inferences, is expressed in a fixed,

restricted language while the basic building blocks, e.g., the description of an inference,

are represented by unrestricted texts. The knowledge engineer and the expert can use

this representation to communicate with each other.

Formalization/Operationalization: The structure model is the foundation for the

formalization/operationalization process that results in the model of expertise known as

the KARL model. The KARL model has the same conceptual structure as the structure

model while the basic building blocks represented as natural language texts are now

expressed in the formal specification language KARL (Fensel et al., 1998). The formal

specification describes the functionality of the system precisely, yet abstracting from

implementation details.

Design: The Design phase is performed on the basis of the KARL model after it has

been evaluated with respect to the required functionality. This phase captures all the

functional as well as the non-functional requirements of the KBS. The non-functional

requirements include e.g., efficiency and maintainability, and the constraints imposed

by target software and hardware environments.

Implementation: This is the final phase in which the design model is implemented in

the target hardware and software environment to form the KBS.

2.2.5 The MOKA Approach

MOKA (Callot et al., 1999; Klein, 2000; Stokes, 2001) is a methodology that has been

developed for knowledge modelling in design and engineering. From a knowledge

modelling point of view, there are two key issues that have been identified in

knowledge-based design (Klein, 2000): First, there is a close interaction in design

between object level knowledge (components, structures, behaviours, functions, etc.)

and problem solving knowledge (transformations, constraint solving, search). Second,

control of problem solving and strategic reasoning is essential in design. This results in

two challenges of knowledge modelling in design (Klein, 2000): first, to develop

37

Chapter 2: Literature Review

general knowledge modelling schemes that are expressive, powerful and flexible

enough; and second, to adapt these model requirements to the special requirements of

design. This will also allow us to reduce the gap between ñgeneral AIò and AI in design

(Smithers, 1998).

Knowledge based engineering (KBE) is defined as the use of advanced software

techniques to capture and re-use product and process knowledge in an integrated way.

KBE systems differ from other knowledge-based systems mainly in terms of geometry

and the high degree of iteration within engineering design. The iteration here means

that building a design requires processing a little bit of knowledge in one area, then a

little in another, then maybe back to the original and so on and the process is far from

linear. The linking between the many parts of the process and, as a consequence, the

complicated linking with the product objects makes it difficult for a KBE (Stokes, 2001)

approach. This led to the development of the MOKA Approach (Methodology and tools

Oriented to Knowledge based engineering Applications). Rolls-Royce is currently

adopting the MOKA approach.

The main objectives of the MOKA project are:

Â Reduce the lead times and associated costs of developing KBE applications by

20-25%

Â Provide a consistent way of developing and maintaining KBE applications

Â Develop a methodology that will form the basis of an international standard

Â Provide software tools to support the methodology

MOKA consists of the following elements:

1. Lifecycle: A description of the lifecycle for a KBE application (whether new

or being modified) as a MOKA Route Map to guide you through the life cycle

is provided. The life cycle is described by means of the following six steps:

IDENTIFY ï This step aims to investigate the business needs and to determine

the type of KBE system that might satisfy those needs.

JUSTIFY ï This step involves the generation of a global Project Plan that is

used together with a business case to seek management approval for the steps

below.

38

Chapter 2: Literature Review

CAPTURE ï This step aims to collect the domain knowledge in a raw form and

structure it into an informal model. Engineering design covers a wide variety of

knowledge including product specification, general constraints, conceptual

design knowledge, physical design knowledge, design rationales, and design

process knowledge.

FORMALIZE ï This step builds a formal model in two distinct parts: the

product model and the design process model.

PACKAGE ï This step involves translation of the formal model into code for a

working KBE system.

ACTIVATE ï This step involves the distribution, installation and use of the

KBE application.

2. Representation: A means of representing the knowledge associated with the

application using text and graphics is provided. MOKA uses two layers of

representation. The first is designed to be very user-friendly and to represent the

many different ways in which engineers think about design. This first layer is

called the informal model. In this model, the knowledge is classified into five

types:

Illustrations ï for recording past experiences, case histories, anecdotal

knowledge.

Constraints ï restrictions on the objects or the attributes of an object.

Activities ï the elements of the design process.

Rules ï knowledge used to make choices between activities.

Entities ï the objects that describe the product.

Each knowledge type has a specific template or form. The set of completed

forms, called ICARE (Illustration, Constraint, Activity, Rule, Entity) forms,

holds the knowledge description for the KBE application.

The second layer of representation is the formal model. The knowledge engineer

takes the knowledge from the linked ICARE forms and converts it into a UML-

style of representation known as MML (MOKA Modelling Language) (Brimble

& Sellini, 2000). The formal model has two key elements: the product model

and the design process model.

39

Chapter 2: Literature Review

3. Tool: A software tool known as ñMOKA toolò that helps users apply the

representation and the route map is provided. The tool allows management of

the project and module details. It supports creation of both informal and formal

models. The tool avoids logical inconsistency when developing the product and

process models. The main functions managed by the tool are:

¶ Create, modify objects and navigate among the different models

(informal model and formal models for product and process)

¶ Provide different viewpoints and levels of details

¶ Generate a knowledge book

2.2.6 Discussion

The above sections have provided background information on the various knowledge

engineering methodologies. This thesis uses Protégé to develop ontologies in OWL for

use by systems, namely, Designersô Workbench and ConEditor/ConEditor+. All the

knowledge engineering methodologies reviewed in Section 2.2 have placed

considerable emphasis on the development of KBSs from sharable and reusable

knowledge components using a structured process. The two central activities in this

type of development are the engineering of reusable components and the acquisition of

domain knowledge. The basic notions of the task, PSM and the decomposition structure

from the Task Structure approach have been adopted in recent methodologies such as

CommonKADS and MIKE. The entire development process is divided into phases with

clearly defined roles in each phase. MOKA has been developed specifically to develop

KBE systems in the field of engineering and design. KBE systems differ from KBSs

mainly in terms of geometry and the high degree of iteration within engineering design.

Rolls-Royce currently adopts the MOKA approach. The knowledge engineering

process does not end after one successfully builds a KBS or KBE system. One needs to

subsequently maintain the KBS or KBE system throughout its lifecycle. Knowledge

Maintenance is discussed further in the next section.

40

Chapter 2: Literature Review

2.3 Knowledge Maintenance

Knowledge Maintenance is concerned with controlling change in a KBS. ñKnowledge

Maintenance is the process of reflecting over some knowledge-based system in order to

handle a new situationò (Menzies, 1999). This process involves updating/refining the

contents of the KB so that they are consistent with (a) a set of previously specified task-

solution pairs (b) constraints known about the task (c) domain theory/background

knowledge. The importance of knowledge maintenance is often underestimated. A brief

review of this field is given below.

The issues faced in KB maintenance within engineering were first raised by the

XCON6 configuration system at Digital Equipment Corporation (DEC). ñInitially it was

assumed that knowledge-based systems could be maintained by simply adding new

elements or replacing existing elements. However this simplicity proved to be illusory

as indicated by the experience of R1/XCONò (Coenen, 1992). XCON (Soloway et al.,

1987; Barker & O'Connor, 1989; McDermott, 1993) is a rule-based expert system that

configures computer systems. XCON has a very large rule set and underwent constant

change (50% of the rules in XCON were changed each year). Given the large number

of rules that had complex conditional parts, it became quite difficult to update the rules

in the light of new product announcements; it was hard to know if one had found all the

rules that need changing. A new methodology called RIME was developed to help in

the maintenance of XCON. RIMEôs philosophy is that complex rules need to be broken

down; in particular, multiple tasks need to be factored out and each task needs to be

made an explicit process. The objectives of these changes were to reduce the size and

complexity of an average rule, and hence better manage the increasing number of rules.

RIMEôs impact was felt dramatically in the reimplementation of XCON. RIME

methodology aided the management of large quantities of rules. When adding new

rules, one can now more easily take advantage of existing rules, and thus knowledge

reuse results in a major productivity gain. Although the RIME methodology made it

easier to maintain, the companyôs use of XCON was stopped in the early nineties.

Maintenance continued to be a major unsolved problem because of

6 known earlier as óR1ô

41

Chapter 2: Literature Review

the sheer quantity of rules and their size. ñIt did the work of 75 people but it took 150

to maintain itò was a joke shared at Digital Equipment Corporation (DEC).

A lesson learnt from the XCON system is that: The XCON system did not

provide a clear separation between component knowledge and processing knowledge,

since constraints on components are often expressed in the production rules. Moreover,

it is not clear how a newly added rule would interact with the existing rules in the

absence of an explicit problem solving method (Frayman & Mittal, 1987).

Enabling a domain expert to maintain his own knowledge base in a knowledge-

based system has long been an ideal for the Knowledge Engineering community.

Bultman et al. (2000a) report their experience in trying to achieve this ideal in a

practical setting, by designing a maintenance tool for a KBS. The KBS considered is a

Company Classification System. The task of this KBS is to classify employers into one

of fifty -five sectors. Classification of an employer is necessary to determine the level

of various insurance contributions for the Dutch social security system, and is based on

the primary activity of the employer. Because of a lack of consistency in the

classifications various people made, and a decreasing number of experts available in

this domain, this KBS was built. The users of this KBS often report bugs and

shortcomings of the system and hence, a lot of maintenance is performed on the system.

The objective here is to develop a maintenance tool to help domain experts directly

implement the required changes in the system without repeated, time-consuming and

error-prone interaction with a knowledge engineer. The approach adopted here is to

provide domain experts with a conceptual model (comprising both task-model and

domain ontology of the system to be maintained) that is close enough to the concepts

familiar to them.

Coenen (1992) discusses a methodology for the maintenance of KBSs, which

consists of a number of distinct stages. Initially the need for maintenance is passed on

to the maintainers in the form of bug reports and change requests. Having established

that some maintenance is required, the next stage is to identify, from a global

perspective, the section of the KB that will require attention and determine the nature

of the maintenance action that will be required. Having determined the immediate

nature of the required action, the next stage is to identify, locally, the elements in the

KB that will also require attention as a result of the proposed change. The next stage is

to consider further maintenance actions required with respect to these elements. For

42

Chapter 2: Literature Review

example, the removal of a rule may require the modification of the rules that call it and

are called by it. The next stage is the implementation stage that should be carried out in

a consistent and sequential manner. The final stage is the testing phase where the

implemented changes are verified and validated. The above methodology was

developed as a result of work carried out on MAKE (Maintenance Assistance for

Knowledge Engineers) project that was concerned with the specification and

development of software tools to support knowledge-based system maintenance.

Coenen concludes that the field of KBS maintenance has been sorely neglected and that

this is the principal reason why KBSs have failed to gain the general acceptance that

was expected when they first came to prominence.

Qian et al. (2005) present principles and approaches for knowledge base

maintenance in an expert system. Development and implementation of maintenance

modules for the expert system for fault diagnosis of an industrial fluid catalytic cracking

unit are reported in detail. During the application of the expert system to fluid catalytic

cracking unit, new rules need to be added into the existing expert knowledge base from

time to time, according to the changes in operating conditions and other circumstances.

The new rules added could conflict with the existing rules. Hence, the new rules added

are verified and screened by an integrality verification module. Algorithms are

proposed for detection of inconsistencies, namely, contradiction, redundancy,

subsumption, circulation and reclusion. This improves the efficiency of the knowledge

base and ensures that the inference engine works properly and effectively. The

following two sub sections present a review of literature, specifically in the fields of

verification and validation, and knowledge refinement respectively.

2.3.1 Verification and Validation

Verification and Validation of KBs is at the heart of knowledge maintenance.

Knowledge-based systems (KBS) are being used in many application areas where their

failures can be costly because of the losses in services, property, or even life (Tsai et

al., 1999). To ensure their reliability and dependability, it is therefore important that

these systems are verified and validated before they are deployed. There is much

confusion about the distinction between Validation and Verification but the

conventional view is that Verification is a process aimed at demonstrating

43

Chapter 2: Literature Review

whether a system meets its specified requirements; this is often called "building

the system right". Validation is a process aimed at demonstrating whether a system

meets the user's true requirements; this is often called "building the right system"

(Meseguer & Preece, 1995). There have been several systems developed to verify and

validate rule-based systems. A brief review of work done in this area is given below:

ONCOCIN : The ONCOCIN Rule Checker (Suwa et al., 1982) can be considered as

the first verifier referenced in the literature. It detects the following issues in attribute-

value rule bases: conflict, redundancy, subsumption and missing rules. Rules are

grouped by their concluding attribute, forming a table for each group. Verification

issues are tested on each table, by static comparison of rules.

CHECK : The CHECK (Nguyen et al., 1985) system was developed to verify the

consistency and completeness of knowledge-based systems built using the Lockheed

Expert Systems development environment. In addition to conflicts, redundancy and

subsumption, the system detected unnecessary if-conditions, circular rules, illegal

attribute-values, unreachable conclusions, dead-end if-conditions and goals.

ONCOCIN Rule Checker and CHECK perform only a partial analysis of

inconsistency (conflict) and redundancy because they test these issues locally,

comparing static pair of rules and ignoring rule chaining. This problem was solved by

subsequent systems such as KB-REDUCER (Ginsberg, 1988) and COVADIS (Rousset,

1988). The KBs considered by all these systems were forward-chaining propositional

rule bases.

COVER: COVER (Preece et al., 1992) was another tool for verification of rule- based

systems that detected a wider range of anomalies. COVER carries out seven verification

checks: redundancy, conflict, subsumption, unsatisfiable conditions (rules that cannot

be fired, missing values), dead-end rules, circularity and missing rules. The rules had to

be written in, or converted to, a language based on first-order logic. The worst-case

complexity after theoretical analysis for rule checks is O(n2) for n rules, as every rule

in KB is compared against all other rules. This system was applied to many real world

KBs and it detected genuine and potentially serious faults in each

44

Chapter 2: Literature Review

KB to which it was applied. This system was extended to verifying multi-agent systems

and became known as COVERAGE (Preece, 1999).

2.3.2 Knowledge Refinement

One of the main aims of knowledge refinement is to improve the performance of an

imperfect (faulty) KB. There have been various tools developed to enable knowledge

refinement. Some examples are given below:

TEIRESIAS : TEIRESIAS (Davis, 1979) helped domain experts detect shortcomings

and also make refinements in the KB of one of the earliest expert systems, MYCIN

(Shortliffe, 1981). If the expert (physician) did not agree with the output (diagnosis) of

MYCIN, TEIRESIAS enabled the expert to identify the discrepancies by systematically

tracing the line of reasoning.

Figure 2.5: KRUST Refinement System

Source: Craw & Sleeman (1995)

45

Chapter 2: Literature Review

KRUST: KRUST (Craw & Sleeman, 1990, 1995) is an automated refinement system

for knowledge-based systems. The system is presented with a training case, where the

expertôs conclusion conflicts with the KBSôs conclusion. KRUST implements a set of

possible refinements to the KB so that the KBS now suggests the expertôs conclusion.

Various filters use evidence suggested by other task-solution pairs to remove ineffective

refinements. When KRUST terminates, the expert is usually given a single refined KB

that KRUST has judged to be the best. A flowchart showing the process in KRUST is

given in Figure 2.5. An important assumption is that the KB needs only minor

ñtweakingò rather than a major overhaul.

STALKER : STALKER (Carbonara & Sleeman, 1999) is an extension of KRUST. It

has two major enhancements. Firstly, the refinement suggested has been augmented by

the introduction of inductive refinement operators. Secondly, the testing phase has been

greatly speeded up by using a Truth Maintenance System. STALKER was tested on

two real-world rule bases and proved to be 50 times faster than KRUST.

CONREF: CONREF (Winter et al., 1998) is a system that was developed to help

British Aerospace make efficient use of their inventory of fasteners. Constraint

satisfaction techniques are used to determine which fasteners are suitable for a particular

application, given a design KB. Additionally knowledge refinement techniques are used

to refine the KB, if the domain expert (an Airbus designer) disagrees with the retrieved

fasteners. The system is also able to generate reports, describing the frequency of

retrieval of specific fasteners and the contexts of their use.

TIGON : TIGON (Sleeman & Mitchell, 1996) is a system that helps in the diagnosis of

turbine faults by providing diagnostic information which helps an engineer detect the

nature and location of faults. The system consists of four co-operating subsystems

ï a Learning Module which learns the fault detection and diagnosis models; a

Monitoring Module that monitors the turbineôs behaviour and detects when it is

behaving abnormally; a Diagnosis Module that tries to determine what is causing the

abnormality; and a Transformation Module that modifies the knowledge bases so that

they are applicable to further turbines. If any inconsistencies are reported by the system,

the expert is asked to suggest changes to the set of cases, the causal graph or the

descriptors in the data set.

46

Chapter 2: Literature Review

REFINER++ : REFINER++ (Aiken & Sleeman, 2003) is a system that has been

developed to help domain experts classify data, and has largely been applied in the

medical domain. The domain expert is required to specify which category each case

belongs to; Refiner++ then infers a description for each of the categories and reports

inconsistencies that exist in the dataset. An inconsistency occurs when a case matches

a category other than the one to which the expert has assigned it. If inconsistencies have

been detected, the system suggests ways of dealing with the inconsistencies by refining

the dataset; however, it is the domain expert who selects the actual refinements to be

applied.

ReTAX++: ReTAX++ (Lam et al., 2005; Lam et al., 2008) is a system that has been

developed to help knowledge engineers browse and resolve inconsistencies present in

ontologies. The system uses graph-based algorithms to detect which relationships

among concepts cause inconsistencies and provides the knowledge engineer with

various options to correct them.

2.3.3 Discussion

The review of literature in the field of knowledge maintenance has reported on issues

faced during maintenance and also on some systems that have been developed to

support the verification, validation and refinement of rule-based systems. Verification,

validation and refinement are three important activities in knowledge maintenance. An

important lesson that can be learnt is that the initial phases of knowledge acquisition

and knowledge modelling in knowledge engineering have considerable effects on the

maintenance phase. This is particularly evident from the problems faced by the

R1/XCON configuration system. It is important to explicitly record the contexts in

which each rule is applicable, during the KA phase. Recording the contexts should help

identify all the rules that need to be updated during maintenance. This thesis investigates

how an explicit representation of contexts together with the engineering design rules

can help in the maintenance of a KB. Knowledge modelling also plays an important

role in the maintenance phase. As indicated in the R1/XCON system, if no clear

separation is provided between component knowledge and processing knowledge, it

can cause serious problems during the maintenance of a system.

47

Chapter 2: Literature Review

The following section provides a review of work in the field of engineering

design. The thesis has used engineering design as an application domain.

2.4 Engineering Design

In engineering design literature, three phases of design are generally identified:

conceptual design, embodiment design and detailed design (Pahl & Beitz, 1995;

O'Sullivan, 2002b; Ullman, 2003). During conceptual design, the designer searches for

a set of broad solutions to a design problem, each of which satisfies the fundamental

requirements for the desired product. The embodiment phase of design is traditionally

regarded as the phase in which an initial physical design is developed. This initial

physical design requires the determination of component arrangements, initial forms

and other part characteristics. The detailed phase of design is traditionally regarded as

the phase during which the final physical design is developed. The final physical design

requires the specification of every detail of the product in the form of engineering

drawings and production plans.

2.4.1 Constraints in Engineering Design

Most decisions in daily life involve considering some form of restriction on the choices

that are available. For example, the destination to which someone travels has a direct

impact on their choice of transport and route: some destinations may only be accessible

by air, while others can be reached using any mode of transport. Formulating decision

problems in terms of parameters and the restrictions that exist between them is an

intuitive approach to modelling them. These general restrictions can be referred to as

ñconstraintsò (O'Sullivan, 2002b).

Engineering Design is constraint-oriented and much of the design process

involves the recognition, formulation and satisfaction of constraints (Serrano &

Gossard, 1992; Lin & Chen, 2002). A constraint here refers to a design rule that needs

to be satisfied. Constraints are continually being added, deleted and modified

throughout the development of a new product. Design begins with a functional

specification of the desired product: a description of properties and conditions that the

product should satisfy (i.e. constraints). The original set of functional requirements are

augmented, changed and/or refined as the design solution evolves. The resulting

48

Chapter 2: Literature Review

constraint set may contain conflicting and/or unrealizable requirements. The

management of these constraints throughout the evolving design involving all the

phases is a non-trivial task. The constraints are often numerous, complex and

contradictory.

Particularly, in more complex designs, where form, function and physics

interact strongly, it is difficult to keep track of all relevant constraints and parameters,

and to understand the basic design relationships and tradeoffs. Constraint-based

approaches to supporting conceptual design have been reported in the literature for quite

a number of years (Gross et al., 1988; Serrano & Gossard, 1992; O'Sullivan, 2002b).

Effective tools for constraint management are of great importance in knowledge-based

systems for conceptual design. They provide designers with assistance during the early

stages of design. In addition, they will help close the gap between novice designers and

experienced designers. The interactive constraint-based approach presented in

O'Sullivan (2002b) is based upon an expressive and general technique for modelling:

the design knowledge which a designer can exploit during a design project; the life-

cycle environment which the final product faces; the design specification which defines

the set of requirements that the product must satisfy; and the structure of the various

schemes that are developed by the designer. A computational reasoning environment

based on constraint filtering (Bowen & Bahler, 1992; Bowen, 1997) is proposed as the

basis of an interactive conceptual design support tool. Using such a tool, the designer

can be assisted in developing and evaluating a set of schemes that satisfy the various

constraints that are imposed on the design. In particular, the designer can be assisted in

synthesising a number of alternative schemes for the required product. The consistency

of each scheme is constantly monitored, as is the consistency of each scheme with

respect to the design specification and the other schemes that have been developed.

There have been several constraint-based applications that involve constraint

solving during post-conceptual phases of design. The CADET system was developed

as a computer tool to support embodiment design (Thorton, 1996; Yao, 1996). CADET

consists of a generic database of components that can be used to develop a constraint-

based model of the geometry of the product being designed. The IDIOM system uses

constraint solving on geometric parameters for floor-planning (Lottaz et al., 1998).

SpaceSolver uses the notion of solution spaces, defined by sets of constraints on

continuous domains, as a basis for supporting interactive design (Lottaz

49

Chapter 2: Literature Review

et al., 2000). Many constraint-based systems reported in the literature have been

developed for supporting reasoning about purely geometric aspects of design for use

with CAD systems (Bhansali et al., 1996; Shimizu & Numao, 1997; Gao & Chou,

1998a, 1998b). These systems have been developed to address aspects of the design

process that are too specific to geometric CAD to be reviewed in depth here. However,

to solve constraints in design, representation of constraints still remains a challenge

facing the design engineers (Lin & Chen, 2002).

One of the first attempts to manage constraints for automation of computation

in engineering applications was the work done by Harry (1962) and Steward. Since then

there has been considerable amount of work done on the representation, use and

management of constraints including the development of rule-based systems. Rule-

based (expert) systems have been applied to assist in a variety of engineering design

tasks such as: design for VAX computer systems by Digital equipment Corporation

(this company was acquired in June 1998 by Compaq, which subsequently merged with

Hewlett-Packard in May 2002): R1ð(McDermott, 1982); design system for small

computers: M1ð(Brown & Chandrasekaran, 1985); design of VLSI circuits:

VEXEDð(Mitchell et al., 1985); configuration of microcomputer systems:

COSSACKð(Frayman & Mittal, 1987); design of air cylinders: AIR-CYLð(Brown

& Chandrasekaran, 1989); design of facilities on construction sites: SightPlanð

(Tommelein et al., 1991); design of elevators: VTð(Marcus et al., 1992), design of

buildings: HI-RISEð(Maher, 1988); CONGENð(Sriram, 1997); design of paper-

feeding mechanisms of photocopiers: PRIDEð(Koo et al., 1998), design of pneumatic

systems: PNEUDESð(Shin & Lee, 1998). Rule based systems have been shown to be

very difficult to maintain and in many cases had to be completely rewritten so as to

function in a production environment (Soloway et al., 1987).

Frayman & Mittal (1987) classified constraints into explicit constraints and

implicit constraints. Explicit constraints enumerate a set of possibilities to be selected

from, for example, the word processing package WRITER requires the operating

system DOS version 2.1 or 3.1. Implicit constraints do not contain explicit enumeration

of alternatives but contain enough information to reconstruct such a set of all currently

available components, for example, the word processing package WRITER requires the

operating system DOS version 2.1 or later versions. They pointed out that processing

of implicit constraints is more complicated than the

50

Chapter 2: Literature Review

processing of explicit constraints, but has benefits for the maintainability of the

system.

It became important to represent the defaults and preferences declaratively as

constraints, rather than encoding them in the procedural parts of the program (Borning

et al., 1989). In most cases, domain-oriented or method-oriented tools (in the form of

templates) were provided to capture constraints/rules from the domain experts. The cost

of developing such tools was high and became an issue, especially when their restricted

scope is taken into account (Eriksson et al., 1995a).

The use of constraint processing techniques for supporting configuration design

has been widely reported in the literature (Barker & O'Connor, 1989; Wielinga &

Schreiber, 1997; McGuinness & Wright, 1998b, 1998a; Sabin & Weigel, 1998;

Carnduff & Goonetillake, 2004). Configuration can be regarded as a special case of

engineering design. The key feature of configuration is that the product being designed

is assembled from a fixed set of predefined components that can only be connected in

predefined ways. The core of the configuration task is to select and arrange a collection

of parts in order to satisfy a particular specification. The growing interest in

configuration systems is reflected by the level of interest reported from industry. The

role of constraint-based configurators has been reported in a number of reviews (Sabin

& Weigel, 1998). The configuration problem can be naturally represented as a CSP. In

general, a configuration problem can be formulated as a CSP by regarding the design

elements as variables, the sets of predefined components as domains for each of the

design elements and the relationships that must exist between the design elements as

constraints.

Constraints can also be used to state the compatibility of particular arrangements

of components and connections. One of the earliest works in the field of constraint-

based support for configuration was based on dynamic constraint satisfaction (Mittal &

Falkenhainer, 1990). The key characteristic of dynamic constraint satisfaction problems

is that not all variables have to be assigned a value to solve the problem. Depending on

the value of particular variables, other variables and constraints may be introduced into

the network. Inspired by this approach, the use of constraint processing for

configuration problems in complex technical domains emerged (Haselbock &

Stumptner, 1993; Fleischanderl et al., 1998). The Designersô Workbench mainly deals

with problems that lie in the domain of configuration (Fowler et al., 2004). The

Designersô Workbench uses an ontology to represent

51

Chapter 2: Literature Review

elements in a configuration task. The Designersô Workbench has concentrated on

checking that the constraints are satisfied by a configuration produced by a human

designer, rather than finding a solution. This has implications for tractability, in that

solving a CSP is a NP-complete problem, whereas checking a solution can be done in

polynomial time. The system has been implemented so that the human designer is free

to use his or her engineering expertise to override constraints that are not deemed

applicable to the current situation.

Description logics have been used to develop commercial configurators in

telecommunication and automotive industries (McGuinness & Wright, 1998b, 1998a;

Rychtyckyj & Reynolds, 2000). Concepts can be defined corresponding to the classes

of an ontology and individuals correspond to instances. Forward chaining rules can be

defined, which are associated with concepts but are applied only to individuals. These

rules are used to enforce constraints that are generic, i.e. defined on classes of objects,

rather than to specific individual objects. Description logics provide logical completion

of information and can detect any inconsistencies formed in the knowledge base.

However, description logics have limited expressive power.

Some of these description logic-based systems (Prose, DLMS) have been used

in industries since the 1990s. One such system is Fordôs Direct Labor Management

System in the very dynamic domain of process planning for vehicle assembly. The

maintainability of the systems can become very difficult over time due to changes in

the following areas: the external business environment, the processes and physical

concepts being modelled, and the underlying hardware and software architecture. The

experience of using DLMS indicated that user editing of the knowledge base has not

been very successful either from the user viewpoint or from the developer side. The

editing of the KB requires a deeper understanding of the knowledge representation

scheme than is needed for updating a spreadsheet or database. This necessitated the

creation of a complex user interface that many users found difficult to master. In

addition, most of the user changes to the system consisted of lexical information, which

required properties such as parts of speech to be specified. This was often done

incorrectly and introduced errors into the system. This meant that the developers had to

spend time reviewing and correcting user edits in order to catch these types of errors.

Other problems were caused by users adding misspelled terms, alternate spellings, and

different abbreviations for the same terminology. The process of checking this kind of

errors was manually intensive.

52

Chapter 2: Literature Review

Another approach to develop configurators was to combine constraints and

ontologies. Junker & Mailharro (2003) describe a system, ILOG Configurator, that

combines the power of description logic (to describe the parts used in a configuration),

with constraint programming (to solve the configuration problem). The description

logic uses classes that are either abstract or concrete. Concrete classes correspond to

actual parts (e.g., bolt) while abstract classes represent features (e.g., hole). Properties

are used to describe the instances of a class. Generic constraints can be defined in a

constraint language that allows numeric and symbolic constraints. To solve a

configuration problem, a description logic representation of the class hierarchy and the

constraints are converted into a constraint satisfaction problem. Laburthe (2003)

extends CSPs to cases where variables have domains that are taken from a hierarchy.

This differs from the approach of other systems such as the Designersô Workbench,

ILOG (Junker & Mailharro, 2003) and Prose (McGuinness & Wright, 1998b, 1998a) in

that these systems are concerned with constraints over values of properties of instances.

Laburtheôs approach aims to find the entities in a hierarchy that will satisfy the

constraints.

Increased complexity and size of configurator knowledge bases can make the

user of a configuration system increasingly challenged to find the source of the problem

whenever it is not possible to produce a working configuration, i.e., the configuration

process is aborted. Ultimately, the cause of an abort is either an incorrect knowledge

base or unachievable requirements. Automated support of the debugging process of

such KBs is a necessary prerequisite for effective development of configurators.

Felfernig et al. (2004) show that this task can be achieved by consistency-based

diagnosis techniques. They basically employ model-based diagnosis techniques using

positive and negative examples for this purpose. This means that positive configuration

examples should be accepted by the configurator whereas negative examples should be

rejected. The examples therefore play a role much like what is called a test case in

software engineering, i.e. they provide an input such that the generated output can be

compared to the testerôs expectations. Once a test has failed, diagnosis can be used to

locate the parts of the KB responsible for the failure. Such parts will typically be

constraints that specify legal connections between components, or domain declarations

that limit legal assignments to attributes. These constraints and declarations, written as

logical sentences will serve as diagnosis components when the problem is mapped to

the model based diagnosis approach.

53

Chapter 2: Literature Review

A second type of situation where diagnosis can be used is the support of the

actual end user where the userôs requirements are not satisfied even though the

knowledge base is correct, e.g., because she/he placed unrealistic restrictions on the

system to be configured. An algorithm has been proposed for computing diagnoses. The

overall time for diagnosing a problem is split into time needed for consistency checking

(solution search for the configuration problem), time for conflict generation and

diagnosis time. The experimental results showed the suitability of the approach to

commercial configurator development environments. It has to be noted that systems

such as the Designersô Workbench differ from the configurators used in the above

approach because Designersô Workbench performs constraint checking and do not

involve constraint solving (solution search for the configuration problem). An

interesting outcome of their experiments is that in typical declarative configuration

knowledge bases, there are only few interdependencies among constraints, i.e. the size

of the minimal conflicts is typically very small (up to three or four constraints).

Goonetillake & Wikramanayake (2004) propose a framework for the

management of evolving constraints in a computerized engineering design

environment. The evolving constraints are embedded in a class definition. There is a

facility to incorporate constraint evolution. The framework is based on a Constraint

Version Object (CVO). Each CVO contains a set of integrity constraints. CVOs are

affected by (i) modification(s) to existing constraints (ii) introduction of new constraints

(iii) omission of previously used constraints (iv) any combination of (i) ï (iii). A new

CVO (child) contains only the changes made to its parent CVO constraint set. There is

a mechanism in the child CVO to inherit constraints from the parent, redefine and alter

constraints that were already defined in the parent and leave out constraints defined in

the parent. Thus, a chain of CVOs is generated with the latest CVO usually becoming

the default CVO. This facilitates the maintenance of constraint evolution history.

Automatic validation is performed when a new CVO is produced. One can retrieve the

set of constraints applicable to a particular version. The versions are stored and managed

by a DBMS. Thus, the framework to manage the evolving constraints in an engineering

design environment is proposed. Constraints are updated and not overwritten when they

evolve. However, the framework has limited expressivity. One cannot express

declarative first-order logic quantified constraints and it is highly domain specific. A

considerable amount of work would have to be invested to adapt the framework to

another domain. No information about

54

Chapter 2: Literature Review

the context in which the constraints are applicable is recorded by the system. This could

lead to problems during maintenance and may result in inappropriate constraints being

applied. Also, there is no maintenance support provided to detect any conflicts,

redundancy or subsumption between constraints. The research work reported in this

thesis aims to address such problems.

2.4.2 Concurrent Engineering and Integrated Product Teams

Concurrent Engineering which is sometimes called Simultaneous Engineering or

Integrated Product Development (IPD) was defined by the Institute for Defense

Analysis (IDA) in its December 1988 report 'The Role of Concurrent Engineering in

Weapons System Acquisitionò as

ñConcurrent Engineering is a systematic approach to the integrated, concurrent design

of products and their related processes, including manufacture and support. This

approach is intended to cause the developers, from the outset, to consider all elements

of the product life cycle from conception through disposal, including quality, cost,

schedule and user requirements.ò (Winner et al., 1988; Cleland, 2004)

Increasingly, it is being realised that success of product development in industry

requires integration between the various phases of the product life cycle. One of the key

aspects of this integration is that, during the design of an artefact, due consideration

should be given to facilitating the down-stream phases of the life cycle. This is

frequently known as ñDesign for Xò (or DFX), where the X ranges over such issues as

manufacturability, serviceability, assembly and so on (Bowen, 2001). For example, the

design for manufacture (or DFM) is defined as establishing the shape of components to

allow for efficient, high-quality manufacture. For any component, many manufacturing

processes could be used in its manufacture. For each manufacturing process, there are

design guidelines that, if followed, result in consistent components and little waste. A

detailed literature survey conducted on the state of the art of the concurrent engineering

technique in automotive industry revealed that the technique is very powerful in

achieving successful products in the automotive industry (Sapuan et al., 2006). Sapuan

and his colleagues stated that the

55

Chapter 2: Literature Review

companies who adopted this technique have gained tremendous benefit in terms of

reduced time-to-market, low cost and improved quality.

Concurrent Engineering attempts to maximise the degree to which design

activities are performed in parallel. A number of researchers in the constraint processing

community have developed constraint-based technologies that support integrated

approaches to product development (Bowen & Bahler, 1992; Bowen, 2001; O'Sullivan,

2002a). The analogy between the computational concept of a constraint and the

concurrent engineering concept of mutually constraining influences between different

phases of the product life cycle suggests that constraint networks may be the right basis

on which to develop a generic architecture for software to support concurrent

engineering. Constraints can be used to express in an explicit way the mutual

restrictions exerted on each other by artefact functionality, component/material

properties, and life-cycle processes (Bowen, 2001).One of the critical issues that must

be addressed in supporting integrated design is the issue of conflict resolution and

negotiation. Constraint-based approaches to managing conflict in collaborative design

systems have been reported (Bahler et al., 1994; Haroud et al., 1995; Abdalla, 1997,

1998; Lottaz et al., 2000). Traditional conflict resolution techniques in constraint-based

models of the design process use backtracking and constraint relaxation.

The Designersô Workbench has been developed with a view to support

concurrent engineering. In the Designersô Workbench, a domain ontology can be used

to incorporate different aspects of a product life-cycle. Design rules are expressed as

constraints over a domain ontology. Typically, complex engineering artefacts are

designed by teams who may not be located in the same building or even city. Designers

in Rolls-Royce, as in many large organizations, work in teams. Thus, it is important

when a group of designers are working on aspects of a common project, that the

subcomponent designed by one designer is consistent with the overall specification, and

with those designed by other members of the team. Additionally, all designs have to be

consistent with the companyôs design rule book(s). Making sure that these various

constraints are complied with is a complicated process and so the Designersô

Workbench seeks to support these activities. Constraint violations are reported to the

human designer together with a link to the source document describing the constraint.

The designer could then adjust the appropriate property values using the GUI to resolve

the constraint violations. The system has been implemented so that

56

Chapter 2: Literature Review

the human designer is free to use his or her engineering expertise to override constraints

that are not deemed applicable to the current situation (Fowler et al., 2004). Hence, the

main difference between Designersô Workbench and other previously reviewed

constraint-based systems to support concurrent engineering is that Designersô

Workbench does not perform constraint solving or employ any conflict resolution

strategies. The Designersô Workbench performs constraint checking, reports any

constraint violations and facilitates the human designer to resolve the constraint

violations.

Collaborative engineering design activities are influenced not only by the

technological factors, but also by the social interactions among various stakeholders

with different perspectives. An article by Lu & Cai (2001) describes a generic

collaborative design process model based on a socio-technical design framework that

is suitable to represent, analyse and evaluate the collaborative design activities. Lu and

Cai describe collaborative design process as a perspective evolution process. They

emphasise that while the technical decisions are dealing with ñwhatò and ñhowò, the

social interaction, which is about ñwhyò and ñwhoò is indispensable to the negotiations

among the collaborative design decisions. They point out that most of the conflicts in

the collaborative design are caused by the discord among the stakeholdersô

perspectives. Hence, in collaborative design processes, the influence of oneôs decision

making in a specific domain to othersô decision making in different sub problems should

be represented, analysed and evaluated. They use Petri nets as topological process

representation tools and adapt them for collaborative design process modelling. A

methodology of design conflict management is developed with the design process

representation model. After that, a prototype collaborative design support system,

which is a computer implementation of the methodology, is discussed. Similarly, the

paper by Veeke et al. (2006) defines a conceptual interdisciplinary model that can be

used by all domains involved in the design of an industrial system. The model serves as

a common frame of reference to support communication and decision making by

different mono disciplinary approaches. The model is also used to record conditions,

decisions and assumptions that lead to the final design.

The article by Crowder et al. (2003) presents a future socio-technical scenario

to capture, share and reuse knowledge within the engineering design environment. In

the scenario, it is assumed that the technical elements of the future design

57

Chapter 2: Literature Review

environment have been embodied in an application termed KTfD (Knowledge Tools

for Designers). KTfD includes tools such as Tablet PCs with handwriting recognition

software and software to resolve sketches. KTfD also provides interfaces to specific

engineering packages. KTfD is able to access information including the full range of

office and data analysis tools from anywhere in the design office through the local

wireless network. The use of KTfD would increase accountability by making the input

of a designer visible to other designers and allow decisions to be traceable. However,

the presumption that all processes in the future should be based on IT systems was

strongly resisted during their discussions with designers. It was felt that there is a

preference for face-to-face interaction and social support, rather than using technology,

such as teleconferencing. One of the key issues for them was for any system to be

accurate and reliable. In addition, in many cases the designer may not fully understand

exactly what is required and therefore may not know what type of expertise or

information is required to resolve the problem. With a human based system, the

question and problem can be discussed and interpreted for the user, making it more

likely to proceed with maximum trust. Wallace & Ahmed (2003) and Aurisicchio et al.

(2006) have performed studies on how engineering designers obtain information. Two

main questions are addressed: how do designers currently obtain their information and

what is the best way to help novice designers obtain appropriate information. The

studies showed that documents were very seldom used as a source of design information

and for around 90% of information requests designers contacted another person. In

addition, novice designers were unaware of the strategies adopted by experienced

designers and failed to ask the right questions to the right people.

Recent work done by Fruchter et al. (2007) at Stanford present an integrated

framework that enables collaborative design exploration, knowledge reuse and decision

making. A working prototype, called CoMem-iRoom that leverages and integrates two

software environments, CoMem and iRoom is presented. CoMem (Fruchter & Demian,

2002) is a collaboration technology that facilitates context-based reuse of corporate

knowledge in a single-user setting for the architecture, engineering, construction teams

and individuals in the design process. CoMem allows for context based visualisation

and exploration of large hierarchical project databases. CoMem uses a map metaphor

for the overview. The area on the map allocated to each item is based on a measure of

how much knowledge this item encapsulates, that is, how

58

Chapter 2: Literature Review

richly annotated it is, how many times it is versioned, how much external data is linked

to it. Each item on the map is colour coded by a measure of relevance to the designerôs

current task. Currently, this relevance measure is based on textual analysis of the

corporate memory using the latent semantic indexing (LSI) algorithm (Landauer &

Dumais, 1995; Demian & Fruchter, 2005). The iRoom architecture (Johanson et al.,

2002) is a technology that enables communication between discipline-specific control

applications running on multiple machines. By making CoMem the nodal application

of the iRoom architecture, they extend the contextual visualisation and exploration

functionality provided by CoMem from a single-user to a multi-user interactive setting,

thereby enabling collaborative exploration in project group meetings and knowledge

reuse discussions.

Other recent work includes a general type net-based collaborative product

design support system called CoDesign Space system designed by Tian et al. (2007).

The system aims to satisfy the requirements of geographically dispersed collaborative

design by integrating several collaborative design support tools that can be used

independently. The several collaborative design support tools that can be integrated

include a collaborative virtual assembly tool, a collaborative viewing and markup tool,

a conflict-management tool, a visual document-management tool, a collaborative task

management tool and a collaborative design resource repository management tool. The

sharing and visualisation of product information are the foundation of Internet-based

collaborative design and manufacturing (Zhang et al., 2004). CoDesign Space uses

XML and VRML technologies to resolve the sharing and integration problem of

heterogeneous product model information. VRML is a language that enables

information sharing and integration among geometry models from heterogeneous CAD

systems. VRML is more suitable for transfer over the internet when compared to STEP

based CAD model files that are often very large. Collaborative work can also be realised

by the communication and management mechanism of agents (Cutkosky et al., 1993;

Anumba et al., 2001; Wu et al., 2006).

Ontologies are increasingly becoming important in the fields of intelligent

searching on the web, knowledge sharing, reuse and management. There has been an

increasing number of research projects applying ontological techniques in the context

of product development (Moore et al., 1999; Roche, 2000; Ciocoiu et al., 2001; Lin &

Harding, 2003; Lee et al., 2009). The paper by Cheung et al. (2006) reports on utilizing

ontologies to share manufacturing knowledge during product development in

59

Chapter 2: Literature Review

a collaborative and distributed manner. Ontologies are particularly useful in a

collaborative and distributed environment because they provide a shared and common

understanding (or agreed vocabulary) of a domain that can be communicated between

people and application systems. Apart from providing a common understanding,

Valarakos et al. (2004) states that ontologies can be used to facilitate dissemination and

reuse of information and knowledge. The research work reported in this thesis uses an

ontology to represent domain knowledge. Design rules are expressed as constraints over

the domain ontology. Inferencing over the domain ontology is done to detect various

refinements (inconsistency, subsumption, redundancy and fusion) between pairs of

consraints. Thus, ontologies play an important role in supporting the maintenance of

constraints. More details regarding the use of ontologies in supporting the maintenance

of constraints can be found in subsequent chapters of this thesis.

2.4.3 Design Rationales

A large amount of design information that is generated during design does not get

recorded in formal design documentation. Some of this information is often referred to

as design rationale, but can include any sort of knowledge of the who, what , when,

where, why, and how of design (Richter & Abowd, 1999). Rationale can include

assumptions made about the system, the alternatives considered and the reasoning

behind decisions. Some other definitions of design rationale from literature are as

follows:

ñDesign rationale means information that explains why an artefact is structured the way

that it is and has the behaviour that it hasò (Conklin & Begeman, 1988)

ñA design rationale is an explanation of how and why an artefact, or some portion of it,

is designed the way it isò (Gruber & Russell, 1991)

ñA design rationale is a representation of the reasoning behind the design of an artefactò

(Shum & Hammond, 1994)

ñDesign rationale means statements of reasoning underlying the design process that

explain, derive and justify design decisionsò (Fischer et al., 1995)

ñDesign rationales include not only the reasons behind a design decision but also the

justification for it, the other alternatives considered, the tradeoffs evaluated, and the

argumentation that led to the decisionò (Lee, 1997)

60

Chapter 2: Literature Review

While all these definitions have their merits, Richter & Abowd (1999)ôs

description covers all aspects of design rationale. The study of design rationale spans a

number of diverse disciplines, touching on concepts from research communities in

mechanical design, software engineering, artificial intelligence, civil engineering,

human factors and human-computer interaction research (Hu et al., 2000). It is

commonly accepted that the IBIS (Issue-Based Information System), proposed by Rittel

(1972) is the first formal presentation of design rationale (Shum, 1991). The initial IBIS

was based upon planning and social policy formulation problems. However, the demand

for a formal method of system analysis and design from the ñsoftware engineeringò and

ñhuman computer interactionò communities appeared to be driving much of the design

rationale research and its application since 1980s (Conklin & Burgess, 1991). It was

subsequently introduced into the engineering design community due to the demand for

computer support in engineering design (Guihua et al., 2002).

The paper by Clarkson & Hamilton (2000) discusses the need for computer

support in aerospace design. They propose a parameter-based model of design that has

been founded on the assumption that a design process can be constructed from a

predefined set of tasks. They have stressed the importance of capturing the implicit

knowledge that refers to the order in which the information is processed: ñIn developing

a knowledge-based system to support the engineer in aerospace design, the capture and

modelling of explicit knowledge is itself not sufficient. The context in which the

knowledge should be applied is of equal importance. A knowledge based system must

include not only the explicit knowledge required but also provide guidance on the order

in which the information is used.ò (Clarkson & Hamilton, 2000).

Various tools have been developed to capture design rationales. This

information is valuable for design evaluation, reuse and maintenance. A brief review of

work done in the area of design rationales is given below:

Regli et al. (2000) provide a survey of recent research in the area of design

rationale. This survey has discussed design rationale systems from five perspectives:

knowledge representation, rationale capture, rationale retrieval, technical approach and

application domain. A number of recent design rationale systems, including IBIS,

JANUS, COMET, ADD and REMAP are analyzed. A table providing a summary of

61

Chapter 2: Literature Review

the description of some of these systems is shown in Figure 2.6. Issue-based

representation involves articulating issues as questions, with each issue followed by one

or more positions that respond to the issue.

Figure 2.6: Summary of a survey of Design Rationale systems

Source: Regli et al. (2000)

The capture methods are user-intervention (UI) (in which designers are required

to input or record the design discussions, decisions and reasoning themselves) and

secondly automatic (auto). The different retrieval mechanisms involve:

(a) navigation: allowing designers to explore design rationale by traversing from one

node to another through existing links.

(b) automatic triggering: detecting or monitoring certain conditions according to the

design context and retrieving design rationales automatically.

62

Chapter 2: Literature Review

(c) query-based: allowing designers to pose queries and retrieve the required design

rationales.

(d) hybrid: providing a combination of automatic triggering and navigation

mechanisms.

The two main approaches to building design rationale systems are:

(a) process-oriented (PO): emphasize the design rationale as a history of the design

process; design rationales are merely descriptive and generally informal; concerned

with the initial design stage, as design progresses from the requirements to a conceptual

design.

(b) feature-oriented (FO): representation of artefacts and the body of established rules

governing the design process; design rationales have a logical structure and are

generally formal; concerned with the detailed design stage, when the design process is

more constrained by the rules in the field or domain knowledge.

Figure 2.7: An example of a rationale generated by KLAUS4

[Source: Bowen (2001)]

63

Chapter 2: Literature Review

Garcia & Howard (1992) discussed design rationale approaches that divides the

process-oriented approach into two categories: action-based (e.g., RCF (Myers et al.,

2000)) and argumentation-based (e.g., DRed (Bracewell & Wallace, 2003; Aurisicchio

et al., 2006)). When focusing on each component or phase of the design process, the

former corresponds to how it is done, and the latter corresponds to why it is done. The

advantages and shortcomings of the different design rationale systems depend on the

trade off between ease of capture and the explanatory power of the rationale. Action-

based design rationales are easy to capture and do not require much intervention of the

designer while argumentation-based design rationales are difficult to capture.

Constraints can form a part of the rationales associated with the design decisions

taken by designers. A typical rationale is of the form: ñA component X exists in the

design because of the need to satisfy constraint Y.ò The ability to capture and use this

type of design rationale in concurrent engineering has been referred to as Design

Rationale Management by Bahler & Bowen (1992) and Bowen (2001), who describe a

constraint-based design advice system that generates machine-generated suggestions to

support coordination among multiple design engineers. An example of this type of

rationale is shown in Figure 2.7. The design advice system called KLAUS4 is written

in a generic language, Galileo2, to assist in the concurrent engineering design of printed

wiring boards. The system captures perspectives of several members of the design team,

including designers, manufacturing engineers, test engineers, and maintains a set of

dependency records to support negotiation between various members of a problem

solving team. The protocol for negotiation is based on identifying alternative ways in

which conflicts can be overcome and suggesting these alternatives to the parties

involved, the suggestions being ranked in accordance with the relative preferences

(priorities) of the constraints involved in the conflict. By choosing among the

suggestions offered, the designer can disable a particular constraint. Whenever a

designer disables a constraint other than the one he/she previously asserted, he/she is

required to enter a free-text rationale for his/her action, which is saved for possible use

in a design review.

Bracewell & Wallace (2003) and Aurisicchio et al. (2006) describe DRed

(Design Rationale editor), an IBIS-based software tool that allows designers to record

their design rationales at the time the design issues are being considered. DRed

64

Chapter 2: Literature Review

consists of a graphical structure to present the issues addressed, options considered and

associated arguments for and against each one. Figure 2.8 shows an example of a DRed

document capturing the design rationale of an aero-engine internal gearbox. The design

rationale is displayed in a document as a graph of nodes linked with directed arcs. The

user creates the nodes by choosing from a predefined set of element types including the

issue, answer, pro and con argument. Any element on a work plane can be linked

without restriction to any other, and any element can easily be converted from its

existing type to another. Each element type has a predefined set of statuses, signified

by changes in colour and geometry of the background shape or font style of the text.

There is only a single type of link, a unidirectional arrow, which represents a

dependency of some sort. The precise meaning of that dependency is inferred from the

types of the elements at each end of the arrow.

Figure 2.8: An example of DRed document capturing the design rationale of an aero-

engine internal gearbox

Source: Aurisicchio et al. (2006)

65

Chapter 2: Literature Review

RCF (Rationale Construction Framework) (Myers et al., 2000) acquires

rationale information automatically for the detailed design process without disrupting a

designerôs normal activities. The underlying approach involves monitoring designer

interactions with a commercial CAD tool to produce a process history. This history is

subsequently structured and interpreted, relative to a background theory of design that

enables explanation of certain aspects of the process. RCF extracts two different types

of rationale-related information. The first is a series of hierarchical abstractions of the

design history: what the designer did and when. In addition, RCF reasons about intent

as to why the designer performed certain actions. A set of design metaphors, which

describe temporally extended sets of designer operations that constitute meaningful

episodes of activity, drives the extraction of rationale related to designer intent. Design

metaphors provide the basis for inferring intent on the part of the designer by linking

observed activities to explanations for them. However, the authors report that automatic

generation of complete rationale for all aspects of a design is clearly infeasible.

Certainly, designers make many critical decisions and assumptions that are not explicit

in the designs or in the design process. The work reported by (Myers et al., 2000) seeks

to automate documentation of important but low level aspects of the design process in

a time and cost effective manner, thus freeing designers to focus their documentation

efforts on the more creative and unusual aspects of the design. Ideally, the methods

presented by them would be complemented by interactive rationale acquisition methods

that would enable designers to extend or correct automatically generated information.

Burge & Brown (2000) investigated the use of design rationales by building

InfoRat, a prototype system that draws inferences on a designôs rationale to detect

inconsistencies in the decisions made and to assess the impact of changes. The approach

can be described as follows: The process begins with a set of requirements for the

system being designed. These requirements are then mapped to goals and, if required

sub goals. Goals and sub-goals can then be satisfied by one or more alternatives. Each

alternative then maps to an artefact, or a requirement for the next design stage. The

rationale for each choice is represented as arguments, expressed as claims, for or against

each alternative. Figure 2.9 from Burge & Brown (2000) shows an overview of the use

of design rationale in the design process. The verification

66

Chapter 2: Literature Review

involves ensuring that the design is consistent and complete, i.e., all requirements

correspond to goals and all goals have selected alternatives.

Figure 2.9: The use of Design Rationale in the design process by InfoRat

Source: Burge & Brown (2000)

Design rationales are invaluable in the reuse of design information. Design reuse

can make an important contribution towards design efficiency (Sanghee et al., 2007).

Given the competitive pressures in business environments, the reuse of previous designs

has significant value for shorter delivery times and lower production costs. For

example, research has identified that up to 90% of all design activities are based on the

variants of existing designs (Fletcher & Gu, 2005). However, design information is

often difficult to retrieve (Sanghee et al., 2007). There is limited support in recognising

the existence of the reusable information and designers often do not attempt to reuse.

Sanghee et al. (2007) propose a task model based approach that systems could adopt to

suggest recommendations and aid reuse of past design information. They have used

DRed to demonstrate the approach. A task model is acquired by observing a designerôs

activities. The design rationales captured by DRed are represented as a directed graph

of elements. The elements are chosen from a predefined menu of types, at the core of

which are Issue (I), Answer (A), ProArgument (PA) and Con Argument (CA). Each

element is associated with a label that is a textual description in natural language. A

DRed path is the list of links starting from a specific element and finishing at a specific

element. In the context of a design process, the designer uses the DRed path for

exploring solutions for a given task. Such a DRed path is a task model and the

proposed approach recommends the

67

Chapter 2: Literature Review

next likely element that the designer will employ. The proposed approach recommends

using two strategies: (1) a DRed path similarity: The strategy examines the sequence in

which a current designer has invoked particular elements and uses this as a basis of

calculating the prediction of a new element. (2) Content similarity: the strategy uses

shallow Natural Language Processing (NLP) techniques to analyse the DRed document.

The NLP techniques include term identification, part-of-speech tagging and term

normalization. Terms are identified as words lying between two spaces including a full

stop. Although Sanghee et al. (2007)ôs approach claims to improve design reuse by

assuming relevance between tasks and suggesting recommendations, the approach fails

to enable a system to understand and interpret the textual content of the rationales.

Representing rationales in a machine- interpretable format should enable a system in

making recommendations that are more accurate, detecting inconsistencies among

rationales and design decisions, etc.

Burge & Brown (2003) researched the benefits of reusing design rationales for

a large-scale maintenance task. They report that one of the chief difficulties in

maintaining a large system is knowing the reasons behind the choices made by the

developers during design and implementation. The presence of rationale would serve

as a ñcorporate memoryò by capturing design information that would be lost if the

developers left the company or if they were inaccessible to the maintainers. Karensty

(1996) also showed the importance of reusing rationales, i.e. over 50% of designerôs

information needs are related to the questions that could be answered by reusing the

rationales. Thus, design rationale would enable both easier maintenance of artefacts

over their lifecycles and more effective reuse of designs by making it easier for

downstream engineers to understand how a design works (Myers et al., 2000). For

example, Brazier et al. (1997) present an example of stored rationale being used in the

redesign of a model passenger aircraft to accommodate changes in the overall design

requirements.

2.4.4 Discussion

Engineering design is constraint-oriented and constraint-based systems are applicable

in all phases of design. Constraints have been used to assist in a variety of engineering

design tasks including the development of rule-based systems. Maintainability of rule-

based systems in industries became very difficult because of the need to constantly

68

Chapter 2: Literature Review

make changes to the knowledge base. Since rules were encoded into the procedural

parts of the program, it was hard to determine which rules needed changing. Description

logic and ontology based systems have been used in industries, particularly in

configuration-based design tasks. These systems have made the maintenance task easier

when compared to rule-based systems. However, they are still faced with maintenance

issues. Constraint management systems have been developed mainly to detect conflicts

among constraints during constraint solving. In Designersô Workbench, design rules are

expressed as constraints over the domain ontology. Designersô Workbench performs

constraint checking instead of constraint solving. This has implications for tractability,

in that constraint solving is a NP-complete problem, whereas checking a solution can

be done in polynomial time. This thesis proposes a methodology and reports on a system

that has been developed to detect inconsistencies and suggest appropriate refinements

between pairs of constraints prior to constraint solving or constraint checking by

systems such as the Designersô Workbench.

Concurrent Engineering and Integrated Product Development have become

increasingly important in the success of product development within industries. They

provide tremendous benefits in terms of reduced time-to-market, low cost, considering

the entire product lifecycle and improved quality. By considering the effects of all the

other phases in the product lifecycle such as manufacturing, maintenance, etc. during

the design phase, one can optimise the cost, quality and time of product development.

Collaborative design support systems play a key role in concurrent engineering. There

are different aspects to collaborative design such as conflict detection and resolution,

sharing, social interactions, integration and visualisation of information. The

approaches adopted to tackle these aspects include constraint-based, agent-based,

model-based and ontologies. Constraint-based systems are widely used and particularly

useful in collaborative design for conflict detection and resolution. Collaborative

engineering design activities are influenced not only by the technological factors, but

also by the social interactions among various stakeholders with different perspectives.

These perspectives of various stakeholders constitute a part of the design rationale. It is

important to capture these perspectives (rationales) of various stakeholders and analyse

them in concurrent engineering.

69

Chapter 2: Literature Review

The knowledge of the who, what, when, where, why, and how of design

constitute the design rationales. Rationale can include assumptions made about the

system, the alternatives considered and the reasoning behind decisions. Recording

design rationales is useful for both current and future designers. The process of

capturing design rationales supports the designer in clarifying decision-making. It may

also relieve the designer from the burden of retrospectively documenting the design at

the end of a task. Research has indicated that most of the design activities involve reuse

of previous design. Hence, capturing design rationales would be invaluable for future

designers. Although design rationales are useful, they are often extremely hard to

capture, mainly because the process is very intrusive and requires a lot of the designersô

time. Various design rationale systems have been developed to enable the capture of

rationales. The advantages and shortcomings of the different design rationale systems

depend on the trade off between ease of capture and the explanatory power of the

rationale. Action-based design rationales are easy to capture and do not require much

intervention from the designer while argumentation-based design rationales are difficult

to capture. However, argumentation-based design rationales provide more useful

explanation when compared to action-based rationales. Most design rationale systems

represent the rationales in a human readable format (natural language). Although the

information may have some structure, the information cannot be understood, interpreted

and used by systems to provide immediate benefits to the designers. In addition, design

rationale systems have not concentrated on capturing information pertaining to when a

particular section of the design knowledge is applicable. Design rationales are also often

difficult to retrieve and hence rarely used. This thesis investigates the capture of

information pertaining to when a particular constraint is applicable (referred as

application conditions). The thesis argues that it is important to concentrate on

representing design rationales (application conditions) in a machine-interpretable

format. This would enable systems to use the rationales and provide immediate benefits

to the designers by detecting inconsistencies and suggesting refinements among design

decisions taken by the designers. The immediate benefits provided by the system should

encourage designers to capture design rationales. In particular, the thesis investigates

how an explicit representation of rationales (referred to as application conditions)

together with the corresponding constraints and the domain ontology can be used to

support the maintenance of constraints in engineering design.

70

Chapter 2: Literature Review

2.5 Summary

This chapter provides a review of the work done in the area of knowledge acquisition,

the issues involved and the different types of tools that have been developed to support

knowledge acquisition. This is followed by a review of some of the prominent

knowledge engineering methodologies. Taken together, the review describes the

issues/problems faced by knowledge-based systems over the past few decades and how

the latest methodologies and tools have dramatically changed the way in which

knowledge-based systems are developed. Building knowledge-based systems now

focuses on reusing and adapting existing resources, rather than building them from

scratch. Moreover, the emphasis has been in facilitating domain experts to build and

maintain knowledge bases, and hence minimize or eliminate the role played by a

knowledge engineer. This thesis reports on the design and construction of a system that

has been developed to facilitate domain experts in capturing and maintaining constraints

in engineering design.

Further, the chapter reviews work done in the area of knowledge maintenance

that involves verification, validation and refinement of knowledge. This is followed by

a review of engineering design. Maintenance is a critical phase in knowledge

engineering that can be complex and time-consuming. It is important to explicitly

record the contexts in which each rule is applicable, during the KA phase. Recording

the contexts should help identify all the rules that need to be updated during

maintenance. This thesis investigates issues in maintenance by using engineering

design as an application domain.

Engineering design is constraint-oriented and involves the identification of new

constraints or the modification or deletion of existing constraints. The evolutionary

nature of constraints establishes the need to provide support for maintenance. Constraint

management systems have been developed mainly to detect conflicts among constraints

during constraint solving. It would be useful to develop tool(s) that can detect

inconsistencies among constraints prior to constraint solving, suggest appropriate

refinements and help in the maintenance of constraints.

Concurrent Engineering and Integrated Product Development have become

increasingly important within industries by providing tremendous benefits in terms of

reduced time-to-market, low cost, considering the entire product lifecycle and

71

Chapter 2: Literature Review

improved quality. Collaborative engineering design activities are influenced not only

by the technological factors, but also by the social interactions among various

stakeholders with different perspectives. The perspectives of various stakeholders

constitute a part of the design rationale. It is important to capture these perspectives

(rationales) and analyse them in concurrent engineering. Rationales can include

assumptions made about the system, the alternatives considered and the reasoning

behind decisions. Although design rationales are useful, they are often extremely hard

to capture, mainly because the process is very intrusive and requires considerable

amount of the designersô time. This thesis investigates how an explicit representation

of rationales (referred to as application conditions) together with the corresponding

constraints and the domain ontology can be used to support the maintenance of

constraints in engineering design. More details about the investigation can be found in

subsequent chapters.

72

Chapter 3

Constraint Capture and Maintenance in

Engineering Design: A Proposal

óMost of the effort in the software business goes

into the maintenance of code that already exists.ô

- Wietse Venema

This chapter sets the scene for the research work reported in this thesis. The chapter is

divided into four main sections. Section 3.1 introduces the Designersô Workbench, and

describes the problems encountered while capturing knowledge (design rules) for this

system. Section 3.2 describes the proposed approach to capturing constraints to address

the problems faced by systems such as the Designersô Workbench. Section

3.3 describes the issues/problems faced during the maintenance of constraints in an

engineering design environment. Finally, Section 3.4 describes the proposed approach

to tackle the various issues/problems faced during the maintenance of constraints. The

chapter concludes by summarising the key points in Section 3.5.

3.1 Introduction to the Designersô Workbench

Typically, complex engineering artefacts are designed by teams who may not be located

in the same building or even city. Designers in Rolls-Royce, as in many large

organizations, work in teams. Thus, it is important when a group of designers are

working on aspects of a common project, that the sub-component designed by one

designer is consistent with the overall specification, and with those designed by other

members of the team. Additionally, all designs have to be consistent with the companyôs

design rule book(s). Making sure that these various constraints are complied with is a

complicated process, and so previous research has developed the Designersô

Workbench (Fowler et al., 2004) which seeks to support these activities.

73

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

Figure 3.1: A screenshot of the Designersô Workbench

The Designersô Workbench (Figure 3.1) uses an ontology to describe elements

in a configuration task. The system supports human designers by checking that their

configurations satisfy both physical and organizational constraints. Configurations are

composed of features, which can be geometric or non-geometric, physical or abstract.

The following example from Fowler et al. (2004) illustrates the use of an ontology to

describe a configuration.

The class hierarchy of a simple ontology is shown in Figure 3.2. The concept

óFeatureô is the root of that ontology. The concept óFeatureô is divided into óConcrete

featureô (a physical sub-component) and óAbstract Featureô (holes, temperature, etc.).

74

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

Bolt

Figure 3.2: The class hierarchy of a simple configuration ontology

[Source: Fowler et al. (2004)]

Figure 3.3: A bolted joint

[Source: French et al. (1993)]

óConcrete Featureô is further divided into óBoltô, óNutô and óClamped Partô while

óAbstract Featureô is divided into óMaterialô and óEnvironmental Temperatureô. óSelf-

Self -locking nut

Clamped part Nut Environmental
temperature

Material

Concrete Feature Abstract Feature

Feature

75

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

locking Nutô is a specific type of óNutô. Figure 3.3 (above) shows a simple arrangement

of a bolted joint, subject to a particular environmental temperature and Figure 3.4

(below) shows a configuration of the bolted joint, described using an ontology.

Figure 3.4: A configuration of the bolted joint in Figure 3.3 described using an ontology

Constraints defined over this ontology (Figure 3.4) include:

Â The value of the maximum operating temperature of the material of each

concrete feature must be greater than the prevailing environmental temperature;

Â The length of the bolt in a bolted joint must exceed the sum of the thicknesses

of the clamped parts, plus the thickness of the nut. For simplicity, issues such

76

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

as tolerances of dimensions have been ignored. Tolerances and dimensions can

be dealt with, for example, by defining a óMeasurementô class with properties

ódimensionô and ótoleranceô containing real values.

The first constraint above applies to all concrete features that have a óhas_materialô

property and an óenvironmental_temperatureô property defined. The second constraint

is more complicated, and applies to all bolts, nuts, and clamped parts that are parts of a

bolted joint.

3.1.1 Functionality of Designersô Workbench

In the Designers' Workbench, the designer can select a feature class from the ontology

and create an instance of that class. The property values of the instance can then be

filled with: (i) datatype values by literals of the appropriate type, and (ii) object type

values by selecting an instance from a list of instances of the appropriate type.

Constraints are handled in a two stage process:

Â Identify feature values that should be constrained;

Â Formulate a tuple(s) of values for each set of feature values, and check

that the constraint is satisfied by these values.

The constraint processing uses RDQL to find the constrained features and values. After

using RDQL to extract the constrained features and values, Sicstus Prolog is used to

check that the constraints hold. For example, the RDQL query that locates features

affected by the material temperature constraint is:

SELECT ?arg1,?arg2 WHERE

(?feature,<dwOnto:has_material>,?mat),

(?mat,<dwOnto:max_operating_temp>,?arg1),

(?feature,<dwOnto:operating_temp>,?optemp),

(?optemp,<dwOnto:temperature>,?arg2)

USING dwOnto FOR <namespace>

77

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

The values of the returned variables ?arg1 and ?arg2 are the materialôs maximum

operating temperature, and the environmental operating temperature, respectively. The

check that the values must satisfy is represented by the Sicstus predicate:

op_temp_limit(MaterialMaxTemp, EnvironTemp) :-

EnvironTemp =< MaterialMaxTemp.

Using the values of ?arg1 and ?arg2, the predicate op_temp_limit(MaterialMaxTemp,

EnvironTemp) is formed, and checked. This process is repeated for each set of values

returned by the RDQL query, and for each constraint that has been specified.

Figure 3.5: Close-ups of the Designers' Workbench panels: the feature ontology

(left), and properties of selected feature (right)

[Source: Fowler et al. (2004)]

Additional features of the Designersô Workbench are as follows:

(i) Graph-based display of configuration: A graphical user interface enables the

designer to import a drawing, annotate it with features, assign property values, and

perform constraint checks. The drawing is actually a visual aid i.e. the designer can

mark up an existing drawing or construct a configuration without a drawing. Features

can be selected from an ontology. Features that are added by the designer are shown

78

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

as labels overlaying the background drawing. Properties that connect features are

represented by arcs. Features can be selected, and their properties viewed and modified

using the table displayed beneath the ontology. Datatype properties are set by typing

values into the field, whereas object properties are set using a drop down list of values

representing the valid possibilities for the property. For example, if the property

has_bolt is specified to have range of class Bolt, the list will consist only of instances

of Bolt.

If a constraint is violated, the affected features are highlighted and a report is

generated. The report gives the designer a short description of the constraint that is

violated, the features affected by that violation, and a link to the source document that

contains the design rule. The designer can often resolve the violations by adjusting the

property values of the affected features. On selecting the affected feature from the

ontology, a table is displayed with the corresponding properties and values (as shown

in Figure 3.5). These property values can then be adjusted to resolve the constraint

violations.

(ii) Checking incomplete configurations: Before checking constraints, it is not

necessary to specify values for every defined property of each feature. Instead, the

designer can fill in values for whichever properties he or she desires, and request a

constraint check. The RDQL query will only return results for the features that have

sufficient values specified, so that only certain constraints will be checked. This allows

designers to operate in an exploratory way, defining small parts of a configuration,

checking them, and then gradually extending the configuration until it is complete.

(iii) Constraint rationales: Each constraint has an associated rationale (currently a short

text string, but which in future may have more structure), and an (optional) URI for a

source document explaining the rationale in more depth. When a constraint violation is

reported, the designer is presented with a list of the features involved in the violation,

the rationale, and the link that can be clicked on to read the source document. In this

way, the designer can learn more about the constraint, and decide if it is in fact

appropriate. As the constraint checking proceeds, an experienced designer may decide

to override the constraint.

79

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

Figure 3.6: Constraint as expressed in a rule book

[Source: Joint Design Standards (JDS) No: 805.04, Rolls-Royce]

80

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

3.1.2 Capturing the knowledge in the design rule book(s)

As noted above, the Designersô Workbench needs access to the various

constraints, including those inherent in the companyôs design rule book(s). To capture

this information, a design engineer (domain expert) works with a knowledge engineer

to identify the constraints, and it is then the task of the knowledge engineer to encode

these into the Workbenchôs KB as a query in RDQL, and a predicate in Sicstus

Prolog. This is a laborious, error-prone and time-consuming task. The constraints are

formulated succinctly in the design rule book(s) and hence a non-expert in the field

often finds it very difficult to understand the context and formulate constraints

directly from the design rule book, and so a design engineer has to help the

knowledge engineer in this process. An example of such a constraint is shown in

Figure 3.6. The design rule book(s) gives the description of constraints, in the form of

tables and figures in most cases.

3.2 A Proposed Approach to the Capture of Constraints

As noted in the previous section, there are many issues/problems faced when a

knowledge engineer seeks to capture knowledge from the design rule book(s) and

encodes them as constraints in the Designersô Workbench.

The thesisôs proposed approach to the capture of constraints is to facilitate

domain experts in formulating a constraint by selecting classes and properties from the

domain ontology, and combining them with predefined keywords and operators from a

high-level constraint language. This should relieve the knowledge engineer from the

error-prone and time-consuming process of capturing constraints. This would also

enable designers to have greater control over the definition and refinement of

constraints, and presumably, to have greater trust in the results of the constraint

checking process. In order to embody the proposed approach, the thesis outlines the

following tasks:

Â Development of a system comprising of the following components/features:

(i) A graphical user interface that enables a user to formulate a constraint by

means of a few mouse clicks. The graphical user interface contains the

following sub components:

81

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

a) A scrollable list of keywords from a high level constraint language.

b) A scrollable tree structure of classes and properties from the

domain ontology.

c) A tool bar containing appropriate arithmetic, logical and relational

operators.

d) A result panel to display the constraint being formulated and the

results of a syntax check.

The user formulates a constraint by selecting entities from (a), (b) and (c) for

display in the result panel.

(ii) Use a high-level constraint language with good expressivity to represent

the constraint.

(iii) Perform syntax checking of the formulated constraint.

(iv) Display details of any syntactical errors.

(v) Facilitate the user in editing a constraint, creating a table of constraints,

and reading/writing constraints from/to a text file.

(vi) Allocate each constraint with a unique identification number that also

denotes its version number.

(vii) Provide a search facility to retrieve constraints from the KB.

(viii) Convert the constraint into a standard (semantic web enabled) format

that enables other systems such as the Designersô Workbench, constraint

solvers, agents, etc. to process the constraint.

Â Perform a preliminary evaluation by demonstrating the system to domain

experts (Rolls-Royce design engineers).

Â Run an experiment to evaluate the usability of the system.

More details on the system developed are provided in the subsequent chapter (Chapter

4). Information regarding the preliminary evaluation and experiments carried out are

82

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

provided in Chapter 7. The research question that the proposed approach aims to

address is as follows:

Research Question I:

Â Examine whether it is possible to design and construct a system to facilitate

(domain) experts in capturing and maintaining constraints in engineering

design. This question can be detailed into the following smaller questions:

a) Can (domain) experts successfully perform the allocated tasks within

acceptable time limits?

b) Did the (domain) experts perform the tasks accurately? What kind of

mistakes did they make? Can the systemôs GUI be modified to

eliminate or minimize these errors?

c) How easy and intuitive did (domain) experts find the system to use?

d) Is the speed of the system on realistic tasks viable for (domain)

experts to use?

The thesis aims to examine whether it is possible to design and construct a system to

facilitate domain experts in capturing and maintaining constraints in engineering

design. Systems such as the Designersô Workbench should then be able to process these

constraints captured by the domain experts. This would eliminate the knowledge

engineer from the error-prone and time-consuming task of capturing design rules for

the Designersô Workbenchôs KB. The next two sections describe the issues/problems

faced during maintenance of these constraints and the proposed approach to address

these issues/problems.

3.3 Maintenance of Constraints in Engineering Design

The engineering design process has an iterative nature as designed artefacts often

develop through a series of changes before a final solution is achieved. A common

problem encountered during the design process is that of evolution, which may

83

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

involve the identification of new constraints or the modification or removal of existing

constraints. The reasons for such changes include developments in the technology,

changes to improve performance, and changes to reduce development time and costs.

Typically, maintenance involves various issues/problems:

Â Original experts are unlikely to be available: The transient nature of modern

organizations and workforces, and the rapid flow of knowledge and experience

out of companies due to staff leaving, make it difficult for new designers to

effectively use stored design knowledge and subsequently to maintain it.

Â Insufficient documentation provided: Some constraints may be applicable only

in particular contexts. These contexts are often implicit to the designer

formulating them but are not documented. In addition, many constraints will be

based on assumptions that may not be true later on. These assumptions are often

not made explicit.

Â Maintenance is time-consuming and complex: Maintenance of constraints in an

engineering design environment is a complicated process and is very difficult to

do manually. Thus, there is a pressing need for tools to support maintenance of

this kind of knowledge.

Â The evolutionary nature of constraints establishes the need to constantly update,

revise, and maintain them. One needs to identify the constraints that require

modification. In addition, one needs to make sure the knowledge base is

consistent after making a change.

Verification in KBSs plays a very important role. As we automate more processes, the

need for verification becomes even more critical. Many automated processes perform

incorrectly for a long time, as no person is responsible for checking the process (Hicks,

2003). Additionally, as the KB evolves, constant addition/revision of rules can result in

high levels of redundancy. It is important to prevent/minimize redundant rules in the

KB. Removing/reducing redundancy in a KB will make it easier to maintain the KB.

84

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

Constraints are continually being added, deleted and modified throughout the

development of a new product. Design begins with a functional specification of the

desired product: a description of properties and conditions that the product should

satisfy (i.e. constraints). Constraints themselves form a rationale associated with the

design decisions taken by designers. A typical rationale is of the form: ñA component

X exists in the design because of the need to satisfy constraint Y.ò The ability to capture

and use this type of design rationale in concurrent engineering has been referred to as

Design Rationale Management by Bahler & Bowen (1992), who describe a constraint-

based design advice system that generates machine-generated suggestions to support

coordination among multiple design engineers. The Designersô Workbench (Fowler et

al., 2004) provides similar functionality by checking if the design satisfies all the

relevant constraints, providing details of the violated constraints and enabling the

designers to resolve them.

Much research has been done to develop systems that capture and represent the

rationales associated with design knowledge. Design rationales considered so far refer

to the information containing either one or all of the following:

a) the reasons behind the design decisions taken (why a decision was taken).

b) the design alternatives considered and rejected with reasons for rejection.

c) how certain design actions are performed.

However, design rationale systems have not concentrated on capturing information

pertaining to when a particular section of the design knowledge is applicable.

Constraints may be formulated based on a number of assumptions and may be relevant

only in certain contexts. Designers often tend to assume ñnormalò situations (Brown,

2006). They tend to make assumptions about the match between the current design

situation and one where their chosen technique worked well before. They tend to make

abstractions across all the situations where particular techniques worked well before,

by assuming that some key detail is relevant or irrelevant. These assumptions are not

deliberate, but form the tacit knowledge underlying expert skill. In order to support

maintenance of design knowledge, it is important to make these assumptions visible.

One needs to find ways to capture the assumptions and contexts as part of the rationale

associated with a constraint. The thesis refers to this type of rationale as the application

conditions associated with a constraint (Ajit et al., 2008a; Sleeman et al.,

85

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

2008). A recent article by Hooey & Foyle (2007) reported on the requirements for

design rationale capture tool to support all the design phases of NASAôs complex

systems. They stressed the need to capture the assumptions and contexts as the rationale

for a given design element, particularly in the conceptual design phase. The paper

describes how this information is rarely captured in a systematic and usable format

because there are no tools that adequately facilitate and support the capture and use of

this critical information. An example quoted in the paper is: ñThe minimum volume for

the Crew Exploration Vehicle cockpit is based on an assumption of a specific crew

sizeò. The above example is a constraint together with its application condition. If a

design element or a constraint is modified, there is no easy way to propagate that change

to understand the implications and consequences of those changes.

Thus, it is important to capture information pertaining to when a particular

section of the design knowledge is applicable and enable systems to use this information

to support maintenance. This thesis proposes an approach to capture application

conditions associated with constraints and use these application conditions together

with the constraints and domain ontology to support the maintenance of constraints.

The next section (section 3.4) describes the proposed approach with an example.

3.4 A Proposed Approach to the Maintenance of Constraints

Due to restricted availability of Rolls-Royce designersô time and because it is a simpler

domain, the kite domain was initially investigated to elicit equations and constraints

together with the corresponding application conditions. The sources referred to study

the kite domain include Yolen (1976), Streeter (1980), Eden (1998), AKA (2006),

CEKS (2006), Leigh (2006), Lords (2006) and Wardley (2006).

For a successful kite design, one has to make sure that the design complies with

all the appropriate rules/constraints. There are different types of constraints associated

with the design of a kite. The analysis of kite domain showed that several constraints

were applicable only to particular types of kites and under specific conditions.

Appendix A provides a list of equations and constraints elicited from the kite domain

together with the corresponding application conditions and sources..

86

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

The context in which a constraint is applicable is referred to as an application

condition in this thesis. Application conditions form a part of the rationales associated

with the constraint. Consider the following example of a constraint together with its

associated application condition:

Constraint7 ï ñThe density of the cover material of the kite must be greater than 21.9

kilograms per square metreò

Application condition ï ñThis is applicable only when there is a requirement to produce

low cost kites for beginners. Kites for experts use lighter materials that are of higher

quality and hence costlier.ò

As shown in the example above, the application condition specifies the context

in which the constraint is applicable. Often, the information of application conditions is

implicit to the person who formulates the constraint. The assumptions/conditions on

which a constraint is based may no longer be true and in such cases, it becomes

necessary to deactivate or remove those constraints from the KB. Further, an application

condition may not be relevant to a particular design task. Hence, in order to apply

constraints appropriately and support maintenance, it is important to make the

application conditions explicit.

Although design rationales can provide a lot of information about the reasoning

involved in making a design decision, rationales are extremely hard to collect mainly

because the process is very intrusive and requires a lot of the designersô time. Not much

work has been carried out on how this information can be used by machines. Although

the information may have some structure, the information cannot be understood,

interpreted and used by machines to provide immediate benefits to the designers.

Capturing large amounts of detailed rationales is not useful if it is never looked at again.

If rationales are useful to the designers, there is a greater incentive for designers to assist

in the capture of the information, particularly if the designer who is recording it can

immediately use the rationale. As Grudin (1996) and Brown (2006) have pointed out,

there cannot be a disparity between who invests effort in a groupware system, and who

benefits. No designer can be expected to altruistically enter quality design rationale

solely for the possible benefit of a possibly unknown person at an unknown point in the

future for an unknown task. There must be immediate value. In addition, knowing

how the information will be used provides

7 http://www.cuttingedgekites.com/faq.htm. Accessed on 28 June 2006.

http://www.cuttingedgekites.com/faq.htm

87

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

guidance about what information should be captured and how it should be represented.

Thus, it is important to concentrate on the use of such information. Representing

rationales in a machine-interpretable format would enable systems to immediately use

the rationales to detect inconsistencies, redundancy, subsumption, fusion and suggest

appropriate refinements between constraints.

The thesis hypothesises that an explicit representation of the context information

(referred to as application conditions) together with the corresponding constraints and

the domain ontology can be used to support the maintenance of constraints. In order to

tackle the various maintenance issues/problems effectively, the thesisôs proposed

approach can be summarized as follows:

Â Capture the ñcontextò in which a constraint is applicable, in a machine-

interpretable form, as an application condition and associate this information

(rationale) with the constraint.

Â Use the application condition together with the constraint and the corresponding

domain ontology to support maintenance.

Maintenance of constraints includes (i) detecting inconsistencies, redundancy,

subsumption and fusion (ii) reducing the number of spurious inconsistencies and (iii)

preventing the identification of inappropriate refinements of redundancy, subsumption

and fusion, between pairs of constraints. More details regarding the proposed approach

to capture and use application conditions together with the corresponding constraints

and the domain ontology can be found in Chapter 5. The proposed approach should

encourage the designers to capture the application conditions together with the

constraints because the system can immediately use them to provide benefits to the

designers. If application conditions are useful to the designers, there is a greater

incentive for designers to assist in the capture of the information, particularly if the

designer who is recording it can immediately use the application condition. It is also

important to ensure that the speed of the system for realistic tasks is viable for domain

experts to use. The research question that the proposed approach aims to address is as

follows:

88

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

Research Question II:

Â Examine whether capturing application conditions associated with

constraints, in a machine-interpretable format can provide significant

benefits to the maintenance of constraints in engineering design. In

particular, can an explicit representation of application conditions together

with the corresponding constraints and the domain ontology be used to:

a) Detect inconsistencies, redundancy, subsumption and fusion,

b) Reduce the number of spurious inconsistencies, and

c) Prevent the identification of inappropriate refinements of

redundancy, subsumption and fusion between pairs of constraints?

Application conditions are captured in the same language as that of the

constraints. More details about the representation of these application conditions

together with the constraints are explained in Chapter 5. The thesis investigates the kite

design domain and proposes four main types of knowledge refinement rules, namely,

redundancy, subsumption, inconsistency and fusion. The rules make use of the

application condition together with the constraint and the domain ontology to detect

inconsistencies, suggest refinements (subsumption, redundancy and fusion), and hence

support the maintenance of constraints. In addition, the knowledge refinement rules are

expressed in a formal notation and it has been proved that they are logically sound. In

order to embody the proposed approach and implement the refinement rules, the thesis

outlines an algorithm and reports on a system developed to implement the algorithm.

More details regarding the outlined algorithm and the system developed can be found

in Chapter 6.

3.5 Summary

This chapter describes the proposal for the research work reported in this thesis. The

chapter provides a description of the Designersô Workbench, a system developed by

previous research to support designers in large organizations, such as Rolls-Royce, to

ensure that the design is consistent with the specification for the particular design, as

well as with the companyôs design rule book(s). The problems faced by the knowledge

engineer during the capture of constraints for the Designersô Workbench

89

Chapter 3: Constraint Capture and Maintenance in Engineering Design: A Proposal

have motivated the author to propose an approach to facilitate domain experts

themselves in capturing and maintaining constraints. The proposed approach involves

providing an intuitive way to facilitate domain experts formulating a constraint by

selecting classes and properties from the domain ontology, and combining them with

predefined keywords and operators from a high-level constraint language. The tasks

that need to be done to embody the above approach have been outlined.

Further, the chapter describes the various issues/problems faced during

maintenance of constraints. The chapter reports that it is important to capture the context

in which a constraint is applicable and refers to this context as an application condition

associated with the constraint. The thesis hypothesises that an explicit representation of

application conditions together with the corresponding constraints and the domain

ontology can be used to support the maintenance of constraints. In particular, supporting

the maintenance of constraints refers to: (i) detecting inconsistencies, redundancy,

subsumption and fusion, (ii) reducing the number of spurious inconsistencies and (iii)

preventing the identification of inappropriate refinements of redundancy, subsumption

and fusion, between pairs of constraints. It is also hypothesised that the speed of the

system for realistic tasks is viable for domain experts to use. The following chapter

describes the design and construction of the system that has been developed to facilitate

domain experts in capturing and maintaining constraints in engineering design.

90

Chapter 4

ConEditor

óThe true creator is necessity,

who is the mother of invention.ô

- Plato

This chapter describes the design, implementation and functionality of ConEditor. The

chapter also presents an overview of the constraint representation languages (CoLan

and CIF) used by ConEditor. The chapter is structured as follows: Section 4.1 provides

an overview of the high-level constraint language (CoLan) used for the research work

reported in this thesis. Parts of the description in Section 4.1 have been extracted from

Bassiliades & Gray (1995) and Gray et al. (2001). Section 4.2 describes the design of

ConEditorôs GUI. Section 4.3 describes the implementation and functionality of

ConEditor. Section 4.4 describes the principles involved in the conversion of OWL

ontology into a Daplex Schema. Section 4.5 provides an overview of the XML

Constraint Interchange Format used by ConEditor and the principles involved in

converting CoLan into CIF. Section 4.6 summarises the chapter.

4.1 Overview of CoLan

CoLan (Bassiliades & Gray, 1995; Gray et al., 2001) is a constraint language based on

an Object Data Model. Fully quantified constraints can be expressed in a very readable

form of first order logic, including functions, which can be computed over data values

expressed in the ER diagram (or UML class diagram). Hence, the underlying data model

is called the Functional Data Model (FDM). The FDM, P/FDM (Prolog/Functional Data

Model) is a semantic data model based on Shipmanôs original data model (Shipman,

1981). The semantics of the objects referred to in CoLan constraints are described in

terms of this extended ER data model, which is of the kind in widespread use in UML

and in database schemas. CoLan has features of both

91

Chapter 4: ConEditor

first-order logic and functional programming, and is intended for scientists and

engineers to express constraints.

Figure 4.1: Examples of CoLan constraints from different application domains. The ER diagram

models the relationships between entity classes in the first constraint

[Source: Gray et al. (2001)]

Two example constraints from different application domains are shown in

Figure 4.1. An ER diagram that models the relationships between entity classes in the

first constraint is also shown. The first example shows a CoLan constraint on a

university database containing student records. The same constraint language is

applicable to the domain of protein structure modelling, as shown by the second

example restricting bond lengths. In the first example, a variable t ranges over the

entity type tutor that is populated with stored object instances. Each of these

instances may be related to instances of student entities through the relationship

advisee , which delivers a set of related entities as in an object-oriented language.

These entities can be restricted by the values of attributes such as grade . There are

also other entity types such as residue (representing parts of protein chains) which have

method functions for determining distances by computation. Thus, functions may also

represent a derived relationship, or method. The entity classes can form part of a subtype

hierarchy, in which case all properties and methods on the superclass are

92

Chapter 4: ConEditor

inherited by each subclass. Method definitions may be overridden, but not constraints.

This is significant for semantic web applications, since it means that information

represented in this way is not restricted to human inspection. It can be proof-checked

mechanically, transformed by symbol manipulation, or sent to a remote constraint

solver. Moreover, given a standardised interchange format, data and attached

constraints from multiple sources can be gathered together, checked for compatibility,

and used to derive new information. Because the P/FDM data model is an extended ER

model, it maps very easily onto the RDF schema specification.

CoLan is as expressive as the subset of first-order logic that is useful for

expressing integrity constraints: namely, range-restricted constraints. This class of

constraints includes those first-order logic expressions in which each variable is

constrained to be a member of some finite set of values. CoLan provides a precise

denotation for constraints but it does not force us to evaluate them as integrity checks.

The constraint expresses a formula of logic which is true when applied to all the

instances in a database, but it is also applicable to instances in a solution database which

is yet to be populated with constructed solutions by a solver process (Gray et al., 1999a;

Gray et al., 1999b). Here, it is behaving more like a specification than as an integrity

check. The power of this in the context of the semantic web is that constraints can be

passed as a form of mobile knowledge between agents and processes and they are no

longer tied to a piece of database software. For more details of P/FDM, CoLan and

related work, the reader is encouraged to visit www.csd.abdn.ac.uk/~pfdm or refer the

relevant technical papers that have been referenced above.

4.2 ConEditorôs GUI

ConEditor has been designed to facilitate domain experts in capturing and maintaining

constraints. A screenshot of ConEditorôs GUI is shown in Figure 4.2. A constraint

expression can be created by selecting entities from a domain ontology and combining

them with a pre-defined set of keywords and operators from the high-level constraint

language, CoLan. An example of a simple constraint expressed in CoLan, against the

domain ontology (a jet engine ontology) used by the Designersô Workbench is as

follows:

http://www.csd.abdn.ac.uk/~pfdm

93

Chapter 4: ConEditor

constrain each f in ConcreteFeature

to have max_operating_temp(has_material(f)) >= operating_temp(f)

The above constraint states that for every instance of the class ConcreteFeature, the

value of the maximum operating temperature of its material must be greater than or

equal to the environmental operating temperature.

Figure 4.2: A screenshot of ConEditorôs GUI

ConEditorôs GUI essentially consists of five components, namely: (A) Keywords Panel,

(B) Taxonomy Panel, (C) Central Panel, (D) Tool Bar and (E) Result Panel. These

components provide the user with entities required to form a constraint

