The modelling, simulation and experimental testing of the dynamic responses of an elevator system

Xabier Arrasate, Stefan Kaczmarczyk, Gaizka Almandoz, Jose M Abete, Inge Isasa

Research output: Contribution to JournalArticlepeer-review

Abstract

Vertical vibrations affect passenger comfort during an elevator travel. This work presents the results of a study of vertical vibrations caused by torque ripple generated at the elevator drive system. Tests are performed on a 1:1 roping configuration laboratory model; the acceleration response at the suspended masses and at the drive machine, the machine shaft velocity and the three phase current intensities supplied to the machine are measured during several travels. The machine torque is estimated from the current intensities. Anon stationary model of an elevator is then developed to simulate the acceleration response. The model accommodates the drive system dynamics. The machine parameters are computed by means of the Finite Element Method simulation software FLUX. FLUX computes the amplitudes of the torque ripple and the radial forces at the air-gap. As the torque ripple computed by FLUX is smaller than that torque estimated from the machine currents, the latter is added as a perturbation to the controller generated torque. With respect to the car– counterweight–sheave–ropes assembly a five degree-of-freedom lumped-parameter model (LPM) and a novel distributed-parameter one (DPM) are developed. The elevator dynamics represented by the DPM is described by a partial differential equation set that is discretised by expanding the vertical displacements in terms of the linear stationary mode shapes of a system composed of three masses constrained by the suspension rope. The models are implemented in the MATLAB/Simulink computational environment and the system response is determined through numerical simulation. It is shown that the LPM forms a good approximation of the DPM. The frequency content of the computed and measured accelerations demonstrates that the elevator car vibrates at frequencies generated at the machine, especially when they are close to the system natural frequencies.
Original languageEnglish
Article number1-2
Pages (from-to)258-282
Number of pages25
JournalMechanical Systems and Signal Processing
Volume42
Issue number1-2
Early online date28 Jun 2013
DOIs
Publication statusPublished - 1 Jan 2014

Keywords

  • Elevator
  • Vertical vibration
  • Drive system
  • Model
  • Computer simulation
  • Experimental test

Fingerprint Dive into the research topics of 'The modelling, simulation and experimental testing of the dynamic responses of an elevator system'. Together they form a unique fingerprint.

Cite this