Fe-liquid segregation in deforming planetesimals: Coupling Core-Forming compositions with transport phenomena

Tracy Rushmer, Nick Petford, Munir Humayun, Andrew J. Campbell

Research output: Contribution to JournalArticlepeer-review

Abstract

The segregation and macroscopic transport phenomena leading ultimately to the formation of metallic cores in planetary silicate mantles is a fundamental yet poorly understood process. Here we report the results of a series of deformation experiments on a sample of partially molten Kernouve H6 chondrite (T = 900-1050 °C) aimed at determining the siderophile concentrations and associated partition coefficients in both Fe-S-Ni-O quench and Fe-Ni metal as a function of degree of melting, and to provide insight into the melt segregation mechanism(s). The geochemical results show the S content in the segregated Fe-rich liquid metal decreases with increasing degree of melting. As the S content of the liquid metal also strongly affects the partitioning of highly siderophile elements between solid and liquid metal, an increase in porosity (Fe liquid melt fraction) from c. 5% to 30% lowers DSM/LM for HSE by several orders of magnitude. The relationship between melt fraction and porosity is used to compare the migration rate of liquid metal driven by buoyancy pressure gradients with a new theoretical model of melt segregation in a deforming porous medium that takes into account the coupling between volume strain (dilatancy) and shear stress. For buoyancy driven porous flow, highest transport velocities occur at highest porosities, implying the fastest flow velocities will carry Fe-rich liquid metal with low sulfur contents, preferentially enriched in incompatible HSEs. Predicted characteristic timescales of liquid metal transport due to buoyancy effects (diapirism and porous flow) for a c. 100 km-sized planetesimal are contrasted with shear-induced segregation velocities set up in response to external perturbations via impacts, an important process during the final stages of planetary accretion. A novel feature of our analysis is that liquid metal segregated previously into a planetary core by buoyancy instabilities (e.g., porous flow or a raining mechanism), might be drawn locally back into the silicate lower mantle by pressure gradients linked to surface impacts providing a physical mechanism for return flow of siderophile elements across the CMB. © 2005 Elsevier B.V. All rights reserved.
Original languageEnglish
Pages (from-to)185-202
Number of pages18
JournalEarth and Planetary Science Letters
Volume239
Issue number3-4
DOIs
Publication statusPublished - 15 Nov 2005

Keywords

  • Core formation
  • Dilatancy
  • Planetesimals
  • Siderophile elements
  • Strain rate

Fingerprint

Dive into the research topics of 'Fe-liquid segregation in deforming planetesimals: Coupling Core-Forming compositions with transport phenomena'. Together they form a unique fingerprint.

Cite this